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Abstract

We examine the use of fixed-effects and random-effects moment-based meta-analytic methods for
analysis of binary adverse event data. Special attention is paid to the case of rare adverse events
which are commonly encountered in routine practice. We study estimation of model parameters
and between-study heterogeneity. In addition, we examine traditional approaches to hypothesis
testing of the average treatment effect and detection of the heterogeneity of treatment effect across
studies. We derive three new methods, simple (unweighted) average treatment effect estimator, a
new heterogeneity estimator, and a parametric bootstrapping test for heterogeneity. We then study
the statistical properties of both the traditional and new methods via simulation. We find that in
general, moment-based estimators of combined treatment effects and heterogeneity are biased and
the degree of bias is proportional to the rarity of the event under study. The new methods
eliminate much, but not all of this bias. The various estimators and hypothesis testing methods are
then compared and contrasted using an example dataset on treatment of stable coronary artery
disease.

1 INTRODUCTION

The use of meta-analysis for research synthesis has become routine in medical research.
Unlike early developments for effect sizes based on continuous and normally distributed
outcomes (Hedges and Olkin, 1985), applications of meta-analysis in medical research often
focus on the odds ratio (Engles et. al, 2000 and Deeks, 2002) between treated and control
conditions in terms of a binary indicator of efficacy and/or the presence or absence of an
adverse drug reaction (ADR). The two most widely used statistical methods for meta-
analysis of a binary outcome are the fixed-effect model (Mantel and Haenszel (MH), 1959)
and the random-effect model (DerSimonian and Laird (DSL), 1986). A special statistical
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problem arises when the focus of research synthesis is on a rare binary events, such as a rare
ADR.

The literature of fixed-effect meta-analysis for sparse data provides a solid guideline for
both continuity correction and methods to use. The standard use of a continuity correction
for binary data may not be appropriate for sparse data as the number of zero cells for such
data become large. Sweeting et.al. (2004) showed via simulation that for sparse data with
homogeneous treatment effect, the “empirical correction” which incorporates information on
odds ratios from other studies, and the “treatment arm correction” that uses the reciprocal of
the size from the other arm, perform better than the constant 0.5 correction for both the MH
and inverse variance weighted methods. Their investigation reveals that for fixed-effect
models, the MH method performs consistently better than the inverse variance weighted
method for imbalanced group sizes and all continuity corrections. They found that the Peto
method is almost unbiased for balanced group sizes and the bias increases with respect to the
group imbalance.

Bradburn et. al, (2007) have performed an extensive simulation study to compare a number
of fixed-effect methods of pooling odds ratios for sparse data meta-analysis. They
considered balanced as well as highly imbalanced group sizes and used a constant 0.5 zero-
cell correction only when required. Their investigation revealed that most of the well known
meta-analysis methods are biased for sparse data. They found that the Peto method is the
least biased and the most powerful for within-study balanced sparse data which matches the
findings of Sweeting et al. (2004). Whereas, for unbalanced cases, the MH without zero-
correction, logistic regression and the exact method have similar performance and are less
biased than the Peto method. They concluded that the method of analysis should be chosen
based on the expected treatment effect size, imbalance of the study arms and the underlying
event rates. The general recommendation is to use the MH method with an appropriate
continuity correction and avoid the inverse variance weighted average and DSL methods
when dealing with sparse data with homogeneous treatment effect.

Relatively less attention has been paid to heterogeneous treatment effects or moment-based
meta-analysis with random-effects for sparse data. Sweeting, et al. (2004) performed a
limited simulation study using random-effects models to combine odds ratios for sparse
data. In 95% of the cases they did not get valid estimates (i.e. positive estimates) of the
between-study variance. As a consequence, their results for random-effects models were
close to those of the fixed-effects model. For random-effects meta-analysis, Shuster (2010)
showed via simulation that inverse variance weighted average estimates including the DSL
method are highly biased. Based on his findings, he strongly advocated for the simple
(unweighted) average estimate for random-effects meta-analysis.

Available random-effect methods consistently underestimate the heterogeneity parameter
(DerSimonian and Kacker, 2007). The random-effects meta-analysis also requires an
appropriate continuity correction to estimate the treatment effect. Although Sweeting, et al.
(2004) showed that the empirical and treatment arm corrections performed better than 0.5
cell correction for fixed-effect models, they cautioned against the applicability of the
empirical continuity correction for the random-effects model, as for such models the
underlying treatment effect varies between studies.

