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Abstract

The gut microbiota is emerging as an important modulator of neurodegenerative diseases, and 

accumulating evidence has linked gut microbes to Parkinson’s disease (PD) symptomatology and 

pathophysiology. PD is often preceded by gastrointestinal symptoms and alterations of the enteric 

nervous system accompany the disease. Several studies have analyzed the gut microbiome in PD, 

but a consensus on the features of the PD-specific microbiota is missing. Here, we conduct a meta-

analysis re-analyzing 10 currently available 16S microbiome datasets to investigate whether 

underlying alterations in the gut microbiota of PD patients exist. We found consistent alterations in 

PD-associated microbiome, which are significant and robust to confounders across studies, although

differences in microbiome structure between PD and controls are limited. Enrichment of the genera 

Lactobacillus, Akkermansia, and Bifidobacterium and depletion of bacteria belonging to the 

families Lachnospiraceae and Ruminococcaceae, which are important short-chain fatty acids 

producers, emerged as the most consistent PD gut microbiome alterations. This dysbiosis might 

result in a pro-inflammatory status which could explain the recurrent gastrointestinal symptoms 

affecting PD patients.
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Introduction

Parkinson's disease (PD) is the second most common neurodegenerative disorder after 

Alzheimer's disease1. Globally, it has an incidence of 10-50/100,000 person/year and a prevalence 

of 100-300/100,000 people, and due to the increase in aging population the number of PD patients 

is expected to double by 20301. PD affects predominantly dopaminergic neurons in the brain, 

leading to decreased dopamine levels and motor impairments2. Its pathological hallmark has long 

been considered to be the intracellular deposition of aggregated α-synuclein, leading to neuronal 

cell death and neuro-inflammation3.  PD is now considered a multi-systemic disease, affecting the 

central as well as the enteric nervous system (CNS,  ENS), resulting in several non-motor 

symptoms, often including gastroparesis or constipation. Due to the early involvement of the 

gastrointestinal tract, often preceding motor symptoms for years4, changes in gut microbiota 

composition have been studied in relation to the pathophysiology of PD. The potential role of gut 

microbiota in PD3 and other neurodegenerative diseases5 is supported by animal studies6, showing 

that the microbiota can affect α-synucleinopathy as well as neuro-inflammation. Thus, the 

microbiota is a putative therapeutic target and has the potential for developing diagnostic 

biomarkers.

PD patients can have increased gut permeability and inflammation7,8, and these have been 

hypothesized to be linked to low gastrointestinal short-chain fatty acids (SCFA) concentrations9. 

SCFA are the end products of bacterial fermentation of dietary components and play a pivotal role 

in fueling and maintaining the integrity of the colonic epithelium. Low levels of SCFA have been 

considered to be a consequence of a decreased abundance of SCFA-producing taxa in PD 

patients10,11. To date, more than 20 cohort-studies have investigated the composition of the PD gut 

microbiota. Over 100 differently abundant taxa between PD patients and controls have been 

reported10–19, and some studies detected association between taxa abundances and disease 

severity11,12,16. Several studies suggested that PD patients have an altered gut microbiota compared 

to controls, even though findings are often inconsistent and a consensus on the taxa associated with 

the disease is still lacking. Across most studies, the genus Akkermansia and the 

Verrucomicrobiaceae family have been found to be enriched in PD patients, while bacteria 

belonging to the Lachnospiraceae family are depleted. On the other hand, various inconsistencies 

have been found among the different sampling cohorts. For example, the Lactobacillaceae family 

has been generally detected to be enriched in PD in the Western cohorts but never in Chinese 
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studies18,20,21. Similarly, conflicting results have been obtained for bacteria within the Prevotellaceae 

family. Several studies detected these taxa to be highly depleted in PD patients16,17,22,23, compared to 

controls, whereas others found no differences in abundances11 or found these taxa enriched in PD 

patients13,20. 

Inconsistencies amongst studies might arise from variations in study designs and methods 

used for producing and analyzing 16S rRNA gene amplicon data, as well as from the natural 

variability of the gut microbiota across populations, lifestyles, and diets. To further elucidate the 

significance of changes in the intestinal microbiota composition in PD and to evaluate its potential 

as a biomarker for PD risk, diagnosis, and prognosis it is important to perform cross-study 

comparisons and identify disease-specific alterations. Here, we provide a thorough meta-analysis 

(pooled re-analysis) of all ten available studies that described the gut microbiome in PD through 

16S rRNA amplicon sequencing. We apply a standardized workflow to analyze each study 

individually and combined different statistical approaches to identify the major changes affecting 

the gut microbiome of PD patients across sampling cohorts. 

Results

Study selection

We identified a total of 22 studies that investigated the PD-associated gut microbiome using 

16S rRNA gene amplicon sequencing (Supplementary Table 1). Of these, ten made raw sequencing 

data available and were re-analyzed in our study. These ten studies covered nine different cohorts 

(one was reported at baseline then at follow-up two years later), across six countries (Table 1). 

Overall, this resulted in 1,211 samples (Fig 1A) obtained from all case-control studies. Cases were 

usually selected from clinics local to the investigating teams, were at different stages of the disease, 

and almost all were using some form of PD medication (Table 1). Controls were typically sampled 

by convenience from the local population or from families of the PD patients. All studies except 

one16 applied the UK brain bank criteria to define PD. Cases had an average age of between 60 and 

70 years in all studies, with controls typically well matched in age. Some studies matched on sex, 

while for others there were significantly more males in case compared to control groups12,13.
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Study Design
Disease duration
& medicationsa Country Sampling  DNA extr.

16S
Region

Seq.
Tech.b PE vs SEc

Hill-Burns et al.12 Case-control
13.7 ± 6.5 years, 
93.9% medicated

USA Swabs, delivered at RT
MO BIO’s PowerMag 
Soil kit

V4 MiSeq
SE

Hopfner et al.14 Case-control
11.2 ± 4.8 years, all 
medicated

Germany
Home or Hospital 
collection, delivered at RT

Power Soil Kit
V1-V2 MiSeq PE

Keshavarzian et 
al.11 Case-control 29.7±11 years, 

66.4% medicated
USA

Home collection, delivered 
in GasPak

FastDNA Soil Kit
V4 MiSeq SE

Petrov et al.17 Case-control NA Russia
NA

Mechanical disruption
V3-V4 Miseq SE

Pietrucci et al.19 Case-control
8.1 ± 4.5 years  82.5%
on l-dopa

Italy
Home collection, DNA 
stabilizer

PSP-Spin Stool Kit
V3-V4 MiSeq PE

Qian et al.18 Matched 
case-control 

5.7 ± 4.1 years, all 
medicated

China
Home collection, 
transferred in Ice

QIAm DNA stool Mini
Kit

V3-V4 MiSeq PE

Aho et al.16 Matched 
case-control

Median 8.5 years, 73%
on l-dopa Finland

Home collection, DNA 
stabilizer, stored in fridge

PSP-Spin Stool Kit
V3-V4

MiSeq PE

Scheperjans et al.15 Matched 
case-control

Median 6.5 years, all 
but 2 using 
medications (77.8% on
dopamine agonist)

