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Abstract—Automatic facial expression recognition has been an
active topic in computer science for over two decades, in particular
facial action coding system action unit (AU) detection and classifi-
cation of a number of discrete emotion states from facial expressive
imagery. Standardization and comparability have received some
attention; for instance, there exist a number of commonly used
facial expression databases. However, lack of a commonly accepted
evaluation protocol and, typically, lack of sufficient details needed
to reproduce the reported individual results make it difficult to
compare systems. This, in turn, hinders the progress of the field. A
periodical challenge in facial expression recognition would allow
such a comparison on a level playing field. It would provide an
insight on how far the field has come and would allow researchers
to identify new goals, challenges, and targets. This paper presents
a meta-analysis of the first such challenge in automatic recognition
of facial expressions, held during the IEEE conference on Face and
Gesture Recognition 2011. It details the challenge data, evalua-
tion protocol, and the results attained in two subchallenges: AU
detection and classification of facial expression imagery in terms
of a number of discrete emotion categories. We also summarize
the lessons learned and reflect on the future of the field of facial
expression recognition in general and on possible future challenges
in particular.

Index Terms—Challenges, discrete emotion recognition, facial
action coding system (FACS) analysis, facial expression analysis.

I. INTRODUCTION

COMPUTERS and other powerful electronic devices sur-

round us in ever increasing numbers, with their ease of

use continuously being improved by user-friendly interfaces.
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Yet, to completely remove all interaction barriers, the next-

generation computing (a.k.a. pervasive computing, ambient

intelligence, and human computing) will need to develop

human-centered user interfaces that respond readily to naturally

occurring multimodal human communication [39]. An impor-

tant functionality of these interfaces will be the capacity to

perceive and understand the user’s cognitive appraisals, action

tendencies, and social intentions that are usually associated

with emotional experience. Because facial behavior is believed

to be an important source of such emotional and interpersonal

information [2], automatic analysis of facial expressions is

crucial to human–computer interaction.

Facial expression recognition, in particular facial action

coding system (FACS) action unit (AU) detection [18] and

classification of facial expression imagery in a number of dis-

crete emotion categories, has been an active topic in computer

science for some time now, with arguably the first work on

automatic facial expression recognition being published in 1973

[25]. Many promising approaches have been reported since then

[40], [68]. The first survey of the field was published in 1992

[44] and has been followed up by several others [20], [40], [68].

However, the question remains as to whether the approaches

proposed to date actually deliver what they promise. To help

answer that question, we felt that it was time to take stock, in

an objective manner, of how far the field has progressed.

Researchers often do report on the accuracy of the proposed

approaches using a number of popular publicly available facial

expression databases (e.g., the Cohn–Kanade database [26],

the MMI Facial Expression database [42], [58], or the JAFFE

database [33]). However, only too often, publications fail to

clarify exactly what parts of the databases were used, what

the training and testing protocols were, and hardly any cross-

database evaluations are reported. All these issues make it

difficult to compare different systems to each other, which in

turn hinders the progress of the field. A periodical challenge in

facial expression recognition would allow this comparison in

a fair manner. It would clarify how far the field has come and

would allow us to identify new goals, challenges, and targets.

Two main streams in the current research on automatic

analysis of facial expressions consider facial affect (emotion)

inference from facial expressions and facial muscle action de-

tection [38], [41], [57], [66]. These streams stem directly from

the two major approaches to facial expression measurement

in psychological research [10]: message and sign judgment.

The aim of the former is to infer what underlies a displayed

facial expression, such as affect or personality, while the aim

of the latter is to describe the outward “surface” of the shown

behavior, such as facial movement or facial component shape.

1083-4419/$31.00 © 2012 IEEE
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Thus, a frown can be judged as possibly caused by “anger”

in a message-judgment approach and as a facial movement

that lowers and pulls the eyebrows closer together in a sign-

judgment approach. While message judgment is all about inter-

pretation, with the ground truth being a hidden state that is often

impossible to measure, sign judgment is agnostic, independent

from any interpretation attempt, leaving the inference about

the conveyed message to higher order decision making. Most

facial expression analysis systems developed so far adhere to

the message-judgment approach. They attempt to recognize a

small set of prototypic emotional facial expressions said to

relate directly to a small number of discrete affective states such

as the six basic emotions proposed by Ekman [15], [41], [57],

[66]. Even though automatic classification of face imagery in

terms of the six basic emotion categories is considered largely

solved, reports on novel approaches are published even to date

(e.g., [28], [35], [49], and [52]). While, in truth, such systems

recognize prototypical facial expressions but not actually rec-

ognizing emotions, for brevity, we will refer to this process as

“emotion recognition.”

In sign-judgment approaches [9], a widely used method for

manual labeling of facial actions is FACS [18]. FACS associates

facial expression changes with actions of the muscles that

produce them. It defines 9 different AUs in the upper face, 18 in

the lower face, and 5 AUs that cannot be classified as belonging

to either the upper or the lower face. In addition, it defines the

so-called action descriptors, 11 for head position, 9 for eye

position, and 14 additional descriptors for miscellaneous ac-

tions. AUs are considered to be the smallest visually discernible

facial movements. AU intensity scoring is defined on a five-

level ordinal scale by FACS. It also defines the makeup of AUs’

temporal segments (onset, apex, and offset) but goes short of

defining rules on how to code them in a face video or what

rules governing the transitions between the temporal segments.

Using FACS, human coders can manually code nearly any

anatomically possible facial expression, decomposing it into

the specific AUs and their temporal segments that produced the

expression.

As AUs are independent of any interpretation, they can

be used as the basis for any higher order decision making

process, including recognition of basic emotions [18], cognitive

states like (dis)agreement and puzzlement [11], psychological

states like pain [13], and socio-cultural signals like emblems

(i.e., culture-specific interactive signals like wink, coded as

left or right AU46), regulators (i.e., conversational mediators

like exchange of a look, coded by AUs for eye position),

and illustrators (i.e., cues accompanying speech like raised

eyebrows, coded as AU1+AU2) [17]. Hence, AUs are extremely

suitable to be used as midlevel parameters in an automatic

facial behavior analysis system as they reduce the dimension-

ality of the problem [60] (thousands of anatomically possible

facial expressions [17] can be represented as combinations of

32 AUs).

In terms of feature representation, the majority of the au-

tomatic facial expression recognition literature can be divided

into three ways: those that use appearance-based features (e.g.,

[7], [24], and [35]), those that use geometric-feature-based

approaches (e.g., [28] and [57]), and those that use both (e.g.,

[3] and [54]). Both appearance- and geometric-feature-based

approaches have their own advantages and disadvantages, and

we expect that systems that use both for this challenge will

result in the highest accuracy.