The focus of this article is on random-effects meta-analysis for sparse data. We first look for
a continuity correction to make our moment based estimate of the treatment effect
asymptotically unbiased for a single study. Next we extend this concept of bias correction
for multiple studies and propose an asymptotically unbiased estimate which matches with
the finding of Shuster (2010). We organize the article as follows. In Section 2 we discuss
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various meta-analytic methods for estimating relevant model parameters. In this section, we
propose two new methods: one for estimating the treatment effect and the other for
estimating the heterogeneity parameter. In Section 3 we investigate hypothesis testing
problems for these parameters. For the heterogeneity parameter we show standard testing
procedures have very poor power. Using the concept of parametric boot-strapping, we
propose a testing procedure for the heterogeneity parameter that provides better power. In
Section 4 we compare performances of several methods via simulation and show that our
proposed methods provide very satisfactory results. In Section 5 we illustrate our results
with an example of Percutaneous Coronary Intervention (PCI) versus medical treatment
alone (MED) in the treatment of patients with stable coronary artery disease. We conclude
with a discussion of our results in Section 6.

2 Estimation of Model Parameters

Consider a meta-analysis consisting of k randomized studies. In the ith study, nit subjects are
randomly assigned to the treatment group, and the remaining nic subjects are assigned to the
control group. The outcome variable is characterized as a success or failure and accordingly
assign a value of 1 or 0. Let xit and xic be respectively the numbers of observed events of
interest in the treatment and control groups of the ith study. One general approach to model
the between study variation is to use a binomial-normal hierarchical model. Let pit and pic be
respectively the probabilities of observing an event in the treatment and control groups. The
model can be expressed as:

(1)

where qit = 1 − pit and qic = 1 − pic. The primary focus of this article is on estimation and
testing of the treatment effect (θ) and heterogeneity parameter (τ2).

We start by reviewing the moment-based estimators that form the basis of current routine
practice in this area (e.g., the Cochrane Reviews). As we will show, the moment-based
estimators can result in quite biased estimates of the overall treatment effect in the presence
of heterogeneity of the treatment effect across studies. We study the bias of these estimators
and propose new alternative moment-based methods that improve overall performance and
testing.

The MH and empirical logit (EL) methods (also known as the inverse variance method) used
for estimating the odds ratios are moment-based approaches which ignore heterogeneity
among studies. The DSL method incorporates the between-study variability in the weighted
average estimate of θ assuming τ2 is known. When the binary outcome is rare, and one or
more cells in a study are zero, traditional moment-based approaches such as EL and DSL
break down as it becomes impossible to compute the odds ratio. Several numeric
adjustments to correct this problem have been suggested. Haldane (1955) added 1/2 to the
observed frequencies to estimate the treatment effect for a single study, whereas for multiple
studies Cox (1970) added −1/2 to estimate the same parameter. Both of the authors proved
that for fixed-effect models their estimates are optimal in terms of reducing the bias to the
first order approximation. For studies of rare events, when a large number of observed
frequencies are zero, the empirical and treatment arm corrections proposed by Sweeting
et.al. (2004) provide better results than the constant 0.5 correction for fixed-effect meta-
analysis. In what follows we discuss our approach to select the continuity correction for
random-effects meta-analysis with sparse data.
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We first add a positive constant a to the observed frequencies and estimate the treatment
effect for the model defined in (1) and then determine the optimal value of a to make the
estimate unbiased. Let θ̂ia be an estimate of the treatment effect based on the ith study.

(2)

where xij and nij are respectively the observed number of events and total sample size in the
jth group, j = t, c, of the ith study. Using Result 1 provided in Appendix 1 we compute the
following expression for the expected value of θ̂ia.

(3)

Inspecting the right hand expression in (3), we see that the first order term of bias (i.e. terms
of order n−1) will vanish if a = 1/2. The implication of this result is that the estimate θ̂i1/2 is

unbiased up to the order of n−1, and hence the simple average estimate  is
also unbiased. We now explore the properties of the weighted average estimate. The
variance of θ̂i1/2 shown in Appendix 2 to be:

(4)

In the right side of (4), the quantity  is the
expression for the within-study variance, and τ2 is the between-study variance. Thus
V(θ̂i1/2) is the sum of the within- and between-study variances. Note that

(5)

Hence, the quantity  is unbiased for V(θ̂i1/2), provided that τ̂2 is
unbiased for τ̂2. A usual estimate of V(θ̂i1/2) denoted by V ̂(θ̂i1/2) is

(6)

where . The study-specific estimate of variance of the treatment
effect recommended by DSL has the same expression as in the right side of (6). Let

. The weighted average estimate of θ denoted by θ̂wa is

(7)

When τ2 is assumed to be 0, the estimate in equation (7) is known as the EL or inverse
variance estimator of common log odds ratio. By contrast, the MH estimate of the common
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odds ratio, which also assumes τ2 = 0, is given by

.