Finland
Home collection, DNA 
stabilizer, stored in fridge

PSP-Spin Stool Kit
V3-V4

MiSeq PE

Heintz-Buschart et 
al.13 Case-control

72  ± 31 months, 85% 
on l-dopa agonist

Germany
Home collection, flash-
frozen

Modified Qiagen 
Allprep

V4 MiSeq PE

Weis et al.24 Matched 
case-control

82 ± 56 months, 
85.3% medicated

Germany
MED AUXIL fecal 
collector set

FastDNA Spin Kit V4-V5 IonTorrent PE

Table 1 | Technical details of the studies included in the meta-analysis. The table reports the following 

information: study design (a: disease duration at sampling reported as mean and respective standard deviation, and

proportion of medicated patients), sample collection, DNA extraction, and sequencing techniques (b: sequencing 

platform; c: paired-ends vs single-ends). NA indicates that the information was not reported in the original article. 

RT indicate room temperature. In many studies the proportion of medicated patients was calculated for individual 

type of drugs. Hence, we could not estimate the total portion of patients undergoing pharmaceutical treatments, 

and we report here only the type of drugs with the highest proportions of medicated patients.

Various sampling protocols were used across studies, with considerable variation in the 

method used to preserve the samples before processing (Table 1). In some cases, samples were kept 

at room temperature for up to 48 hours before analysis14, in others, samples were stored either in 

DNA preservative16,19 or on ice18. DNA extractions and sequencing strategies also varied across 

studies (Table 1). The Illumina MiSeq platform was the most used sequencing technology, but the 

16S variable region and sequencing strategy (paired-ends vs single-ends) varied considerably (Table

1). Considering the heterogeneity across studies, we first re-analyzed each single dataset 

individually, then we used a combination of statistical approaches to obtain a consensus overview of

gut microbiome structure in PD accounting for the heterogeneity between studies. Two studies were

based on the same cohort measured at different time points, hence, we performed a sensitivity 

analysis by comparing the results obtained considering both datasets with those obtained after 

omitting the baseline samples15.
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Figure 1 | Sample distribution across studies (a) and bioinformatic work-flow adopted in our study (b).  The

number of control and PD samples is reported and refers to the data that could be recovered from the Sequence 

Read Archive (SRA) or the European Nucleotide Archive (ENA). TSS = Total Sum Scaling; VST = Variance 

Stabilizing Transformation; CLR = Centered Log-Ratios; WMW = Wilcoxon-Mann-Whitney test; ANCOM = 

ANalysis of COmposition of Microbiomes; Lm = linear models.

The gut microbiome differs significantly between PD patients and controls

Measures of microbial alpha-diversity, based on species profiles, were higher in PD samples

compared to controls in three out of ten studies (Supplementary Figure 1). Interestingly, these three 

datasets were the only ones using single-end sequencing approaches, suggesting that this might 

influence the estimation of bacterial diversity. These differences were still overall significant when 

we pooled estimates across studies using random-effects meta-analysis (Fig 2, Supplementary 

Figure 1). Specifically, PD samples had a higher overall richness as indicated by a significantly 

higher number of observed species and higher Fisher’s alpha, ACE, and Chao1 indices (Fig 2; 

Supplementary Figure 1).  Our analyses suggest that this higher diversity might derive from a 

decrease in the abundance of dominant species and an increase in rare/low abundant ones, as 

dominance indices were lower and rarity indices were significantly higher in PD patients (Fig 2; 

Supplementary Figure 1). Previous studies reported a higher abundance of Firmicutes in control 

samples compared to PD11, and the Firmicutes to Bacteroidetes ratio (F/B ratio) has been frequently 

used to assess gut-health. Therefore, we calculated F/B ratios across all studies. Only in the study of
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Keshavarzian et al11 did we observe a significant difference in the F/B ratio between PD and 

control, but this difference was not overall significant (Supplementary Figure 2). Similarly, Aho et 

al16 reported that controls had an increased Prevotella to Bacteroides ratio (P/B ratio) in the baseline

samples15 of their longitudinal study. We confirmed this result and detected an increased P/B ratio in

two other studies, but did not detect the same association in the rest of the datasets, and there was 

only weak evidence for a higher P/B ratio in controls when results were pooled (Supplementary 

Figure 2). Omitting the baseline samples from the longitudinal Finnish cohort did not alter the 

conclusions of the alpha-diversity analyses, and led to a decrease in the P/B ratio difference 

between PD and controls (data not shown).

Figure 2 | Alpha diversity indices are significantly different between PD patients and controls. Indices were 

calculated at the species level for each dataset. Results were then combined using a random-effects meta-analysis 

approach. The log-generalised Odds Ratios indicate the degree of variation of each index between controls and 

PD. The richness of the samples was estimated using the observed number of species and the Chao1, ACE, and 

Fisher's alpha indices. To estimate eveness, which indicates how different the abundances of the species in a 

community are from each other, we used the Bulla and Simpson indices. Finally, we estimated dominance, which 

describes how much one or few species dominate the community, and rarity, which assesses the number of species

with low abundance in the samples. The data suggest that the gut-microbiota of PD patients is more diverse 

(higher richness) than controls and this is likely a consequence of an increase in rare taxa (rarity).

The genera Bacteroides and Prevotella and the Firmicutes phylum are key gut microbiota 

taxa that have different abundances in the three proposed enterotypes (ET_B, ET_P, and ET_F, 

representing the Bacteroides, Prevotella and Firmicutes enterotypes, respectively)25. To verify the 

prevalence of these gut microbiome types amongst PD patients, we assigned each microbiome to 

7

144

146

148

150

152

154

156

158

160

162

164

14

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.10.20171397doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.10.20171397
http://creativecommons.org/licenses/by-nc-nd/4.0/


one of the three known enterotypes, and managed to classify 589 samples. The distribution of 

assigned enterotypes varied enormously across studies, but there was no significant difference 

between PD and control samples in any individual study and no trend toward specific enterotypes 

when studies were considered together (Supplementary Figure 3).  For example, the majority of PD 

samples from the Finnish cohort15,16 were assigned to the ET_F, whereas in the study of Hill-Burns 

et al.12 and Pietrucci et al.19 most of the PD samples were classified as ET_B. Interestingly, only in 

the Finnish cohorts was the ET_P more common among control samples, in agreement with the 

authors’ finding of Prevotella being enriched in the control groups.  