Another way that existing systems can be classified is in the

way they make use of temporal information. Some systems

only use the temporal dynamics information encoded directly

in the utilized features (e.g., [24] and [67]), others only employ

machine learning techniques to model time (e.g., [50] and [56]),

while others employ both (e.g., [57]). Currently, it is unknown

what approach could guarantee the best performance.

This paper describes the first facial expression recognition

challenge, organized under the name of FERA 2011, which was

held in conjunction with the 9th IEEE International Conference

on Automatic Face and Gesture Recognition. The challenge

provided a fair comparison between systems vying for the title

of “state of the art.” To do so, it used a partition of the GEMEP

corpus [6], developed by the Geneva Emotion Research Group.

This datum is described in Section III. An overview of

a recent literature in the field is provided in Section II. In

Section IV, we describe the challenge protocol for both the AU

detection and emotion recognition subchallenges. The baseline

method against which FERA 2011 participants could compare

their results is described in Section V. We provide a summary

description of the participants’ systems in Section VI. A de-

tailed analysis of the results attained in this challenge is given

in Section VII. We conclude this paper with a discussion of the

challenge and its results in Section VIII.

II. OVERVIEW OF EXISTING WORKS

Below, we present a short overview of the main streams of

automatic recognition of prototypical facial expressions associ-

ated with discrete emotional states and of automatic detection

of FACS AUs. For detailed surveys, we refer the reader to [41]

and [66].

A. Emotion Recognition

Emotion recognition approaches can be divided into two

groups based on the type of features used, either appearance-

based features or geometry-based features. Appearance features

describe the texture of the face caused by expression, such as

wrinkles and furrows. Geometric features describe the shape

of the face and its components such as the mouth or the

eyebrows.

Within the appearance-based techniques, the theory of non-

negative matrix factorization (NMF) has recently led to a num-

ber of promising works. A technique called graph-preserving

sparse NMF (GSNMF) was introduced by Zhi et al. [68] and

applied to the problem of six-basic-emotion recognition. The

GSNMF is an occlusion-robust dimensionality reduction tech-

nique that can be employed either in a supervised or unsuper-

vised manner. It transforms high-dimensional facial expression

images into a locality-preserving subspace with sparse repre-

sentation. On the Cohn–Kanade database, it attains a 94.3%

recognition rate. On occluded images, it scored between 91.4%

and 94%, depending on the area of the face that was occluded.
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Another recent NMF technique is nonlinear nonnegative

component analysis, a novel method for data representation

and classification proposed by Zafeiriou and Petrou [65]. Based

on NMF and kernel theory, the method allows any positive

definite kernel to be used and assures stable convergence of

the optimization problem. On the Cohn–Kanade database, they

attained an average 83.5% recognition rate over the six basic

emotions.

Other appearance features that have been successfully em-

ployed for emotion recognition are the local binary pattern

(LBP) operator [49], [67], local Gabor binary patterns (LGBPs)

[35], local phase quantization (LPQ) and histogram of oriented

gradients [14], and Haar filters [31].

Most geometric-feature-based approaches use active appear-

ance models (AAMs) or derivatives of this technique to track

a dense set of facial points (typically 50–60). The locations of

these points are then used to infer the shape of facial features

such as the mouth or the eyebrows and thus to classify the facial

expression. A recent example of an AAM-based technique is

that of Asthana et al., who compare different AAM fitting

algorithms and evaluate their performance on the Cohn–Kanade

database, reporting a 93% classification accuracy [4].

Another example of a system that uses geometric features to

detect emotions is that by Sebe et al. [47]. Piecewise Bézier

volume deformation tracking was used after manually locating

a number of facial points. They experimented with a large

number of machine learning techniques. Surprisingly, the best

result was attained with a simple k-nearest neighbor technique

that attained a 93% classification rate on the Cohn–Kanade

database.

Sung and Kim [52] used AAMs to track facial points in

3-D videos. They introduce Stereo Active Appearance Models

(STAAM), which improves the fitting and tracking of standard

AAMs by using multiple cameras to model the 3-D shape and

rigid motion parameters. A layered generalized discriminant

analysis classifier, which is based on linear discriminant analy-

sis, is then used to combine the 3-D shape and registered 2-D

appearance. Unfortunately, although the approach appears to be

promising, it was evaluated for only three expressions, and no

results on a benchmark database (such as the Cohn–Kanade or

MMI Facial Expression databases) were presented.

Current challenges in automatic discrete emotion recognition

that remain to be addressed are dealing with out-of-plane head

rotation, spontaneous expressions, and recognizing mixtures

of emotions. Out-of-plane rotation and mixtures of emotions

are two problems that are likely to coincide when moving to

spontaneous real-world data. While some progress has been

made in dealing with occlusions and tracking facial points in

imagery of unseen subjects (e.g., [45] and [68]), these two

elements remain a challenge as well.

B. AU Detection

AU detection approaches can be divided into a number

of ways. Just as for emotion recognition, it is possible to

divide them into systems that employ appearance-based fea-

tures, geometric features, or both. Another way of dividing

them is how they deal with the temporal dynamics of facial

expressions: Frames in a video can either be treated as being

independent of each other (this includes methods that target

static images) or a sequence of frames that can be treated by

a model that explicitly encompasses the expression’s temporal

dynamics.

A recently proposed class of appearance-based features that

have been used extensively for face analysis is dense local

appearance descriptors. First, a particular appearance descrip-

tor is computed for every pixel in the face. To reduce the

dimensionality of the problem and the sensitivity to alignment

of the face, the descriptor responses are then summarized by

histograms in predefined subregions of the face. For AUs, this

approach was followed by Jiang et al., using LBP and LPQ [24].

Another successful appearance descriptor is the Gabor

wavelet filter. Littlewort et al. [31] select the best set of Gabor

filters using GentleBoost and train support vector machines

(SVMs) to classify AU activation. Some measure of AU inten-

sity is provided by evaluating for a test instance the distance to

the separating hyperplane provided by the trained SVM. Haar-

like features were used in an AdaBoost classifier by Whitehill

and Omlin [62].