Note that (i) the weights ŵi(τ2) are biased (Bohning et al., 2002; Malzahn et al., 2002), and

(ii) ŵi(τ2) and θ̂ia are correlated (as p̂i and  are correlated). Shuster (2010) proved that
when estimated effect size and empirically derived weights are correlated, the weighted
average estimate from the random effects model provided in (7) is biased. In Appendix 5 we
show that θ̂wa has the following bias:

(8)

where La(x) = θ̂wa, L(p) = Ex(La(x)),

 and
H(pt, qt, pc, qc) = E(H(pt|ε, qt|ε, pc, qc)). We see in Figure 1b and 1c that for studies of rare
events, this bias is usually positive and is an increasing function of both τ2 and a. As a
result, the bias of the weighted average method does not vanish even after adding 1/2 as it
does for the simple average method. It is a well known result in linear models that the
weighted average estimate (when weights are inversely proportional to variance) is the best
linear unbiased estimate (BLUE) for the mean effect. However, the concept of the BLUE is
not applicable in the current context as the weights are biased and correlated. Shuster (2010)
strongly recommended using the simple average (unweighted) estimate for the random-
effects model as the correlation between the weights and effect size produces serious bias to
the weighted average estimate. The estimated variances of θ̂s1/2 and θ̂w1/2 are respectively

(9)

Note that V(̂θ̂s1/2) ≥ V̂(θ̂w1/2) because the arithmetic mean is larger than the harmonic mean.
However, this ordering of the variance estimates may not hold for the true variances. In our
case the study specific estimate of θ and the estimate of its variance are statistically

dependent, hence E(ŵi(τ2)θ̂i1/2) ≠ E(ŵi(τ2))E(θ̂i1/2) (as p̂i and  are correlated).

Consequently, the exact variance of the weighted average estimate is not .
Therefore, in such situations, not only is the weighted average estimate biased but also the
superiority of the weighted average estimate in terms of its smaller variance compared to
that of the simple average estimate is questionable.

2.1 Estimation of τ2

In practice, τ2 has primarily been estimated using the method of moments and likelihood-
based methods. Following Cochran’s (1954) Q-statistics, DerSimonian and Laird (1986)
proposed a moment-based estimator for an τ2 that is easy to compute and has been used
extensively. Hardy and Thompson (1996) explored the DSL procedure in connection with
constructing a confidence interval for θ for unknown τ2. They concluded that the likelihood-
based method outperforms the DSL method because it incorporates extra variability due to
the estimation of τ2. In the context of a mixed-effects linear meta-analysis model, Sidik and
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Jonkman (2007) compared seven different estimators of the heterogeneity in a simulation
study. To obtain confidence intervals for the variance components, Viechtbauer (2007)
compared those seven approaches with a new method and showed that the new method had
the correct coverage probability. Alternatively, the I2 statistic is used to quantify the impact
of heterogeneity on the treatment effect (Higgins and Thompson, 2002). From the inferential
point of view, I2 and Q have been shown to have similar performance (Huedo-Medina et al.,
2006).

To illustrate, we use results from the previous section to find the DSL estimator of τ2. We
take the within-study estimates of variance and corresponding weights to be

(10)

Let

(11)

where θ̂w(0)1/2 is a weighted average estimate of θ defined in (7). Note that the weight
function does not include the between-study variability. The DSL (1986) estimate of τ2 is

(12)

This estimator has two drawbacks. First, in the presence of the heterogeneity,  is a
biased estimate (Bohning et al., 2002; Malzahn et al., 2002; Sidik, 2005). Second, the
weights ŵi(0) assume that τ2 = 0 and hence the between-study variability is not included in

it. Incorporating estimates of the proper weights , DerSimonian and Kacker (2007)
proposed a two-step procedure to estimate τ2: (i) use the within-study weights described in

equation (10) to compute  as described in (12), (ii) compute adjusted weights that

incorporate the DSL estimate of between-study variance, , and use these in equations

(10) and (12) to compute the adjusted estimate . Theoretical properties of this two-step

method have not been well studied. We have numerically investigated the properties of 
and found that for rare events this estimate has considerable downward bias.

Another procedure for estimating τ2 was proposed by Paule and Mandel (1982) ( ) and it
is based on the following estimating equation.

(13)

A unique solution of equation (13), , can be determined by numerical iteration starting

with τ2 = 0. If F(τ2) is negative for all positive τ2,  is set to 0. Note that  is based on
σ̂i(0) which varies from study to study. The variance estimator may be improved by

borrowing strength from all studies when estimating each within-study variance 
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(14)

We propose a new estimator, denoted , that is the solution to a modified version of
equation (13), where the weights wi(τ2) are replaced by the shared-strength weights

. We numerically compare the performance of  in Section 4.

3 HYPOTHESIS TESTING

In addition to parameter estimation, an equally important problem in meta-analysis is
hypothesis testing regarding θ and τ2. A large sample test for θ using θ̂w1/2 and test for τ2
using a mixture of chi-square distributions are available (see Hartung, Knapp and Sinha
(2008), Sapiro (1985), and Self and Liang (1987)). In this section we explore some tests for
both of these parameters.

3.1 Testing the Treatment Effect

Hartung et al. (2008) constructed the following test statistic for testing the null hypothesis
H0 : θ = 0.