Figure 3 |  The gut microbiome structure differs significantly between PD patients and controls. Data were 

normalized using three independent approaches (Variance Stabilizing Transformation, VST; Total Sum Scaling, 

TSS; Centered Log-Ratio, CLR) and beta-diversity was estimated using three indices (Bray-Curtis, BC; Jensen-

Shannon divergence, JSD; Euclidean). The effect of the disease status on the clustering of the data was assessed 

using a permutational analysis of variance (PERMANOVA). In the majority of the studies and approaches 

considered, and across all taxonomic ranks (a, b, c), the gut microbiota of PD patients resulted significantly 

different from the one of controls. The disease status explains only a small fraction of the data variability (< 13% 

R2), indicating that other environmental factors might have a stronger role in shaping the bacterial communities. 

The dataset obtained by pooling all ten studies is referred to as “Combined” in the figure. 

Considering the variability among studies and the potential data-dependent effect of 

different microbiome analysis workflows26, we used a thorough and comprehensive approach to 

investigate the structure of the bacterial communities associated with PD (Fig 1B). We used three 
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independent normalization strategies (Variance Stabilizing Transformation, VST; Total Sum 

Scaling, TSS, Centered Log-Ratio, CLR) combined as appropriate with three beta-diversity 

distances (Bray-Curtis, BC; Jensen-Shannon divergence, JSD; Euclidean) and statistical testing via 

permutational multivariate analysis of variance using distance matrices (PERMANOVA). We 

applied these strategies to all three taxonomy ranks we considered (species, genus, and family). In 

most studies, irrespective of the normalization-distance combinations, disease status significantly 

explained the differences within the data (p < 0.05), even though it accounted only for a limited 

portion of data variability (from < 1% to <13%; R2 expressed in percentage; Fig 3). When the 

datasets were pooled, both study and disease status significantly explained the separation of the 

samples, but the proportion of variance explained by the disease status was in all cases < 1% (Fig 

3), whereas the study explained between 28 and 54% of the variance. 

We wanted to verify whether underlying differences, unrelated to the origin of the sampling 

cohorts, existed between the gut microbiome of PD patients and controls. Moreover, we aimed at 

identifying which study-specific factors most defined the differences across datasets. We used the 

normalization-distance pairs which best captured the variability of the data (Fig 3) to perform a 

distance-based Redundancy Analysis (dbRDA) on the pooled data (Supplementary Figures 4-6). 

First, we ordinated the combined data without constraints and without accounting for the variability 

introduced by the study. In accordance with the previous PERMANOVA analyses, the separation of 

the samples was driven by the study of origin (Supplementary Figures 4-6). We then inferred the 

degree of similarities between studies using the sample coordinates in the dbRDA (Supplementary 

Figures 7, see methods for details). The only four strongly divergent datasets were from: Weis et 

al.24, who used the sequencing platform IonTorrent; Hopfner et al.14, who maintained the samples at 

room temperature up to 48 h and analyzed them using the V1-V2 variable region of the 16S rRNA 

gene; Keshavarzian et al.11 who collected samples in anaerobic pouches; and from Heintz-Buschart 

et al.13 who immediately flash-froze the samples after collection and used a lab-specific DNA 

extraction protocol. We then verified which study-specific aspect (e.g. sequencing strategy, DNA 

extraction) most influenced the structure of the bacterial communities. We created additional 

dbRDA constraining the data by each potential confounding factor. Each factor significantly shaped 

the clustering of the data when considered individually, and this was observed for all taxonomic 

ranks and normalization approaches we used (Supplementary Table 2). In general DNA extraction 

protocols, country of origin, and 16S variable region were the factors that explained most of the 

variance within the data (Supplementary Table 2). Finally, we compared the dbRDA models 
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constrained by all confounding factors and disease status with the one constrained only by the 

disease status and study and verified that both models explained the same proportion of data 

variability (Supplementary Table 2). Hence, removing the influence of the study will 

simultaneously eliminate the effects of other known study-specific confounding factors.

Figure 4 | Most important species driving the divergence of the gut microbiota between PD patients and 

controls. Distance-based Redundancy analysis (dbRDA) was performed on Jensen-Shannon divergence (JSD) 

calculated on data normalized through total sum scaling (TSS). dbRDA was conditioned by study and constrained 

by disease status. Data refer to species abundances. The limited proportion of data variability explained by the 

axis constrained for disease status (CAP1) indicates that environmental factors have a major influence in shaping 

the bacterial communities. However, the influence of the disease status on the community structure is statistically 

significant (ANOVA-like permutation test). Only taxa showing a significant association with the clustering of the 

samples and the strongest abundance variation between the conditions are reported. 

 Accounting for the variability introduced by the study within the dbRDA drastically 

decreased the batch effect, irrespectively of the normalization-distance pair used (Supplementary 

Figures 4-6). However, samples did not cluster according to the disease status, suggesting that the 

environmental variability is higher than the variability explainable by the disease. Therefore, we 

constrained the dbRDA conditioned for study by disease status, to maximize the divergence 

between PD and control samples. We used this approach to determine the main taxa driving the 

separation between conditions. In accordance with the above results, the newly created constrained 

axis along which PD and controls diverged, significantly explained the clustering of the data 
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(ANOVA-like permutation test; Fig 4, Supplementary Figure 5-6), but accounted for only <1% of 

the data variability. Since the constrained ordination obtained for the TSS-JSD pair explained a 

slightly higher proportion of variance, we selected this approach to identify taxa that strongly 

influenced the separation of the samples. The divergence between PD and controls was mainly 

driven by the family Bifidobacteriaceae and Akkermansiaceae, which were more enriched in PD, 

and the family Lachnospiraceae, which was more abundant in control samples (Supplementary 

Figure 8).  Similarly relevant, but with a minor difference between conditions were the families 

Rikenellaeae, Porphyromonadaceae, Christensenellaceae, and the Clostridium methylpentosum 

group in the Oscillispirales order, all of which were more enriched in PD (Supplementary Figure 8).

These results were mirrored in the dbRDA performed using genus and species abundances, which 

revealed that species in the Akkermansia and Bifidobacterium genera were strongly enriched in PD, 

whereas several species belonging to the Lachnospiraceae family caused the divergence of control 

samples (Supplementary Figure 7, Fig 4). When we omitted the dataset of Scheperjans et al15, the 

overall results did not change, and only minor differences were observed (some genera and species 

in the Lachnospiraceae and Christensenellaceae family were not detected as main drivers of sample 

separation).

The gut microbiome of PD patients and controls are enriched in different bacterial taxa

In the first instance, we analyzed all ten datasets individually using three separate 

approaches. The number of taxa that showed a statistically significant difference in abundance 

between PD and controls varied greatly across the studies and methods we used (Supplementary 

Figure 9, Supplementary Table 3). Amongst all studies, the highest number of significant taxa were 

detected in the datasets of Hill-Burns et al.12 and Petrov et al.17, whereas the lowest number was 

observed in Qian et al.18 and Hopfner et al.14 (Supplementary Figure 9, Supplementary Table 3). To 

obtain a generalizable overview of the PD-associated microbiome, we combined two independent 

approaches that we refer to as Pooled data and Pooled results approach. In the first, we pooled the 

count tables obtained for each study and used the same three methods we applied to the individual 

datasets and statistically accounted for the variability introduced by the study. Taxa were considered

differentially abundant between PD and controls when detected as statistically significantly 

different by two out of three methods. This first list of taxa was then merged with the outcome of 

the Pooled results approach, in which we first estimated the differences in abundance for each taxon

in the individual datasets and then used random-effect meta-analysis to pool the results (Fig 5, 
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Supplementary Figures 10, 11, Supplementary Table 4).