An example of an appearance-based approach that explicitly

models a facial expression’s temporal dynamics is that of

Koelstra et al. [27]. In their work, they propose a method that

detects AUs and their temporal phase onset, apex, and offset

using free-form deformations and motion history images as

appearance descriptors and hidden Markov models as machine

learning technique.

In the geometric feature category, Valstar and Pantic [59]

automatically detect 20 facial points and use a facial point

tracker based on particle filtering with factorized likelihoods to

track this sparse set of facial points. From the tracked points,

both static and dynamic features are computed, such as the

distances between pairs of points or the velocity of a facial

point. With this approach, they are able to detect both AU

activation and the temporal phase onset, apex, and offset.

Simon et al. [50] use both geometric and appearance-based

features and include modeling of some of the temporal dynam-

ics of AUs in a proposed method using segment-based SVMs.

Facial features are first tracked using a person-specific AAM so

that the face can be registered before extracting SIFT features.

Principal component analysis (PCA) is applied to reduce the

dimensionality of this descriptor. The proposed segment-based

SVM method combines the output of static SVMs for multiple

frames and uses structured-output learning to learn the begin-

ning and end time of each AU. The system was evaluated for

eight AUs on the M3 database (previously called RU-FACS),

attaining an average of 83.75% area under the ROC curve.

When facing real-world data, researchers have to face prob-

lems such as very large data sizes or low AU frequencies of

occurrence. In their work, Zhu et al. focus on the automatic

selection of an optimal training set using bidirectional boot-

strapping from a data set with exactly such properties [69].

The features used are identical to those described and used by

Simon et al. [50]. The proposed dynamic cascades with bidi-

rectional bootstrapping apply GentleBoost to perform feature

selection and training instance selection in a unified framework.

On the M3 database, the system attained an average 79.5% area
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Fig. 1. Example of the GEMEP-FERA data set: One of the actors displaying
an expression associated with the emotion “anger.”

under the ROC curve for 13 AUs. For an overview of more

recent work by researchers at CMU, see [29].

Current challenges in AU detection include handling of out-

of-plane head rotations and occlusion, two conditions that

occur frequently in real-world data of spontaneous expressions.

Because AUs are more localized in the face than expressions of

discrete emotions, the problem of occlusion is much bigger for

AUs than for emotions. Likewise, out-of-plane head rotations

can cause self-occlusions of parts of the face that display

some AUs, making the problems caused by out-of-plane head

poses harder than it is for emotions. Another issue of moving

to data of spontaneous expressions is that the cooccurrences

between AUs become much harder to model, compared to the

limited number of cooccurrence patterns in databases of posed

expressions such as the Cohn–Kanade database.

Aside from AU detection, the detection of an AU’s tempo-

ral phase transitions (onset, apex, and offset), as well as its

intensity, is a partially unsolved problem. Being able to predict

these variables would allow researchers to detect more complex

higher level behavior such as deception, cognitive states like

(dis)agreement and puzzlement, or psychological states like

pain [11], [13]

III. GEMEP-FERA DATA SET

To be suitable to base a challenge on, a data set needs to sat-

isfy two criteria. First, it must have the correct labeling, which

in our case means frame-by-frame AU labels and event coding

of discrete emotions. Second, the database cannot be publicly

available at the time of the challenge. The GEMEP database [6]

is one of the few databases that meet both conditions and was

therefore chosen for this challenge.

The GEMEP corpus consists of over 7000 audiovisual emo-

tion portrayals, representing 18 emotions portrayed by 10 actors

who were trained by a professional director. The actors were

instructed to utter two pseudolinguistic phoneme sequences or

a sustained vowel “aaa.” Fig. 1 shows an example of one of

the male actors displaying an expression associated with the

TABLE I
AUS INCLUDED IN THE AU DETECTION SUBCHALLENGE. TEST SET S

DENOTES SEEN SUBJECTS, WHILE TEST SET U DENOTES UNSEEN

SUBJECTS. NUMBER OF VIDEOS: Ntotal = 158;
Ntraining = 87; Ntest = 71

emotion anger. A study based on 1260 portrayals showed that

portrayed expressions of the GEMEP are recognized by lay

judges with an accuracy level that, for all emotions, largely

exceeds chance level, and that interrater reliability for category

judgements and perceived believability and intensity of the

portrayal is very satisfactory [6]. At the time of organizing the

challenge, the data had not been made publicly available yet,

making it a suitable data set to base a fair challenge on. A

detailed description of the GEMEP corpus can be found in [6].

The GEMEP-FERA data set is a fraction of the GEMEP

corpus that has been put together to meet the criteria for

a challenge on facial AUs and emotion recognition. By no

means does the GEMEP-FERA data set constitute the entire

GEMEP corpus. In selecting videos from the GEMEP corpus

to include in the GEMEP-FERA data set, the main criterion

was the availability of a sufficient number of examples per unit

of detection for training and testing. It was important that the

examples selected for the training set were different from the

examples selected for the test set.

A. Partitioning

For the AU detection subchallenge, we used a subset of the

GEMEP corpus annotated with the FACS [18]. The 12 most

commonly observed AUs in the GEMEP corpus were selected

(see Table I). To be able to objectively measure the performance

of the competing facial expression recognition systems, we

split the data set into a training set and a test set. A total of

158 portrayals (87 for training and 71 for testing) were selected

for the AU subchallenge. All portrayals are recordings of actors

speaking one of the two pseudolinguistic phoneme sequences.

Consequently, AU detection is to be performed during speech.

The training set included seven actors (three men), and the

test set included six actors (three men), half of which were

not present in the training set. Even though some actors were

present in both training and test sets, the actual portrayals made

by these actors were different in both sets.

For the emotion subchallenge, portrayals of five emotional

states were retained: anger, fear, joy, sadness, and relief. Four

of these five categories are part of what Ekman called basic

emotions [16] as they are believed to be expressed universally

by specific patterns of facial expression. The fifth emotion,
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TABLE II
EMOTIONS INCLUDED IN THE EMOTION DETECTION SUBCHALLENGE. TEST SET S DENOTES SEEN SUBJECTS, WHILE TEST SET U

DENOTES UNSEEN SUBJECTS. NUMBER OF VIDEOS: Ntotal = 289; Ntraining = 155; Ntest = 134

relief, was added to provide a balance between positive and

negative emotions but also to add an emotion that is not

typically included in previous studies on automatic emotion

recognition. Emotion recognition systems are usually modeled

on the basic emotions; hence, adding “relief” made the task

more challenging.