(15)

Even though asymptotically T1 follows a t distribution with k − 1 degrees of freedom (df),
i.e., T1 ~ tk−1, its small sample property has not been well studied, particularly for moderate
values of τ2 (say .5 ≤ τ2 ≤ 1.5). As the bias of θ̂w1/2 is significant even for moderate τ2, a
natural question to ask is how good the performance of T1 will be in terms of controlling
type I error rates for small to large within-study sample sizes (n = 50, ⋯ , 1000). Based on
the unbiased simple average estimate θs1/2 we construct the following test statistic

(16)

In Section 4.2 we investigate the performance of T1 and T2 numerically and provide
guidelines for application.

3.2 Testing the Heterogeneity Parameter

In practice, we use the likelihood ratio test or Wald’s test to determine whether the
heterogeneity parameter is zero, i.e. H0 : τ2 = 0. This puts the variance component on the
boundary of the parametric space defined by the alternative hypothesis. Under this scenario,
the limiting distribution of the likelihood ratio test statistic −2ln(LR) under the null
hypothesis does not follow a χ2 distribution. Shapiro (1985) derived the asymptotic
distribution of −2ln(LR) as a mixture of χ2 distributions, when τ2 falls on the boundary. Self
and Liang (1987) generalized these results. The general conclusion is that standard tests for
H0 : τ2 = 0 are too conservative in terms of controlling type I error rates (α) and exhibit
inadequate power in the neighborhood of the null hypothesis. We propose two tests for τ2.
The first test is based on the Q statistic:
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As shown in Appendix 4, an estimate of the variance of the Q statistic is:

(17)

Cochran (1950) showed that the asymptotic distribution of Q(τ̂2) is χ2 with degrees of
freedom (k − 1), which is a gamma distribution. Krishnamoorthy, Mathew and Mukherjee
(2008), and Bhaumik, Kapur, and Gibbons (2009) observed that the normal distribution
approximation is better for a standardized log-transformed gamma distribution than the
standardized gamma distribution. Based on this result, we propose the following test for H0 :
τ2 = 0.

(18)

In (18) the variance of ln(Q(τ̂2)) is computed using the delta method and  is

obtained by substituting τ̂2 = 0 in the expression of . For many situations T3

performs extremely well in terms of controlling type I error rates. Our simulation results
show that for extremely rare events, this test has inflated type I error rates. The simulated
results are not reported here. Our second proposed test for τ2 = 0 is based on the simple
average estimate of θ, which is specifically designed for rare events. Let yi = (θ̂i1/2 − θ̂s1/2)2.
Under the null hypothesis, an estimate of the mean of yi denoted by Bi is

. An estimate of the variance of yi is Σî, where Σ̂i = 2Bi. The second
proposed test for H0 : τ2 = 0 is

(19)

Even though the asymptotic distribution of T4 is standard normal, for small samples its
distribution is not known. In Section 4 we show that for finite samples this test is very
conservative. To maintain the proper type I error rate, we propose to determine the critical
value using the parametric bootstrapping technique as follows:

1. For a given dataset of sample size n, estimate θ and μ by the simple average
method. For large n, θ̂ and μ̂ are consistent estimators for θ and μ. In the following
we replace θ̂ by θ and μ̂ by μ.

2. Using θ̂, μ̂ (obtained from step 1) and τ0, generate k studies each of size (nt, nc)
from B(nt, pt) and B(nc, pc) for treatment and control groups respectively under the
null hypothesis.

3. Compute yi and Bi.

4. Compute T4 using equation (19)

5. Repeat steps 2–4 for 10000 times.

Bhaumik et al. Page 8

J Am Stat Assoc. Author manuscript; available in PMC 2013 June 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



6. Find the 100(1 − α)th percentile point T4(α) from the generated .

7. Reject H0 if T4 > T4(α) where T4 is obtained from (19) for the original data.

We investigate the performance of T4 in Section 4.

4 SIMULATION STUDY

In this section, we describe the results of a simulation study designed to compare several
methods for evaluating (i) performance of moment-based estimates of θ, (ii) the type I error
rates and power functions for testing θ, (iii) performance of estimates of τ2, and (iv) the type
I error rates and power functions for testing τ2. All the simulation studies were performed
using the R software.

4.1 Performance of Estimates of θ
We compare the performance of the overall treatment effect estimate θ via simulation for

four different estimation procedures, (a) simple average (SA), (b) DSL with estimated ,
(c) empirical logit (EL), and (d) Mantel-Haenszel (MH). For this comparison we set θ = 0,

0.5, 1.0, ⋯ 2.5; k = 20; μ = −5.5, −5, ⋯ , 0, ⋯ , 5, 5.5;  and τ2 = 0, 0.2, 0.4, 0.6, 0.8.
The number of subjects in each arm was chosen independently by rounding random draws
from a uniform distribution with min(n) = 50 and max(n) = 1000, i.e. nt and nc ~ U(50,
1000). Next, we generated the responses xic for the control group based on a binomial

distribution B(nic, pic) for i = 1, ⋯ , k, where pic is computed as . The responses
xit for the treatment group were drawn from a binomial distribution B(nit, pit) for i = 1, ⋯ , k

with , ε1 ~ N(0, 0.5) and ε2 ~ N(0, τ2). Inclusion of ε1 in pic and ε2

in pit imply that both the control and treatment groups have varying rates of events. We have
added 0.5 correction when necessary for EL, DSL and MH, whereas for SA estimates we
have added 0.5 correction for all studies. We simulated 1000 replications for each
combination of k, n, θ, μ and τ2.