Figure 5 | Genera showing a significant difference in abundance between PD patients and controls. The 

relative abundances of the genera retrieved from the pooled data are reported in panel a. Effect size was estimated 

via the mean difference in CLR (b) using a random-effect meta-analysis approach on all taxa resulting 

differentially abundant in the Pooled results or Pooled data approaches. The color of the dots indicate which of the

above two approaches detected the taxa differentially abundant. Taxa more abundant in controls have an effect 

size shifted to the left, whereas taxa more abundant in PD have an effect size shifted to the right. C shows the 

number of times each genus was detected differentially abundant between PD patients and control samples across 

studies (diamonds) and approaches (bars). We used ten studies and three approaches, hence the maximum number 

of times a taxon can be detected differentially abundant is 30.

After obtaining a first list of differentially abundant taxa, we used the metadata made 

available by five of the ten studies we re-analyzed to verify whether age and/or gender influenced 

the abundances of the taxa we detected to be enriched or depleted in PD. By comparing generalized 

linear mixed models (GLMMs) with and without accounting for the disease status, we identified 

taxa that showed a significant alteration in abundance in PD irrespective of age and gender 

(Supplementary Table 5). For most of the taxa, the disease status was required to best explain taxa 

abundances, underlining the robustness of our approaches. We did not detect any taxa for which 

gender and/or age alone could best describe the data. However, for 11 Species, 13 Genera, and 7 
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Families the available data did not allow to clearly establish whether the disease status was an 

essential factor to explain taxa abundances (Supplementary Table 5). Hence, we did not consider 

these taxa further. For example, the Prevotellaceae family and a species within this family 

(Supplementary Table 5) were both detected differentially abundant between PD and controls. 

However, the abundance of both taxa was also influenced by gender and age (Supplementary Table 

5, Supplementary Figure 12).

Among the remaining genera, after controlling for available metadata, Roseburia, Blautia, 

Fusicatenibacter, Faecalibacterium, Anaeorostipes and other two unknown genera belonging to the

family Lachnospiraceae were strongly enriched in the control samples (Fig 5B) in several datasets 

(Fig 5C). Consistently, the Lachnospiraceae family and species within this family and affiliated to 

the Fusicatenibacter, Blautia, and Roseburia genera were strongly enriched in control samples 

(Supplementary Figures 10, 11). The family Butyricicoccaceae was also more abundant in controls, 

even though it was detected differentially abundant in fewer studies (Supplementary Figure 10). PD

samples were instead most often enriched in the genera Lactobacillus, Bifidobacterium, Hungatella,

and Akkermansia (Fig 5). Additionally, the R-7 group of the Christensenellaceae family, the genera 

Methanobrevibacter, Oscillobacter, Frisingicoccus and Varibaculum were also detected more 

abundant in PD, but with a smaller effect size (Fig 5). PD samples were enriched in species 

belonging to different taxonomic groups e.g. Ruminococcaceae, Christensenellaceae, 

Bifidobacterium, Lactobacillus, Hungatella, and Alistipes (Supplementary Figure 11). Other 

species, such as Intestinimonas sp, Oscillibacter sp also resulted more abundant in PD, but in fewer 

studies (Supplementary Figure 12). In contrast, the majority of species enriched in controls 

belonged to the families Lachnospiraceae and Ruminococcaceae (Supplementary Figure 12). The 

shifts in taxa abundances outlined above were robust to the sensitivity analysis we performed 

omitting the baseline data of the longitudinal Finnish cohort, which resulted in minor differences 

affecting only taxa having a small effect size (Supplementary Figure 13). 

Finally, for each dataset, we obtained hypothetical functional prediction based on the 16S 

profiles. Differential abundance testing of predicted-pathways between PD and controls was 

performed as for the taxonomic data. The majority of predicted-pathways enriched in PD were 

related to ubiquinone (Coenzyme Q; CoQ) and menaquinone (vitamin K2) biosynthesis. 4-

aminobutanoate (GABA) degradation and glutamine-glutamate metabolism, methanogenesis, and 

lactic-type fermentation (Supplementary Table 3, 4; Fig 6, Supplementary figure 14). Instead, the 
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control samples were enriched in pathways involved in the biosynthesis of cobalamin (vitamin 

B12), degradation of glucuronate and galactoglucuronate, and methane production from acetate 

degradation (Supplementary Table 3, 4; Fig 6, Supplementary Figure 14).

Figure 6 | Pathways showing a significant difference in abundance between PD patients and controls. Only 

selected relevant pathways are shown (a full overview is reported in Supplementary Figure 13). The relative 

abundances of the pathways retrieved from the pooled data are reported in panel a. Effect size was estimated via 

the mean difference in CLR (b) using a random-effect meta-analysis approach on all taxa resulting differentially 

abundant in the Pooled results or Pooled data approaches. The color of the dots indicate which of the above two 

approaches detected the pathway differentially abundant. Pathways more abundant in controls have an effect size 

shifted to the left, whereas pathways more abundant in PD have an effect size shifted to the right. C shows the 

number of times each genus was detected differentially abundant between PD patients and control across studies 

(diamonds) and approaches (bars). We used ten studies and three approaches, hence the maximum number of 

times a taxon can be detected differentially abundant is 30.

Discussion

In recent years, several studies have analyzed the gut microbiome of PD patients and 

reported various degrees of alteration compared to healthy controls. We wanted to verify whether 

consistent changes in the gut microbiome of PD patients can be identified across studies, as often 

contrasting results have been reported. Hence, we performed a meta-analysis using all publicly 
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available 16S rRNA gene amplicon datasets comparing PD patients with healthy controls, to 

address reproducibility and identify targets to foster further experimental work. By integrating 

different statistical methods we re-analyze all data and offer a comprehensive and robust consensus 

of the most consistent features of the gut microbiome associated with PD. Studies were 

heterogeneous in sampling populations and methodological approaches (Table 1, Supplementary 

Table 2; Supplementary Figure 7), and the inter-study variability was the main factor driving 

bacterial community structures (Fig 3, Supplementary Figures 4-7; Table 1, Supplementary Table 

2), as observed in previous microbiome-based meta-analyses performed in the context of diet and 

colorectal cancer27,28. Our analyses suggest that particular methodological approaches, such as 

sample collection and transport, sequencing platform, and the chosen 16S variable region might be 

the main reasons for the heterogeneity across the datasets we considered (Supplementary Figure 7, 

Table 1, Supplementary Table 2). Variability across the studies was also a reflection of the different 

sampling populations used in the different studies (Table 1). For example, the proportion of PD 

patients using medication as well as the duration of the disease varied across datasets. Also, controls

were sometimes closely matched but sometimes differed considerably from cases in terms of age, 

sex and ethnicity. Hence it is important to stress that using the available data it is impossible to 

determine whether the associations reported are causally linked to PD.