A total of 289 portrayals were selected for the emotion sub-

challenge (155 for training and 134 for testing). Approximately

17% of these were recordings of actors uttering the sustained

vowel “aaa,” while the remaining portrayals were recordings

of actors speaking one of the two pseudolinguistic phoneme

sequences. The training set included 7 actors (3 men) with

3–5 instances of each emotion per actor. The test set for the

emotion subchallenge included six actors (three men), half of

which were not present in the training set. Each actor con-

tributed 3–10 instances per emotion in the test set.

The actors who were not present in the training sets were the

same for both subchallenges. Details about the training and test

sets can be found in Table I (AU subchallenge) and Table II

(emotion subchallenge). The tables distinguish between videos

depicting seen and unseen subjects of the test set. Videos of

subjects that are also present in the training set belong to the

seen test set, the others to the unseen test set.

B. Availability

The training set was made available through a website1

employing user-level access control. Upon registering for the

challenge, participants were requested to sign an end-user

license agreement (EULA), which states, among other things,

that the data can only be used for the challenge and that it

cannot be used by commercial parties. When a signed EULA

was received by the FERA 2011 organizers, the account of that

particular participant was activated. The participant could then

download two zip files: one containing the training data for the

AU detection subchallenge and the other containing the training

data for the emotion detection subchallenge.

The test data were distributed through the same website.

However, it was only made available seven working days before

the submission deadline. This was done to ensure that the

results submitted are fair, by not allowing the participants

enough time to manually reconstruct the labels of the test data.

To continue to provide a facial expression recognition bench-

mark, the GEMEP-FERA 2011 data set will remain available

online. The procedure for obtaining benchmark scores will be

identical to that for the challenge, as described in Section IV.

1http://gemep-db.sspnet.eu

The only difference will be that the test partition is made

available as well (but still without labels, of course).

IV. CHALLENGE PROTOCOL

The challenge is divided into two subchallenges. The goal of

the AU detection subchallenge is to identify in every frame of

a video whether an AU was present or not (i.e., it is a multiple-

label binary classification problem at frame level). The goal

of the emotion recognition subchallenge is to recognize which

emotion was depicted in that video, out of five possible choices

(i.e., it is a single-label multiclass problem at event level).

The challenge protocol is divided into five stages. First, inter-

ested parties registered for the challenge and signed the EULA

to gain access to the training data. Then, they trained their

systems. In the third stage, the participants downloaded the test

partition and generated the predictions for the subchallenges

they were interested in. They then sent their results to the

FERA 2011 organizers who calculate their scores. In the case

of the FERA 2011 challenge, the participants then submitted

a paper describing their approach and reporting their scores to

the FERA 2011 workshop. Researchers who intend to follow

this benchmark protocol after the FERA 2011 challenge are

assumed to submit a paper to another relevant outlet.

Because of concerns regarding the ease with which the emo-

tion labels can be guessed from the video data, the organizers

introduced a secondary test for the emotion subchallenge held

the day before the FERA 2011 workshop. The secondary test set

contained 50 previously unreleased GEMEP videos displaying

one of the five discrete emotions used in the challenge. Partici-

pants had the choice to either send their end-to-end programs to

the organizers, who then run the secondary test for them, or they

could choose to perform the test on their own hardware on-site

the day before the workshop. The scores for this secondary test

set were not to influence the participant ranking in the emotion

detection subchallenge, but they were announced during the

FERA 2011 workshop, on the FERA 2011 website, and in this

paper. All participants but one performed this secondary test.

The training data are organized as two zip files, one for each

subchallenge. When unpacked, the zip files contain a directory

structure in which every folder contains a single video and a

single text file with the corresponding labels. For AUs, the

label file is nf rows by 50 columns, where nf indicates the

number of frames in that video. Each column corresponds to

the label for the AU with the same number, e.g., the second

column contains the labels for AU2. Zeros indicate the absence

of an AU, and a one indicates the presence (activation) of an

AU for the corresponding frame. Columns corresponding to
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nonexisting AUs (e.g., AU3) are all zero. During speech (coded

as AD50), there is no coding for AU25 or AU26. Because the

annotation of AD50 is made available together with the other

AU labels, participants are able to exclude sections of the videos

containing speech from their training sets for these two AUs.

Likewise, for the computation of the scores, any detections of

AU25 and AU26 during speech are discarded. For emotions,

the label files contain a single word indicating what emotion

was displayed in the corresponding video.

Participants were encouraged to use other facial expression

databases annotated in terms of FACS AUs to train their

proposed AU detection systems. Examples of such databases,

which are publicly available, are the MMI Facial Expression

database [58] and the Cohn–Kanade database [26]. Because of

the nature of the emotion categories used in this challenge (i.e.,

the categories are not limited to standard six-basic-emotion

categories and the displays are not short-lived posed proto-

typical facial expressions of emotions but professionally acted

audiovisual displays of emotions), the participants were not

encouraged to use other training data for the emotion recogni-

tion subchallenge. To assess how well systems perform before

the test partition was made available, participants were encour-

aged to perform a cross-validation evaluation on the training

data.

The test partition was made available one week before the

FERA 2011 paper submission deadline. In the test data, there

were no labels associated with the test videos. Participants

predicted the labels by means of their trained systems and

send them to the FERA 2011 organizers by email, who then

computed the correctness of the predictions (the scores). To

allow the participants to identify and correct major faults in the

programs, they were allowed two submissions of predictions.

The scores are computed in terms of F1-measure for AU de-

tection and in terms of classification rate for emotion detection.

For the AU detection subchallenge, we first obtain the F1-score

for each AU independently and then compute the average over

all 12 AUs. Similarly, for the emotion recognition subchallenge,

the classification rate is first obtained per emotion, and then, the

average over all five emotions is computed. The F1-measure for

AUs is computed based on a per-frame detection (i.e., an AU ac-

tivation prediction has to be specified for every frame, for every

AU). The classification rate for emotion categories is computed

based on a per-video prediction (event-based detection).