Figure 1 compares various estimates of the overall treatment effect. Panel (a) reveals that the
MH and EL methods overestimate the overall treatment effect. This figure also suggests that
SA estimates are less biased for all values of the treatment effect under consideration. For
moderate overall treatment effects, DSL and SA estimates are comparable. Panel (b)
exhibits the effect of the background incidence rate in estimating the overall treatment
effect. It is evident from this figure that MH, EL and DSL estimates are biased when μ ≠ 0
(i.e. mean (pc) ≠ 0.5). The SA estimate, on the other hand, is almost unbiased for moderate
background incidence rates (i.e. −4 ≤ μ ≤ 4). Also, the bias of the SA estimate for rare event
cases is comparatively smaller. Panel (c) shows the effect of heterogeneity of treatment
effects across studies on the estimate of the overall treatment effect. It is apparent that bias
of the SA estimate in the presence of even significant heterogeneity is minimal compared to
the other estimators (EL, DSL, and MH) under consideration.

In addition, we have used the “empirical continuity correction” suggested by Sweeting et al.
(2004) for all moment-based estimators. We observe that moment-based estimates of θ with
this continuity correction are more biased than 0.5 correction for rare events in the presence
of noticeable heterogeneity. This is not surprising as Sweeting et al. (2004) have pointed out
the non-applicability of empirical continuity correction for random-effects models.

In this context it is important to mention that theoretical properties of simple average
estimate of θ is derived under the fixed response rate in the control group but its properties
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are studied via simulation under both fixed (not reported here) and random response rates in
the control group. In both cases we observe that the simple average estimate performs better
than MH, EL and DSL.

4.2 Performance of Tests for Treatment Effect

In Section 3, we discussed the general testing procedure for H0 : θ = 0 against the alternative
H1 : θ ≠ 0. In this section, we use a simulation study to compare the performance of three
tests: (a) z-test based on the EL estimate of θ in equation (15), i.e. T1, with τ̂2 = 0, (b) z-test

based on the DSL estimate of θ including τ2 in (15), i.e. T1, with , and (c) z-test

based on the simple average estimate of θ, i.e., T2, with . Our Monte Carlo
simulation is based on 10000 replications with τ2=0.8, k=20, and a nominal significance rate
of α= 0.05. Figure 2 graphically presents the results of our simulation study.

Figure 2(a) displays the estimated significance level of each test when the underlying
incidence rate is varied, and when the null hypothesis (i.e θ = 0) is true. Although DSL
performs quite well when μ is in the neighborhood of zero, the type I error of DSL is
inflated (to almost 20%) for extreme values of μ. Type I error rates of EL and MH are
highly inflated for all values of μ. On the other hand, the SA based test has type I error rates
close to the nominal level regardless of the background incidence rates.

Next we numerically study the power functions of these tests varying θ = 0, 0.1, ⋯ , 1.5, μ =
−2.5 (i.e., mean (pc) = 0.08), and nc, nt ~ U(50, 1000). We present these results in Figure
2(b). The SA test demonstrates a desirable power curve that controls the type I error rate at
the nominal level and grows to the power close to one for an effect size close to 0.6. On the
contrary, power curves of EL and MH are overlapping in the figure. Both EL and MH have
highly inflated type I error rates (close to one) and hence naturally they have deceptively
high power.

4.3 Performance of Estimates of the Heterogeneity Parameter τ2

In order to study the performance of estimates of τ2, we simulate data sets following the
same procedure described in the first paragraph of Section 4.1. For this simulation, values of
τ2 are set between 0 and 1.2. In order to demonstrate the effect of rare events as well as
prevalent events on the estimates of τ2, the values of μ are varied from −5.5 (0.4%) to 5.5
(99%). For this comparison we set θ at 0 and the number of studies were set to 20. Sample
sizes in each treatment arm were drawn from U(50, 1000). Figure 3(a) shows that for
extremely rare (or prevalent) cases, moment-based estimates by PM and DSK fail to detect
the presence of heterogeneity (τ2 = 0.8) in the treatment effect across studies. This figure
also illustrates the reduction of bias achieved by the IPM procedure compared to DSL, DSK,
and PM for −4 ≤ μ ≤ 4. Figure 3(b) shows that the IPM approach performs the best among
all four methods for all values of 0 < τ2 ≤ 1.2 when μ is set at −2.5, (i.e. a moderate
background rate of 7.5%).