By stratifying the analysis by study, we could simultaneously exclude the effect of all other 

known study-specific confounding aspects, such as country of origin, DNA extraction, and 

sequencing (Supplementary Table 2, Supplementary Figures 4-6). In agreement with previous 

studies11–13,15,18,19, we show that the gut microbiome of PD patients significantly differs from the one 

of controls (Fig 3, Supplementary Figure 8). Although PD can explain only a limited portion of data

variability (Fig 3, Supplementary Figures 4-6; Supplementary Table 2) the observed differences are 

robust to technical confounders and across sampling cohorts, indicating that the alteration in the gut 

microbiome of PD patients is a general phenomenon. The analysis of the bacterial alpha diversity 

suggests that such alterations might be explained by a decrease in the abundances of the most 

abundant species and an increase in the rare ones (Fig 1, Supplementary Figure 1), which is a 

typical alteration observed in dysbiosis associated with inflammatory bowel disease and irritable 

bowel syndromes (IBD, IBS)29. An increase in bacterial diversity in the gut microbiome of PD 

patients has been previously reported both in studies we re-analyzed and studies for which data 

were not available11,18,21,30. Similarly, a recent work reported no differences in OTU-based alpha-

diversity but found that in controls 98% of OTUs could be assigned to the four dominant Phyla, 
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whereas only 88% of OTUs belonged to these Phyla in PD31. This suggests a decrease in dominant 

taxa and an increase in less abundant ones as underlined by our results.

PD samples had a lower abundance of the genera Roseburia, Fusicatenibacter, Blautia, 

Anaerostipes (Lachnospiraceae family), and Faecalibacterium (Ruminococcaceae family) (Fig 5, 

Supplementary Figures 10-12; Supplementary Tables 3, 4), a finding seen in other neuro-

inflammatory and rheumatologic disorders32–34. Most of these taxa are abundant and widespread 

bacteria in the gut microbiota of healthy individuals, they are major butyrate-producers and have 

often been found depleted in IBD29. Similarly depleted in IBD are bacteria of the Butyricicoccaceae 

family35, which are important butyrate producers and were highly depleted in PD in our analyses 

(Supplementary Figure 10). The depletion of these taxa suggests a low level of butyrate in the gut of

PD patients. Butyrate is a fundamental energy source for intestinal epithelial cells and has been 

reported to reinforce the intestinal epithelium as well as preventing inflammation and 

carcinogenesis36. Our findings are consistent with previous studies showing low levels of butyrate 

and increased gut permeability and inflammation in PD patients7,9. SCFA are not only relevant for 

gut health, but they can also influence the ENS, have systemic anti-inflammatory properties, 

promote normal microglia development, and potentially affect epigenesis in the CNS3. Importantly, 

PD patients have been shown to have increased levels of various cytokines in both the colon and 

serum, suggesting that they suffer from systemic inflammation which could result in microglial 

activation driving disease progression37. Altogether these data suggest that the alteration in SCFA 

production in the gut combined with an increase gut permeability and inflammation might have 

systemic implications in PD. To the best of our knowledge, only Aho et al16 identified bacteria of 

the Butyriciccocaceae enriched in controls. Similarly, only Aho et al16 and Weis et al24 detected 

Fusicatenibacter to be significantly depleted in PD patients. Specifically, Weis et al. report that the 

decrease of this genus together with Faecalibacterium was correlated to the degree of gut 

inflammation24. Interestingly, both these genera were low in abundance in IBS and ulcerative 

colitis38,39, and Faecalibacterium showed strong anti-inflammatory and protective effects in an acute

colitis mouse models40. Our analysis suggests that the depletion of taxa playing a key role in 

maintaining gut health is widespread in PD across populations. Such depletion resembles dysbiosis 

observed in other gastrointestinal dysfunctions (e.g. IBD) and supports the link between PD and gut

health as underlined by retrospective studies indicating that the overall risk of developing PD in 

IBD was significantly higher, reaching 28% and 30% increase in patients with Crohn’s and 

ulcerative colitis, respectively37. 
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Our results indicate a higher abundance of the genera Lactobacillus, Akkermansia, 

Hungatella, and Bifidobacterium in PD gut microbiome (Fig 5, Supplementary Figures 10, 11;  

Supplementary Table 3, 4). The fact that the more abundant genera in PD belong to different 

families and even orders, support the idea of increased diversity in the gut-microbiota of PD 

patients (Fig 1, Supplementary Figure 1). The genus Lactobacillus, and the Lactobacillaceae 

family, were the most strongly enriched taxa in PD across the studies we re-analyzed, in line with 

previous findings11,12,17,19,41. Lactobacillus strains are low abundant members of the gut microbiota 

and their abundance varies greatly across human disease and chronic conditions42. Some strains of 

Lactobacillus and Enterococcus, also enriched in PD (Supplementary Figure 11), are able to 

produce enzymes that can degrade levodopa into dopamine, suggesting that their abundances might 

be a consequence of the use of this medication in PD43,44. Levodopa is absorbed in the small 

intestine, but it has been reported that 10-20% can reach the large intestine45, indicating that a 

substantial amount of this molecule can be readily available for gut bacteria and could help these 

bacteria to proliferate. Interestingly, none of the Chinese studies conducted so far detected 

Lactobacillus or the family Lactobacillaceae enriched in PD18,20,21,23,46. Consistently, these taxa were 

not enriched in PD samples in the only Chinese study included in our meta-analysis. The majority 

of Lactobacillus species have been found in food (e.g. dairy, milk, fermented food, probiotics)42. 

Hence, it is possible that differences in diet between regions could explain the difference between 

the Chinese cohorts and the others. 