V. BASELINE SYSTEM

The FERA 2011 challenge was the first event where the

GEMEP data were used for automatic facial expression recog-

nition, which means that there was no existing work that

participants could compare their methods to, and thus, there

was no means available to participants to check whether their

obtained results were reasonable. To overcome this problem,

the FERA 2011 organizers provided results of a baseline

system for both subchallenges. The baseline approach used

static local-appearance-based features and statistical machine

learning techniques. The baseline system was designed as to

make it easy to reproduce the baseline results.

Fig. 2. Overview of the FERA 2011 baseline system for detection of 12 AUs
and 5 emotions.

The publicly available OpenCV2 implementation of the Viola

and Jones face detector [61] was used to determine the rough

location of the face. The height and width of the face-box

output by the Viola and Jones face detector are rather unstable,

varying by approximately 5% std. even for videos in which

the face hardly moves. In addition, the face detector does not

provide any information about the head pose. To facilitate

the appearance descriptor to correlate better with the shown

expression instead of with variability in head pose and face

detector output, we first perform face registration based on the

location of the eyes. To detect the eyes, we use the OpenCV

implementation of a Haar-cascade object detector, trained for

either a left or a right eye. After the left-eye location pl and

right-eye location pr are determined, the image is rotated so that

the angle α, defined as the angle between the line connecting

the eyes and the horizontal axis of the image, is 0◦. The image is

then scaled to make the distance between pr and pl 100 pixels,

and the face box is cropped to be 200 by 200 pixels, with pr at

position {pxr , p
y
r} = {80, 60}. The local appearance descriptors

are subsequently extracted from such registered images.

As dense local appearance descriptors, we chose to use

uniform LBPs [37]. They have been used extensively for face

analysis in recent years, e.g., for face recognition [1], emotion

detection [49], or detection of facial muscle actions (FACS

AUs) [24]. As classifier, we employ standard SVMs with a

radial basis function kernel. We reduced the dimensionality of

our facial expression representation using PCA. Fig. 2 shows

an overview of the baseline system.

A. Feature Extraction

LBPs were first introduced by Ojala et al. in [36] and

proved to be a powerful means of texture description. For

every pixel, the LBP operator creates a label by thresholding a

3 × 3 neighborhood of that pixel with the value of the pixel

itself. Considering the 8-b result as a binary number, a 256-bin

histogram is generated over the LBP response in a region of

interest. This histogram is used as the texture descriptor.

Ojala et al. [37] later extended the basic LBP to allow a

variable number of neighbors to be chosen at any radius from

2http://opencv.willowgarage.com/wiki/, DOA 02-06-2011
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the central pixel. They also greatly reduced the dimensionality

of the LBP operator by introducing the notion of a uniform

LBP. An LBP is called uniform if it contains, at most, two

bitwise transitions from zero to one or vice versa when the

binary string is considered circular [37]. The LBP operator

for the general case based on a circularly symmetric neighbor

set of P members on a circle of radius R is denoted by

LBPu
P,R. Superscript u reflects the use of uniform patterns.

Parameter P controls the quantization of the angular space,

and R determines the spatial resolution of the operator. Bilinear

interpolation is used to allow any radius and number of pixels

in the neighborhoods.

Using only rotation-invariant uniform LBPs greatly reduces

the length of the feature vector. The number of possible patterns

for a neighborhood of P pixels is 2P for the basic LBP while

being only P + 2 for LBPu. An early stage experiment was

conducted to find the optimal parameters for this application,

resulting in P = 8 and R = 1. Hence, we adopted LBPu
8,1

descriptor in our baseline system.

The occurrence of the rotation-invariant uniform patterns

over a region is recorded by a histogram. After applying the

LBP operator to an image, a histogram of the LBP-labeled

region of interest in the image can be defined as

Hi =
∑

x,y

I (f(x, y) = i) , i = 0, . . . , n− 1 (1)

where n is the number of possible labels produced by the LBP

operator and

I(A) =

{

1, if A is true

0, otherwise.
(2)

An LBP histogram computed over the whole face image

represents only the frequency of the patterns without any in-

dication about their locations. To take the spatial information

into account as well, we divide the registered face region into

smaller subregions and extract separate LBP histograms from

each of them (as shown in Fig. 2). The LBP features extracted

from each subregion are subsequently concatenated into a

single spatially enhanced feature histogram. This was used as

a feature vector representing the shown facial expression. A

grid size of 10 × 10 was used in the experiments, as this was

empirically found to be the best division of the face region into

subregions for AU detection. Fig. 3 shows the results of this

test for three upper face AUs. The data used for this study were

taken from the MMI Facial Expression database [58].

B. Training AU Detectors

Binary SVM classifiers were trained for each AU in-

dependently. Because of the independence assumption, we

only need to look at the appearance changes caused by

a single AU at a time. This meant that we could divide

the set A of AUs into two groups: upper face AUs Gu =
{AU1, AU2, AU4, AU6, AU7}, which only cause appearance

changes in the upper half of the face, and lower face AUs Gl =
{AU10, AU12, AU15, AU17, AU18, AU25, AU26} that only

affect the lower face. The training set for an AU consisted

Fig. 3. Results for AU detection using different grid sizes used to extract LBP
features.

of frames where that particular AU was present (positive

examples), frames in which any of the other AUs from the

same group was active (either negative or positive examples,

depending on whether the target AU was present as well), plus

frames displaying an expressionless face (negative examples).

To select the frames to be used to train a classifier, we

adopted the method proposed in [24], which selects from every

video in the training set only frames displaying distinct AU

combinations. Because this method relies on the availability

of labeled AU temporal phases (onset, apex, and offset of

AUs), which are not available for the GEMEP-FERA 2011

data set, we modified this method slightly. First, we segmented

each video into periods with distinct AU combinations. These

segments usually have a duration of multiple frames. We then

pick the middle frame of each block. If a video has multiple

blocks with the same AU combination, we took the training

frame from the first occurrence of this combination. Note that,

when we select frames for Ai ∈ Gj with j ∈ {u, l}, we only

look at AU combinations of Gj .

A different set of features was used for the upper face AUs

and the lower face AUs. To wit, for each AU a ∈ Gu, we con-

catenate the histograms of the top five rows of the 10 × 10 LBP

grid, while for each AU a ∈ Gl, we concatenate the histograms

of the bottom five rows. To reduce the dimensionality of the

feature set, we apply PCA, selecting ma eigenvectors for the

subsequent analysis such that their cumulative energy is 95%.