4.4 Performance of tests of the Heterogeneity Parameter

In this section we compare the performance of Cochran’s Q, and Parametric boot-strapping
(PB) statistics for testing H0 : τ2 = 0, against H1 : τ2 > 0. For the current simulation we
follow the same parametric conditions as described in Section 4.1. For this study we set μ =
−4.5 and −2.5 along with θ = 0, k = 20 and the n ~ U(50, 1000). We present the power
curves in Figure 4. Figures 4a and 4c reveal that Cochran’s Q has lower power compared to
PB for both event rates −4.5 and −2.5. It is clear from the comparison of these two figures
that for moderate event rates (i.e. μ = −2.5) the performance of both the tests have improved
significantly. In Figure 4a we see that for a rare event case (μ = −4.5), the power of Q is
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extremely poor. The new test PB also performs poorly for smaller values of τ2 but for τ2 >
0.6 it performs far better than Q.

For μ = −4.5, τ2 = 0.6 plays an important role, as for this value of τ2, the proportion of
between studies variance (I2) exceeds 40% of the total variance (see Figure 4b). Higgins and
Thompson (2002) suggest that any value of I2 less than 30% indicates only for a mild
heterogeneity. Following their tentative rule, we can infer that τ2 ≤ 0.6 indicates only mild
heterogeneity (see Figure 4b). For a significant heterogeneity (when I2 ≥ 50%, or in the
current context τ2 ≥ 0.6), PB outperforms Q in terms of power (see Figure 4a). In Figure
4(d) we see that the power of each test depends on the number of studies included in the
meta-analysis. The power curve of Q grows with a slower rate compared to that of PB. To
attain 80% power, PB requires about 125 studies, whereas for the same power, Q needs
almost 450 studies.

4.5 Correlated Arms

In Figure 1, we observed that all methods overestimated the treatment effect. In order to give
a definite answer to the question when moment-based estimates will underestimate the
treatment effect, we perform a simulation study with correlated arms (i.e. we assume that ε1

and ε2 are correlated and the data were generated accordingly for this simulation study).
Figure 5 shows that usual moment-based methods run into even more problems when the
event rates of the control and treatment are correlated. For larger negative correlations (i.e. ρ
< −.5), treatment shows a protective effect and for larger positive correlations (i.e. ρ > .5), it
shows a harmful effect when the generating parameters are under the null. The performance
of the simple average is better compared to its counterparts DSL, MH and EL even for
correlated arms. We have extended our simulation study for a wide range of θ ( −.4 ≤ θ ≤
1.0 ) and observed the same pattern. For negative correlations, θ is under estimated and for
positive correlations, it is over estimated on average. The SA method always has better
performance.

4.6 Some Results for Extreme Rare Events

As we have mentioned earlier in Section 2, a special statistical problem arises when the
focus of research synthesis is on a rare binary event. Our simulation studies show that
moment-based estimates have undesirable statistical properties when the event is very rare
or very frequent. We noted in Figure 1b that the bias of the overall treatment effect estimate
is attenuated for very rare cases. One explanation for this undesirable behavior is when
events are rare, estimates and inferences are unduly influenced by the factor used for
continuity correction. One way to avoid this is to conduct larger studies each with more
samples. Our simulation results conducted for rare events (mean (pc) = 2/1000), show that
the moment-based estimates produce significant biases for sample sizes smaller than 400,
and only the SA estimate converges asymptotically to the true value. The DSL estimate
shows very weak convergence, and MH and EL estimates fail to converge to the true value
even for a sample size as large as 2400 in each arm. Our simulation also shows that for rare
event studies all available estimating methods fail to adequately estimate the heterogeneity
parameter for random treatment effects. However, as we have seen in Figures 1c and 2a for
fixed-effect models, biases and type I error rates can be severely affected depending on the
magnitude of the true heterogeneity. Our simulation shows that for rare events the
parametric bootstrap method outperforms the Q statistic. When the number of studies are
fairly large (k ≥ 40), our proposed tests for the treatment effect maintain nominal type 1
error rates and provide adequate power.

Zero Studies: For extremely rare events, a large proportion of studies tends to have zero
events in both arms. It has been argued by various authors that the zero studies do not
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contribute to the odds ratio estimation and hence should not be included in the analysis. The
contrasting argument in support of inclusion of those studies in order to take an advantage is
also found in the literature (Whitehead and Whitehead, 1991). We have performed an
extensive simulation study to examine the effects of inclusion (with 0.5 correction) and
exclusion of zero studies in the estimation of both the treatment effect parameter (θ) and the
heterogeneity parameter (τ2). We find that as the proportion of zero studies increases the
discrepancy in the estimation of θ also increases. It reveals that estimates with the inclusion
of zero cells have smaller bias compared to estimates without zero cells. The SA estimator is
least affected by the proportion of zero studies. It also reveals that exclusion of zero studies
improves our ability to estimate τ2. In summary, we have two contradictory results. First,
the inclusion of zero studies with 0.5 continuity correction helps us estimating θ more
accurately. Second, an exclusion of zero studies is helpful in estimating τ2. Therefore, two
separate strategies are needed to be implemented when estimating these two parameters.