 Akkermansia has been repeatedly shown to be more abundant in PD compared to controls11–

13,20,22. In general Akkermansia spp. are considered beneficial for human health, as they fortify the 

integrity of the epithelial cell layer and can modulate the immune system47,48. For example, a recent 

study reported that these bacteria ameliorate age-related decline in colonic mucus thickness and 

attenuate immune activation in accelerated aging mice49. However, contrasting results regarding the 

influence of Akkermansia spp. on gut health exist50. Intriguingly, constipated individuals have been 

shown to have a gut microbiome enriched in Akkermansia51–53, and constipation is one of the major 

non-motor symptoms in PD, often starting decades before motor symptoms arise. The increase in 

Akkermansia could be a consequence of constipation, even though animal studies suggest that this 

genus might contribute to an increased transit time. Akkermansia spp. are mucin-degrading bacteria 

and they can lead to a depletion of the intestinal mucus-layer when the gut microbiota is 

unbalanced54,55. Mice receiving stool from chronically constipated patients showed drier stools, 

decreased number of goblet cells, and impaired intestinal barrier function in association with an 
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increase in Akkermansia spp54. The unbalanced microbiota observed in PD patients, might lead to a 

proliferation of Akkermansia spp, which in turn might lead to decreased mucus thicknesses, drier 

stools, and constipation. It is important to point out that multiple strains belonging to the same 

Akkermansia species can co-exist in the gut and the modulation of host-response can be strain-

specific56,57. For example, different Akkermansia munichipalia strains have different effects on the 

differentiation of Regulatory T cells (Tregs) and SCFA production57, both factors altered in blood 

and gut, respectively, of PD patients6,9,58. Altogether these data indicate that the increased abundance

of Akkermansia spp in PD might be linked to alterations in the immune response and constipation. 

These effects might be strain-specific and more in-depth strain-resolved metagenomics are needed 

to elucidate these aspects in PD.

Among the most abundant taxa in PD there were bacteria belonging to the 

Christensenellaceae family (Fig 5, Supplementary Figure 10, 11), in line with previous 

reports11,12,21,41. This family is widespread in the gut of the human population and it is generally 

associated with healthy phenotypes, even though their abundances positively correlate to the 

intestinal transit time59. Christensenella spp. can efficiently support the proliferation of 

Methanobrevibacter smithii via H2 production, explaining the recurrent co-occurrence between 

these two taxa60. Methanobrevibacter belongs to the Archaea domain and it is the major 

hydrogenotrophic methane producer in the human gut, and was also more abundant in the PD 

samples we re-analyzed (Fig 5). In both controls and PD patients the abundances of these taxa were 

positively correlated (Spearman rank test: PD, Z = 10.3, p-value 0.0005; controls, Z = 8.8, p-value 

0. 0005; Supplementary Figure 15). Moreover, the 16S-based functional prediction we performed 

showed that the pathways for the formation of methane from H2 and CO2 and for the synthesis of 

key co-factors involved in methanogenesis (Coenzyme B and M, Factor 420) are strongly enriched 

in PD (Fig 6). The increased abundance of these two co-occurring genera in PD patients might 

contribute to the production of methane, which in turn could influence the intestinal transit. In fact, 

Methanobrevibacter is enriched in constipated patients52,53, just as Akkermansia, and growing 

evidence indicates that methane decreases peristaltic movements slowing down intestinal transit 

time61. Surprisingly, to the best of our knowledge, only one other study reported an enrichment in 

Methanobrevibacter in PD20. It is worth noting that in the 16S-based functional prediction another 

pathway that produces methane through the degradation of acetate was enriched in controls (Fig 6). 

This pathway is mainly found in Archaea of the genus Methanosarcina. However, we did not detect 

these taxa enriched in controls. They were identified as significantly more abundant in controls only

18

432

434

436

438

440

442

444

446

448

450

452

454

456

458

460

462

36

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.10.20171397doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.10.20171397
http://creativecommons.org/licenses/by-nc-nd/4.0/


in the dataset of Qian et al18 and only by a single method (Supplementary Table 3). Hence, these 

data need to be interpreted with caution as they might be an artifact of the 16S-based predictions. It 

is important to specify that the abundance of Archaea in the human gut microbiota is considerably 

lower than that of Bacteria, and current methodologies (DNA extraction, primers used for 16S 

amplification) strongly discriminate against Archaea62. Hence, it is possible that the abundances and

the diversity of these microorganisms is currently poorly represented in the available datasets.

In agreement with the only shot-gun metagenomic study so far available10, we identified 

several predicted-pathways involved in galacturonate and glucuronate degradation depleted in the 

PD-microbiome (Fig 6, Supplementary Figure 14). The enrichment of GABA degradation pathways

and glutamate/glutamine biosynthesis pathways in PD suggests an alteration in the enteric 

production of these neurotransmitters. The gut microbiota has been previously suggested to alter the

glutamate-glutamine-GABA cycles in schizophrenia and autism63,64, and alterations in the level of 

this transmitter have been found in brains of PD patients65,66. Hence, it is intriguing to speculate that 

the gut microbiota might play a role in modulating these chemicals in PD patients. Further 

experimental work will be required to verify whether these metabolic changes in the PD microbiota 

can induce alterations in the CNS. Surprisingly, the majority of the predicted-pathways enriched in 

the PD microbiota were related to ubiquinone (CoQ) and menaquinone (vitamin K2) biosynthesis. 

Data from animal and pre-clinical studies showed that both CoQ and vitamin K have a crucial role 

in avoiding the mitochondrial dysfunctions observed in PD67,68. Hence, the increased biosynthetic 

capacity we observed in the PD-associated microbiota is surprising. Although these findings would 

need to be confirmed via e.g. shot-gun metagenomics/metabolomics, it is tempting to speculate that 

the potential increase of vitamin K2 production in the gut might increase systemic concentrations of

these chemicals in PD. Interestingly, vitamin K plays an important role in the biosynthesis of 

sphingolipids69 which are emerging as an important determinant in PD development70. These data 

suggest novel mechanisms through which the gut microbiota might potentially influence PD 

development.

In summary, our analyses reveal underlying consistent differences in the average gut 

microbiota composition between PD patients and controls. Variations among studies are the 

strongest factor in shaping the data structure, but by accounting for the variability derived by the 

sampling cohorts we were able to show that the alteration of the gut microbiome in PD is consistent 

across studies and countries. The differences in taxa abundances between PD and controls indicate 
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that the gut microbiota of PD patients shares similarities with those of other neurological and 

inflammatory gastrointestinal diseases. Taxa important in maintaining gut integrity and health via 

the production of SCFA are depleted in PD and this together with the growing evidence of gut and 

systemic inflammation in PD, point towards an important role of the gut microbiota in modulating 

the immune function in this disease. Moreover, we were able to identify previously overlooked taxa 

enriched in PD such as Methanobrevibacter, Butyriciccocaceae, and identified some potentially 

new metabolic routes through which the microbiota might influence PD. Our findings align with the

accumulating evidence indicating gut and systemic inflammation in PD, and suggest that the 

dysbiotic gut microbiota could influence host immune function and be linked to the gastrointestinal 

symptoms often recurring in PD patients.

Materials and Methods

Study selection

Search strategy

On the 29th of March 2020 Google Scholar was searched for publications that contained all 

the words “16S”, “gut”, “Parkinson”, “metagenomic”, the exact phrase “Parkinson’s disease”, at 

least one of the words “microbiota” [OR] “microbiome” [OR] “gut” [OR] “intestinal” anywhere in 

the article. This resulted in 1,010 entries. Titles were then manually screened and if they contained 

the words “microbiome” or “microbiota” and “Parkinson’s disease” the abstracts were further 

consulted. Moreover, the Sequence Read Archive (SRA) in NBCI was queried with the following 

term “Parkinson” [AND] “microbiome”, resulting in two additional studies (Bioprojects): 

PRJNA530401 and PRJEB14928. We managed to match only the latter Bioproject ID to a 

published study14, hence we considered only this dataset in our analyses. 