Features are then normalized to lie in the range [−1, 1].

For the one-versus-all frame-based AU classification, we

employ SVMs with an RBF kernel. Two parameters, namely,

the RBF scale parameter σ and the SVM slack variable ζ,

are determined by means of a five-fold cross-validation on the

training set. During parameter optimization, we optimized for

the F1-score, not the classification rate, as it is the F1-score that

was used as the evaluation measure in the challenge. We also

make sure that we split the folds along subject divides, i.e., we

make sure that data from the same subject never appear in both

the training and evaluation sets. As reported in [24], for AU

detection, this can lead to a performance increase of up to 9%

F1-measure, compared to randomly splitting the data.

C. AU Detection Results

Table III shows the results of the AU detection baseline

system measured in terms of F1-measure. The table shows
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TABLE III
F1-MEASURE FOR AU DETECTION RESULTS ON THE TEST SET FOR THE

BASELINE METHOD. PERFORMANCE IS SHOWN FOR THE

PERSON-INDEPENDENT (PI), PERSON-SPECIFIC (PS), AND OVERALL

PARTITIONS. THE LAST COLUMN SHOWS RESULTS OF A NAIVE

CLASSIFIER ON THE OVERALL TEST SET

TABLE IV
2AFC SCORE FOR AU DETECTION ON THE TEST SET FOR THE BASELINE

METHOD. PERFORMANCE IS SHOWN FOR THE PERSON-INDEPENDENT

(PI), PERSON-SPECIFIC (PS), AND OVERALL PARTITIONS

results for three different partitions of the test data. The first

is the partition of the test data for which the test subjects are

not present in the training data (person-independent partition).

This partition shows the ability of AU detection systems to

generalize to unseen subjects. The second partition of the test

data consists of recordings of subjects that appear both in the

training and in the test set. Participants would thus be able

to train subject-specific detectors for this partition. The third

column shows the results for the entire unpartitioned test set,

which we call the overall performance. It is this performance on

the whole test set that is used to rank participants in the AU de-

tection subchallenge. To allow a better comparison with future

AU detection works, Table IV shows the baseline performance

in terms of the 2AFC score, which is a reliable proxy for the

area under the receiver-operator characteristic curve (AUC).

To assess the quality of the baseline method, we have also

computed the results for a naive AU detector. The best strategy

for a naive classifier in the situation of sparse positive examples

(i.e., sparse AU activation) is to score all frames as active. The

results are computed over the full (overall) test set and are

shown in the last column of Table III. As can be seen, the

baseline method does not outperform a naive approach in all

cases. One reason for this may be the fact that, while we choose

parameters for optimal F1-measure, the training algorithm of

SVMs inherently uses the classification rate as the value for

which it optimizes.

TABLE V
CLASSIFICATION RATES FOR EMOTION RECOGNITION ON THE TEST SET

FOR THE BASELINE METHOD. PERFORMANCE IS SHOWN FOR THE

PERSON-INDEPENDENT (PI), PERSON-SPECIFIC (PS), AND OVERALL

PARTITIONS. LAST COLUMN SHOWS OVERALL RANDOM RESULTS

D. Training Emotion Detectors

The emotion detection subchallenge calls for the detec-

tion of five discrete emotion classes. Each video has a sin-

gle emotion label e ∈ E, where E = {Anger, Fear, Joy,

Relief, Sadness}. Since the videos do not display any appar-

ent neutral frames at the beginning or the end of the video, we

defined that every frame of a video shares the same label. The

appearance of the facial expression, however, does change over

the course of a video. We therefore use every frame of a video

to train and test our algorithm on.

For the emotion classifiers, all 10 × 10 subregions of the

LBP grid described in Section V-A are used. To reduce the

dimensionality of the feature set, we apply PCA, selecting

me eigenvectors for the subsequent analysis such that their

cumulative energy is 90%.

The emotion recognition problem is a five-class forced

choice problem. We trained a single one-versus-all SVM clas-

sifier with an RBF kernel for each emotion. Two parameters,

namely, the RBF scale parameter σ and the SVM slack variable

ζ, are determined by means of a five-fold cross-validation on

the training set. Each of the five resulting classifiers gives a

prediction yej ∈ {−1, 1} for the presence of emotion e for frame

j in a test video. The label Y of a video of n frames is the

emotion class e into which the largest number of frames has

been classified

Y = argmax
e

n
∑

j=1

yej . (3)

E. Emotion Detection Results

Classification rates attained by the baseline method for the

emotion recognition subchallenge are shown in Table V. Again,

to assess the quality of the baseline method, we have compared

the baseline method results to a naive emotion detector, which

in this case assigns a uniform random label to each video in the

test set. As can be seen from Table V, the baseline approach

well exceeds the naive emotion detector.

VI. PARTICIPANT SYSTEMS

In total, 12 participants contributed to the challenge. We will

now describe the systems of participants that were entered in

the emotion recognition and/or the AU detection subchallenge.
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A. AU Detection Systems

Senechal et al. [48] propose a system that combines shape

and appearance information using multikernel SVMs. The

shape information is obtained using AAMs, and the appearance

is obtained using LGBP histograms. For the AAM coefficients,

a radial basis frequency kernel is used, and for the LGBP

features, a histogram intersection kernel is used. The SVM

output is temporally filtered by taking for every frame the

average over a short time window.

Wu et al. [63] evaluated the performance of their Computer

Expression Recognition Toolbox (CERT, [31]) for the AU

detection problem. CERT uses a Viola and Jones style face and

facial feature detection system, which is used to register the

face. A bank of Gabor filters is applied to the registered face,

and AUs are detected using SVMs.

B. AU Detection and Emotion Detection Systems

Baltrusaitis et al. [5] presented a system based on the mind-

reading work of El Kaliouby and Robinson [19]. Their real-time

system operates on three increasingly longer temporal levels:

First, AUs, head actions, and shoulder actions are detected on

a timescale of five frames. To detect face, head, and shoulder

gestures, the action information is fed into hidden Markov

models that operate on a 15-frame level. Finally, dynamic

Bayesian networks are used to infer the five discrete emotions,

again at the 15-frame temporal level.