5 ILLUSTRATION

Coronary artery disease is the single largest killer of American men and women (Rosamond
et.al., 2007). In 2004 in the U.S., there were 840,000 cases discharged with the diagnosis of
acute coronary syndrome, most of them with acute myocardial infarction (MI). Percutaneous
coronary intervention or PCI (commonly known as angioplasty) is increasingly being used
in patients with various manifestations of coronary artery disease. PCI is an established
treatment strategy that improves overall survival and survival time free of recurrent MI for
patients with acute coronary disease; however, less is known about the effects of PCI in the
treatment of patients with stable coronary artery disease. Research in this area has been
limited for two reasons. First, patients with stable coronary artery disease have a very good
prognosis and large sample size studies are required to assess potential differences in
treatments regarding rare events (Rihal et.al., 2003; Timmis et.al., 2007). Second, there is a
period of early risk associated with PCI, which requires longer follow-up periods when
compared to medical treatment alone (MED) to offset this early excess risk.

In an effort to better study the efficacy of PCI versus MED, Schomig et.al., (2008)
conducted a meta-analysis of 17 randomized clinical trials (RCTs) that compared PCI to
MED in patients with stable coronary artery disease. They studied a total of 7513 patients
(3675 PCI and 3838 MED). Overall, the average age of the patients was 60 years, 18% of
them were women, 54% had incurred MI, and the average length of follow-up was 51
months. Ninety-two percent of the patients in the PCI-based strategy group received
revascularization (43% balloon angioplasty, 41% stents, and 8% CABG). In the PCI group,
271 patients died and in the MED group 335 died. Among the 13 studies that reported
cardiac mortality, the PCI and MED arms had a combined 115/2814 and 151/2805 cardiac
deaths, respectively. Finally, myocardial infarction rates (MI) were provided in all 17
studies, reporting 319 in the PCI group and 357 in the MED group. The original authors
used Cochran’s Q-test to assess heterogeneity and performed Mantel and Haenszel (MH)
and Dersimonian and Laird (DSL) methods to estimate the overall treatment effect. The Test
of heterogeneity (Cochran’s Q statistic) was not significant for total mortality (p=.263) or
cardiac mortality (p=.161), but was significant for MI (p=.003). The fixed-effect (MH)
model showed a significant protective effect of PCI on total mortality (OR = 0.80, CI =
0.68–0.95), and cardiac mortality (OR = 0.74, CI = 0.57–0.96), and approached significance
for MI (OR = 0.91, CI = 0.77–1.06). The random-effect (DSL) model showed a significant
protective effect of PCI on total mortality (OR = 0.80, CI = 0.64–0.99), an effect that
approached significance for cardiac mortality (OR = 0.74, CI = 0.51–1.06), and a non-
significant effect for MI (OR = 0.90, CI = 0.66–1.23) that was in the same protective
direction as the other effects. On the basis of these results, the authors concluded that a PCI-
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based invasive strategy may improve long term survival compared with a medical treatment
in patients with stable coronary artery disease.

To illustrate the performance of the moment-based approaches, we reanalyzed these data for
all three outcomes (total mortality, cardiac mortality, and MI). For MI, there are 17 studies
with an average of 200 subjects per arm. Table 1 presents the estimates of the treatment
effects and Table 2 presents the corresponding heterogeneity parameter estimates. Inspection
of Table 2 reveals the significance of the heterogeneity. The IPM provides a significantly
larger estimate of the heterogeneity parameter. The SA estimate of the treatment effect is
positive in contrast to the other estimators. All estimators (SA, MH, and DSL) indicate that
PCI has a non-significant effect for MI. We notice the reversal of bias in this example when
compared to the figure presented earlier (Figure 1). Our simulation shows (in Figure 5) that
such reversal occurs when there is a strong negative correlation between background event
rates and treatment effects across studies.

For the cardiac death data none of the methods (DSL, DSK, and IPM) found significant
heterogeneity, consistent with the findings of Schomig et al (2008). Estimates of
heterogeneity by DSL, DSK, and IPM for the all cause mortality data were also non-
significant. Hence to estimate the treatment effect for the cardiac death and all cause
mortality data our recommendation is to use the MH method using the continuity correction
proposed by Sweeting et al.(2004). Our analysis by MH method with empirical continuity
correction shows non-significant protective effects of PCI on both total mortality and
cardiac mortality.