Inclusion criteria

We included all studies comparing the composition of the gut microbiota between patients 

with confirmed PD to a control population without PD, and that made the raw reads of the 16S 

rRNA gene amplicon sequencing available. Studies with any design (e.g. cohort studies, case-

control studies, or cross-sectional studies), and from any geographical area were included. Studies 

could use any method for the acquisition and analysis of samples. We identified a total of 23 studies

that cataloged the gut microbiome of PD patients using metagenomics (Supplementary Table 1). 9 
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of these studies did not make the raw data publicly available. We were unsuccessful in obtaining the

raw reads from the authors, as data were either protected by ethical restriction or the authors did not

answer our requests. In other cases the raw reads were available, but it was impossible to associate 

the data with the disease status as this information was not reported in the metadata.  The samples 

from Scheparjans et al15, originally sequenced using a 454 technology, were recently re-sequenced 

in a follow-up study by the same group using Illumina MiSeq16. Hence, we only included in our 

analysis the most recent datasets. Finally, one study used shot-gun metagenomics10 and three studies

were available only as pre-prints at the time of writing and the raw reads were not made public yet.

Data retrieval and zOTU picking

Raw reads were downloaded from SRA or the European Nucleotide Archive (ENA). 

Adapters were removed using the bbtools suit71. Data were analyzed using Lotus72 and the 

UNOISE373 algorithm for zOTUs calculation, bundled in a new Lotus version (Lotus2), currently 

under development. Due to the technical variability among datasets (e.g. 16S region, sequencing 

technology) the filtering parameters used by the sdm program called by Lotus, were adjusted for 

each dataset independently and are reported in the supplementary materials (Supplementary Table 

6). For the datasets of Petrov et al17 and Weis et al24 we had to decrease the accepted minimum error 

due to the low quality of the sequencing data (Supplementary Table 6). 16S-based functional 

predictions were obtained using the default settings in picrust2 v2.3.0-b74 and the Metacyc database.

In this analysis, the dataset of Qian et al.18 was not included, as with the default cutoffs the 

sequences aligned poorly with the reference database used. Count tables for species, genera, 

families, and functional predictions were then analyzed using R v3.6.275. Datasets were processed 

using the phyloseq R-package76, samples with < 4,500 reads were removed, and taxa with < 5 

counts and predicted-functionalities with < 20 counts in < 2.5% of samples were removed. This 

filtration steps left a total of 1,211 (530 control, and 681 PD samples) and 1,121 samples (485 

control and 636 PD samples) for the taxonomic and predicted-function data, respectively. Finally, 

enterotypes were predicted using rarefied relative abundances of genera via the 

https://enterotypes.org/ web-platform.
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Statistical analyses of single studies

Analysis of alpha-diversity

Alpha-diversity indices at the species level were calculated using the microbiome R-

package77, after rarefying without re-sampling at the even depth of 5,000. Due to rarefaction 8 

samples were further removed, leaving a total of 1,203 samples (523 control and 680 PD samples). 

We measured richness using the number of Observed species, the Chao1, Fisher’s alpha, and ACE 

indices; evenness using the Bulla and Simpson indices, dominance using the core abundance, which

measures the relative proportion of core species that exceed relative abundance of 0.2% in over 

50%, and the Simpson’s index of dominance. Finally, we estimated rarity using the low abundance 

index, which considers the relative proportion of the least abundant species below a detection level 

of 0.2%, and the rare abundance index, which estimates the relative proportion of the non-core 

species exceeding the detection level of 0.2% at 50% prevalence. Additionally, we calculated the 

ratios of Firmicutes to Bacteroidetes phyla and Prevotella to Bacteroides genera, as log2 ratios of 

their relative abundances. In each dataset, the differences in alpha-diversity between control and PD

samples were assessed using Agresti’s generalized odd ratios using the genodds function in the 

genodds R package78. This statistic, based on ranks and analogous to the U statistic underlying the 

Mann-Whitney test, does not make strong assumptions about the distributions of measures and is 

comparable between measures of diversity with different scales.  

Beta-diversity and differential abundance analyses

For each dataset, beta-diversity and differential abundance analyses were performed using 

three independent approaches (described in the sections below): i) normalization via total sum 

scaling (TSS; i.e. relative abundances) and differential abundance (DA) inference through 

Wilcoxon-Mann-Whitney (WMW) tests; ii) variance stabilizing transformation (VST) and DA 

inference using DESeq279; iii) compositional approach based on centered log-ratios (CLR) and DA 

inference using analysis of composition of microbiomes (ANCOM)80. We then reported the number 

of times each taxon showed a significant difference in abundance between PD and controls across 

studies and statistical approaches. For example, a taxon detected differentially abundant across all 

ten datasets and all three approaches would have a final score of 30 (panel C in Fig 5, 

Supplementary Figures 10, 11, 14). Differential abundances of picrust2 predicted functionalities 

between PD and controls were inferred using the same approach outlined above. The rarefaction 
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used in the TSS approach did not result in a loss of samples for the 16S-based predicted 

functionalities.

Total sum scaling (TSS) and non-parametric tests

After rarefying without re-sampling at the even depth of 5,000, data were normalized by 

dividing the counts of each taxon for the total counts of all taxa (total sum) in the sample. 

Beta-diversity matrices were calculated using the Bray-Curtis (BC) dissimilarity index and the 

Jensen-Shannon distances (JSD). Statistical differences between control and PD groups were then 

tested using the permutational multivariate analysis of variance (PERMANOVA) as implemented in

the adonis2 (analysis of variance using distance matrices, ADONIS) function in the vegan R-

package81. DA analysis was performed using a two-sided WMW test, using Benjamini Hochberg 

(BH) p-value correction.

Variance stabilizing transformation (VST) and DESeq2 analyses

Since the DESeq2 approach does not account for zero-inflated data, the correction factors 

were calculated using the GMPR method that is based on geometric means of pairwise ratios82. 

Euclidean, BC, and JSD distances were used as beta-diversity estimators after normalizing the data 

via VST. Statistical differences between control and PD groups were tested using the adonis2 

function as specified above. DAs were calculated using default DESeq2 parameters that include a 

negative binomial GLM fitting and a Wald test79. Multiple testings were accounted for using BH p–

value correction. 