Chew et al. [8] argue that, given sufficiently accurate regis-

tration, the pixel intensity information of the face is all that is

needed to recognize facial actions, and applying linear filters

such as LBPs to the face image is not necessary. They attain

highly accurate registration using Saragih et al.’s version of

constrained local models [45]. SVMs are trained on the pixel

information after canonical normalizing the face area, which

removes all nonrigid shape variation with respect to a reference

shape.

Gehrig and Ekenel’s proposed system uses discrete cosine

transform histograms in a manner similar to the baseline sys-

tem’s LBP approach. The histograms derived from 10 × 10

nonoverlapping blocks in a registered face are normalized on

a per-block basis and used as input to kernel partial least square

regression.

C. Emotion Recognition Systems

Dhall et al. [14] use pyramid histogram of oriented gradients

and LPQ appearance features to detect emotions. To avoid

using frames with similar appearance, facial feature points

are first tracked using a constrained local model tracker. The

resulting face shapes are clustered and used to select key frames

from which appearance features are extracted. However, face

registration is achieved using a face detector rather than using

the tracked facial point locations. Finally, emotions are detected

using SVMs and largest margin nearest neighbor classifiers.

Dahmane and Meunier [12] recognize emotions in a system

similar to the baseline approach described earlier. Instead of

LBPs, their system uses histogram of oriented gradient features.

Littlewort et al. [30] present a system that is based on CERT.

From the CERT outputs of AU and head orientation predictions,

dynamic features called extremes of displacement, velocity,

and acceleration (EDVA) are computed. The EDVA features

are then used as input to a multinomial logistic regression

classifier to detect the emotions. The authors also experiment

with detecting the emotions such as anger, fear, joy, and sadness

directly using existing CERT models.

Meng et al. [34] start from the dynamic appearance descrip-

tor, i.e., motion history histogram, and the static appearance

descriptor LBP. The former is extended to also encode local

texture, while the latter is extended to also encode dynamic ap-

pearance. The two new spatiotemporal appearance descriptors

are combined using multikernel SVMs to distinguish between

the five emotions.

Srivastava et al. [51] use accumulated motion images (AMIs,

essentially motion energy images) and geometric features ex-

tracted from tracked facial points. Two separate one-versus-all

multiclass SVMs are trained for the AMI and the geometric

features. During testing, a confidence is calculated for both

multiclass SVMs by subtracting for each the highest output

of a component of a multiclass SVM from the second highest

output. The multiclass SVM with the highest confidence is used

to decide what emotion was displayed.

Tariq et al. [53] use an ensemble of features consisting of

hierarchic Gaussianization, SIFT, and optical flow to recognize

emotions. For the subject-dependent data partition, they learned

a specific model for each subject and a face recognition system.

This approach proved to be highly successful.

Yang and Bhanu [64] present an approach that uses the so-

called emotion avatar images. All frames of the input video

(face images) are first registered using the SIFT flow algorithm

[32], which performs global alignment of the face yet retains

the facial motion caused by facial expression. Such registered

frames within one video are then mapped onto a person-

independent face model, which is built based on the entire

training set. The final result is the emotion avatar image, a

single image that represents all the expression-related facial

motion present in the input video. From this image, LBPs

and LPQ features are derived and used as input to SVMs

which are trained to distinguish between the five target emotion

classes.

VII. COMPETITION RESULTS

The number of parties who showed interest in participating

in the FERA 2011 challenge indicates that the facial expression

analysis field is of a moderate size. The challenge data were

downloaded by 20 teams, of which 15 participated in the

challenge and submitted a paper to the FERA 2011 workshop.

Of the 15 papers, 11 papers were accepted for publication,

based on a double-blind peer review process. In total, ten teams

participated in the emotion recognition subchallenge, and five

teams took part in the AU detection subchallenge (three teams

participated in both subchallenges).

Demographic statistics are as follows: Teams were from

many countries and often spanned multiple institutes. The

participating institutes were dispersed over nine countries
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TABLE VI
AVERAGE CLASSIFICATION RATES OVER ALL EMOTIONS FOR THE EMOTION RECOGNITION SUBCHALLENGE AND AVERAGE F1-MEASURE

OVER ALL AUS FOR THE AU DETECTION SUBCHALLENGE. HIGH SCORES ARE PRINTED IN BOLD

(USA, Australia, Canada, Germany, Singapore, Sweden, U.K.,

Belgium, and France). In total, 53 researchers participated

in the challenge, with a median of 6 researchers per paper.

Five entries were multi-institute endeavors. This indicates that

the research community is not entrenched in local enclaves;

instead, there appears to be a large amount of cooperation

and communication between researchers of automatic facial

behavior understanding. With four authors being psychologists,

the field can claim a certain degree of interdisciplinary collabo-

ration as well.

A. Emotion Recognition Subchallenge

Table VI shows the scores attained in the emotion recognition

subchallenge. As can be seen, nine out of ten participating sys-

tems outperform the baseline approach on the full test set. The

winning team, Yang and Bhanu of the University of California

Riverside, attained an overall 83.8% classification result [64].

It is interesting to note the person-specific results ob-

tained by the multi-institute team of the University of Illinois,

Urbana–Champaign, and the University of Missouri, Columbia

[53]. The proposed method, which included an automatic face

recognition module, attained a perfect emotion recognition

score on the subject-dependent test set.

As expected, most participating systems scored higher on the

person-specific test set than on the person-independent test set.

In general, the performance on the person-specific partition was

very high, with seven out of ten teams scoring over 80% and

three out of ten teams scoring over 90%. When, in addition,

we take into consideration that these results were obtained

using a relatively small training set, this may well lead us to

conclude that inferring discrete affective states from face videos

of known users for whom a priori training data is available can

be considered to be a solved problem.

The secondary on-site emotion recognition test was intro-

duced to perform a sanity check regarding the reported results.

That is, it was used to ensure that nobody had either grossly

inflated their performance results by guessing the emotion

labels of the original test set or had in fact relied on some form

of manual processing of the data. Participants were allowed to

apply bug fixes to their original entry, which in at least one case

led to a significant improvement in results [12]. For reasons

TABLE VII
F1-MEASURES PER AU FOR EVERY PARTICIPANT IN THE AU DETECTION

SUBCHALLENGE. LAST COLUMN SHOWS AVERAGE OVER ALL

PARTICIPANTS, AND HIGH SCORES ARE PRINTED IN BOLD

unknown to the challenge organizers, the team of QUT chose

not to perform the secondary test.