6 DISCUSSION

It is with some trepidation that we present our findings on the limitations of the most
commonly used methods for research synthesis of rare events. These methods (MH and
DSL) have been routinely used for decades to advise physicians of the best evidence based
practice (e.g., Cochrane Reviews - http://www.cochrane.org/), and to identify potential
adverse reactions of pharmaceuticals. For example, the U.S. Food and Drug Administration
(FDA) used the MH test to perform an analysis of risk of suicidal thoughts and behaviors
associated with antidepressant medications in children, which led to a black box warning
that is now present on every antidepressant medication and was further extended to young
adults http://www.fda.gov/Drugs/DrugSafety/InformationbyDrugClass/ucm096352.htm.
Our findings reveal that these methods in particular and moment-based methods in general
can be quite limited in their ability to detect heterogeneity in treatment effect, and in the
presence of such heterogeneity can yield biased estimates of overall treatment effects and
corresponding tests of hypotheses. In some cases, these biases can be large enough to even
change the direction of the overall treatment effect. Furthermore, our simulations indicate
that sample size requirements for very rare outcomes are enormous, and generally require
hundreds of studies each with hundreds of patients per treatment arm. In practice, such
studies are rarely of sufficient size or number to provide anything close to these
requirements. Finally, the need to discard studies with zero events in both arms and/or
impute a constant for studies with zero events in a single arm, further limits our ability to
estimate and test heterogeneity, which in turn biases estimation and testing of the overall
treatment effect.

In summary, research synthesis of rare binary event data appears to be more complicated
than traditional meta-analysis for continuous outcomes where more traditional effect size
estimates are available from a series of studies. The non-linear form of the models produces
more complicated relationships between the overall average treatment effect and its variance
than for the case of meta-analysis based on linear models. Bias of moment-based estimates
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is a complicated function of the degree to which the treatment effect varies across studies
and the volume of data analyzed. Furthermore, there are a number of different moment-
based approaches for estimating the combined treatment effect and heterogeneity, and
depending on the combination of the above factors, some work better than others.

In the absence of heterogeneity, the MH method with the empirical continuity correction
performs well, and is to be recommended for moment-based fixed-effects meta-analysis.
The three new methods developed in this paper ( SA for estimating the overall treatment
effect, IPM for estimating heterogeneity, and PB for testing heterogeneity ) perform
reasonably well. We recommend the SA with the 0.5 continuity correction for sparse data
with heterogeneity. To estimate the heterogeneity parameter our recommendation is to use
the IPM. We recommend the PB for testing the heterogeneity parameter. Finally, it should
be noted that we have not considered full likelihood approaches to the problem of parameter
estimation and hypothesis testing in connection with random-effects meta-analysis.
Research along these lines is currently underway.
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Appendix 1

Expectation of θ̂ia:

From Gart 1985,

Then,

Thus,
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Appendix 2

Variance of :
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where, . Then,

Appendix 3

Expression of τ2
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Thus

The DSL estimate of τ2, denoted by  has the following expression

Appendix 4

Estimate of 

Since, , where

, and E[θ̂ia − θ̃w(τ2)]
4 = 3A4

(using the recursive relation of moment of a normal distribution). Then,

Appendix 5

Bias of θ̂wi

Recall that , where υ̂t and υ̂c are the estimates

variance of log odds of treatment and control groups respectively. Then  and for A1

= a/nt + pt|εqt|ε, A2 = a/nc + pcqc, B1 = qt|ε − pt|ε, B2 = qc − pc, e1 = p̂t − pt|ε and e2 = p̂c − pc,
we have
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Expanding f(p̂t|ε, p̂c) in a Taylor’s series about p̂t|ε, p̂C = (pt|ε, pc), we can write,

And, l(pt|ε) = Ex(L1(x)) and l(pc) = Ex(L2(x)), then

Thus, if L(p) = Ex(La(x)), then

where,

All the Bij are constant with respect to n. In particular,
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Then,

where

. Note

that H is a continuous function of , and . Let . Then,
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Figure 1.
Comparison of estimates of θ for n ~ U(50, 1000) and k = 20.
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Figure 2.
Comparison of type I error rates and power curves for testing θ. μ = −2.5, τ2 = 0.8, n ~
U(50, 1000), and k = 20.
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Figure 3.
Comparison of Estimates of τ2. θ = 0, n ~ U(50, 1000), and k = 20.
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Figure 4.
Comparison of power curves for testing τ2. μ = −2.5, θ = 0, n ~ U(50, 1000), and k = 20.
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Figure 5.
Estimate of θ for correlated background rates and treatment effects. Parameters: μ = −2.77,

θ = 0, , τ2 = 0.45, n ~ U(50, 1000), and k = 17.
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Table 1

Analysis of PCI vs MED for Myocardial Infarction data

Estimate θ̂ Std. err p-val

SA 0.284 0.482 0.221a

MH −0.096 0.080 0.230b

DSL −0.106 0.155 0.493b

a
(T2) was used to perform the test

b
(T1) was used to perform the test
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Table 2

Analysis of PCI vs MED for Myocardial Infarction data

Estimate τ̂2 p-val

DSL 0.168 0.003a

DSK 0.175 0.003a

IPM 0.358 < 0.05b

a
Cochran’s Q was used to perform the test

b
Parametric bootstrapping (T4) was used to perform the test
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