Compositional analysis: Centered log-ratios (CLR) and ANCOM

Data were transformed using CLR, after imputing zeros through Bayesian-multiplicative 

replacements via the count zero multiplicative approach (“CZM”) in the cmultRepl function of the 

zCompostions R package83. Euclidean distances, that for such data correspond to Aitchison 

distances, were then calculated80. Statistical differences between control and PD groups were tested 

using the adonis2 function as specified above. DA analysis was performed via the ANCOM 

approach as implemented in the R script ancom_v2.084  using a 0.95 zero-cutoff  and significance at 

the 0.6 percentile.
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Statistical analyses of the combined studies.

Analysis of alpha-diversity

The Agresti’s generalized odd ratios estimated for each alpha-diversity index and each 

individual study were pooled using a random effect meta-analysis using the function metagen in the

R package meta85. 

Analysis of beta-diversity

Count tables obtained for each dataset were pooled and beta-diversity analyses were 

performed using the three approaches described above (TSS-, VST-, CLR-based analysis). For each 

normalization approach, statistical differences between control and PD groups and the marginal 

effects of study and disease status were tested using the adonis2 function. We then used the distance

measure that captured a highest fraction of the variability in the pooled dataset to compute distance-

based Redundancy Analyses (dbRDA). dbRDAs were performed using the “CAP” option in 

phyloseq, which calls the capscale function in the vegan package. Data were clustered without 

conditioning (blocking) for studies and without constraining, by conditioning for study, and by 

conditioning for study and constraining for disease status (PD vs Control):

distance ~ 1 

distance ~ 1 + Condition(study)

distance ~ status + Condition(study)

The significance of the constrain was tested using an ANOVA-like permutation test (anova.cca 

function in the vegan R package). For each normalization method, we investigated the effect of 

study-dependent confounding factors such as country, sequencing platform (e.g. MiSeq vs 

IonTorrent), sequencing approach (single-end vs paired-end), amplified region (e.g. V4 vs V1-V2), 

and extraction method and type by creating additional dbRDAs and constraining the data for each 

individual factors. The effect of each constraining variable was tested using an ANOVA-like 

permutation test. We then verified whether accounting for the variability introduced by the study 

alone will allow us to simultaneously account for the variation derived by the other technical 

confounding factors. We compared the adjusted R2 (R2
adj) of a dbRDA obtained using the full model

distance ~ country + 16Sregion + ends + seq + extraction + extraction type + status with the one 
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of a reduced model including only disease status and study (distance ~ study + status). Similar R2
adj,

differences ≤ 0.1%, indicates that the two models are equivalent. The influence of confounding 

factors on microbial community structure was assessed at the Species, Genus, and Family level.  

Finally, we used the TSS normalized data to correlate the relative abundance of the taxa to the 

constrained and conditioned dbRDA via the envfit function in the vegan package. We selected only 

taxa significantly correlated with the clustering (p-value < 0.01), and showing the highest degree of 

variation (> |0.1| for genus and species, and > |0.075| for family) along the constrained axis (CAP1).

Similarity amongst studies

We used the unconstrained and unconditioned dbRDA performed on the TSS normalized species 

data to estimate dissimilarity amongst studies. We selected the coordinates of each sample across all

axis that explained 90% of the data variance. These scores were then used to calculated Euclidean 

distances amongst samples. We then calculated distances between study centroids using the R 

package usedist86. Similarity among studies was then visualized using non-metric multidimensional 

scaling (NMDS) via the metaMDS function the in the vegan R package.

Differential abundance analysis

We combined two independent approaches to gather a consensus view on the taxa differentially 

abundant between PD patients and controls. We refer to these two approaches as Pooled data and 

Pooled results. In the Pooled data approach, the count tables obtained for each dataset were pooled 

and processed with the same methods used for the single datasets: i) TSS normalization on rarefied 

data and independence_test in the coin R package87 blocking data for the study; ii) DESeq2 

approach adding the “study” variable as a covariate in the model; iii) ANCOM performed using a 

mixed-effect model with the effect of PD allowed to vary with study (via the formula 

“random.formula = "~1+ status|study"), using a zero-cutoff 0.975 and significance at the 0.6 

percentile. For all three methods BH p-value correction was used and the threshold for significance 

was set at ≤ 0.05. If a taxon or pathway had a significant difference in abundance in 2 out of three 

approaches, it was then retained (Consensus). 

To this first list of differentially abundant taxa/pathways we added the data obtained from 

the Pooled results approach. In this approach, we normalized the count table of each individual 

dataset using CLR after adding a pseudo-count of 1 to 0 values. We then selected all taxa  and 
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pathways detected in at least 3 studies and estimated their shift in abundance between PD and 

controls using linear models for family, genera, and 16S-based predicted functionalities and Agresti’

generalized odd ratios for species. We then pooled these results using a random-effect meta-analysis

via the metagen R function. The resulting p-values were corrected using BH. All taxa/pathways 

showing an adjusted p-value ≤ 0.05 and a 95% confidence interval (CI) not crossing 0 were 

retained. 

Taxa and pathways showing significant differences in abundance between PD and controls 

in the Pooled data (2 out of 3 methods referred to as Consensus) or Pooled results approach were 

further considered. All taxa having abundances potentially influenced by age and/or gender were 

then removed (see below). For each taxa/pathway the effect size and the respective 95% CI were 

estimated using the Pooled results approach. Finally, correlation between the genera 

Christensenellaceae R-7 group and Methanobrevibacter was calculated on the relative abundances 

of non-rarefied data using a Spearman correlation test by blocking the data by study (spearman_test

in the coin R package).

Influence of confounding factors on differential abundances

Of the ten studies we used only five had metadata available, and among the latter, only age 

and gender were always reported. We assessed the influence of age and gender on the abundance of 

the taxa we previously identified as significantly enriched or depleted in PD using generalized 

linear mixed models (GLMMs) controlling for zero-inflation as implemented in the R package 

glmmTMB88:

Taxon ~ status * gender + status * age + (1 + status | study) 

We created random slope and random intercept GLMMs for all taxonomic ranks we analyzed 

(species, genus, family). Models were fitted using either a negative binomial or a generalized 

Poisson distribution. First, we constructed zero-inflated and non zero-inflated models, and choose 

the best model using the Akaike information criterion (AIC; ∆AIC ≥ 2). We then created reduced 

models omitting each of the predictors (status, age, gender), their interactions (status:gender, 

status:age), and considering a constant effect of the disease status across studies (i.e. random effect 

= (1 | study)). We then compared all models using the model.sel function and the AIC in the R 

package MuMIn89. If one of the best models (within a ∆AIC of 2) did not contain the variable 
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disease status we concluded that the disease status might be not an essential factor needed to explain

the taxon abundance. Hence, we removed these taxa from further analyses. If all best models 

contained the variable disease status, we consider PD as an essential factor shaping taxa 

abundances, thus we retained the taxa. For building the GLMMs, raw counts were used and data 

were rarefied to a fixed depth of 10,000 to avoid overparameterization. 

Code availability

The R code used in this study will be made publicly available on GitHub after the peer-review 

process is completed. 
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