B. AU Detection

The results for the AU detection subchallenge are shown

per partition in Table VI, and overall results per AU for each

team are shown in Table VII. The winner of the AU detection

subchallenge was the team of Senechal et al., from the Institut

des Systemes Intelligents et de Robotique, Paris [48]. Their

method attained an F1-measure of 63.3%, averaged over all 12

AUs. This is well above the baseline’s 45.3% but still very far

off from a perfect AU recognition.

Looking at individual AUs, we can see that AU1, AU2, AU6,

and AU12 are consistently detected well by all participants,

while AU4, AU5, AU10, AU17, AU18, and AU26 were con-

sistently detected with low accuracy. AU25, parting of the lips,

is detected with high accuracy by all participants except QUT

[8]. The authors noted in [8] that this may have been due to

an inability to deal with speech effectively. AU7, narrowing of

the eye aperture caused by contraction of the orbicularis occuli

muscle (pars palpebralis), was only detected with high accuracy

by Senechal et al.

Contrary to what would normally be expected, Table VI

shows that performance on the person-specific partition was

consistently worse than on the person-independent part. Unfor-

tunately, given the relatively small size of the test partition, this
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is probably simply because the videos selected for the person-

specific part may have been that much more challenging than

those included in the person-independent part.

VIII. DISCUSSION

The first facial expression recognition and analysis challenge

has been a great community effort and a resounding success,

both in terms of the attained results as well as the level of

participation. We hope to have established a new benchmark

for facial expression analysis, which should allow researchers

in the field to objectively gauge their performance. To keep this

benchmark available in the future, the FERA 2011 organizers

are keeping the GEMEP-FERA database available through their

online repository, and they will continue to provide the service

of calculating researchers’ test scores.

One of the opportunities that arise from hosting a challenge

like FERA 2011 is that one can learn what are the current

trends in a field. For instance, five teams participated in the AU

detection subchallenge, compared to ten teams for the emotion

recognition subchallenge. This indicates that, despite the criti-

cism on the practical use of discrete emotion classification and

the theory behind it, it remains the most popular approach for

computer scientists.

With respect to machine learning techniques, we noticed a

strong trend to use SVMs. Out of 12 teams, 10 teams used

SVMs. Perhaps, more significantly, three teams used multiple-

kernel SVMs [43], including the AU detection winner [48].

Surprisingly, only one team modeled time [5], and although

such techniques have proven very popular in recent literature,

it is also the only team that has used probabilistic graphical

models.

In terms of features, the following was observed: Four teams

encoded appearance dynamics, and there were four teams that

combined appearance and geometric features, including the AU

detection winners. Although modeling of depth would improve

the ability to deal with out-of-plane head rotations, only a

single team infers 3-D from 2-D images. This appears to be

successful, as the team that employed it also won the AU

detection challenge. Unfortunately, from their work [48], it is

not possible to assess exactly how big the influence of this

3-D inference was. Geometric features on their own were

neither popular nor successful: There was only a single team

that relied solely on geometric features, and they were ranked

very low in the emotion recognition subchallenge.

Considering the short interval between the call for partic-

ipation and the submission deadline (less than three months,

including Christmas), participation levels were high. The orga-

nizers also noted a high enthusiasm among the teams, with an

attitude that would be best described as collaborative compet-

itive: Researchers were both interested in winning as well as

in learning what really works for this problem. We therefore

conclude that a follow-up of this challenge would find broad

interest in the automatic human behavior analysis community.

A follow-up challenge using a larger data set should be

organized in order to address the two following issues: First,

the scores for AU detection on the person-specific partition

were worse than on the person-independent partition. It shows

that the two partitions cannot be said to represent the same

underlying distribution (i.e., all possible ways of expressing

the five emotions by all subjects in the data set). Essentially,

the two partitions differ too much in their level of difficulty,

and this is caused by not having enough data to sample the

two partitions from. Second, it is important for a fair challenge

to minimize the possibility for participants to cheat, and this

can be implemented by using a large data set that is difficult

to manually annotate in the time provided for training the

algorithms.

Another issue that arose during the challenge is the choice

of performance measure. It is well known that, in a heavily

unbalanced data, such as that of the AU detection subchallenge,

the classification rate is not a suitable measure. A naive clas-

sifier based on the prior probability of the classes will give

an overoptimistic representation of the problem and is very

likely to outperform systems that try to detect both classes

with equal priority. In the literature, people therefore often

use two measures, the F1-measure and the area under the

receiver–operator characteristic curve (AUC). The F1-measure

is a single scalar value that represents the harmonic mean of

precision and recall (i.e., it equally favors precision and recall)

and can be computed with binary predictions. The AUC can

only be computed if real ordinal predictions are provided by

the classifier.

To avoid restricting participants’ choice of classifiers to those

that provide a real valued output, we thus opted to use the

F1-measure. Unfortunately, the baseline results showed that

even this measure may be misleading. The naive approach of

attaining the highest F1-measure in the case of the AU detection

test set would be to assign the positive (i.e., AU is active) label

to all test instances. As Table III shows, this actually results

in a higher F1-score than that attained by the baseline system.

This is because the F1-measure is wholly determined by the

number of true positives, false positives, and false negatives.

The number of true negative examples thus plays no role, while

they are credited in the AUC. The AUC may thus be a better

performance measure to be used in a future challenge, at the

(probably minimal) cost of restricting participants’ choice of

classifiers.

As pointed out in Section VII-A, inferring discrete emotions

from video of known subjects may well be considered solved.

Any progress in this area will probably be only marginal and

perhaps best left to industry. Recently, there has been more

interest in the automatic recognition of dimensional affect [22],

[23], [46]. A future challenge may well focus on this.

The detection of AUs, however, is still far from solved, and

this should definitely remain a focus in future events. One thing

to address in the future is the number of AUs included in the

test set. For FERA 2011, there were only 12 AUs that needed to

be detected. In the future, it would be desirable to have a data

set that will allow a competition on detection of all 31 AUs,

plus possibly a number of FACS action descriptors [18]. Aside

from addressing the detection of the activation of AUs, it would

be a good thing to move toward the detection of the intensities

and temporal segments of AUs, as it is these characteristics that

prove to be crucial in many higher level behavior understanding

problems [11], [13], [17].
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