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Meta-analysis of the impacts of global change
factors on soil microbial diversity and functionality
Zhenghu Zhou 1,2, Chuankuan Wang 1,2✉ & Yiqi Luo3

Biodiversity on the Earth is changing at an unprecedented rate due to a variety of global

change factors (GCFs). However, the effects of GCFs on microbial diversity is unclear despite

that soil microorganisms play a critical role in biogeochemical cycling. Here, we synthesize

1235 GCF observations worldwide and show that microbial rare species are more sensitive to

GCFs than common species, while GCFs do not always lead to a reduction in microbial

diversity. GCFs-induced shifts in microbial alpha diversity can be predominately explained by

the changed soil pH. In addition, GCF impacts on soil functionality are explained by microbial

community structure and biomass rather than the alpha diversity. Altogether, our findings of

GCF impacts on microbial diversity are fundamentally different from previous knowledge for

well-studied plant and animal communities, and are crucial to policy-making for the con-

servation of microbial diversity hotspots under global changes.
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Human-induced global change factors (GCFs), such as
climate warming (W), carbon-dioxide enrichment
(eCO2), altered precipitation, atmospheric nitrogen (N)

deposition, nutrient fertilization, land-use change (LUC), and
their combinations, seriously threaten the biodiversity in our
planet1,2. LUC is the dominant driver of biodiversity decline in
terrestrial ecosystems mainly through loss, degradation, and
fragmentation of the habitats1,3. Projected climate changes cause
species extinction once the species falls outside its climatic niche4;
and 15–37% of species are expected to go extinct under the mid-
range scenarios of temperature and CO2 rises5. Enhanced atmo-
spheric N deposition leads to changes in plant species interaction
and community composition, results in soil acidification and ion
toxicity, decreases the resistance of plants to pathogens and insect
pests, and consequently is recognized as the third greatest driver
(after LUC and climate changes) of biodiversity loss in the
century1,6. Soil microbial communities play a critical role in
almost all of the biogeochemical cycling processes in terrestrial
ecosystems, such as organic matter decomposition, nutrient
cycling, plant diversity, and productivity7–9. However, our
understanding of how GCFs affect the biodiversity and its rela-
tions to the functionality for microorganism lags substantially
behind that for macroorganisms (plants and animals)1–6. These
knowledge gaps swamp our predictions of GCFs impacts on
microbial diversity and thus constrain the establishment of
effective policies to preserve microbial diversity hotspots.

Soil microbial communities are surprisingly diverse and
abundant10. It has been estimated that 1 trillion (1012) microbial
species harbor on the Earth10, and 1 g soil contains up to 1 billion
(109) bacterial cells consisting of tens of thousands of taxa, which
raise great challenges to investigate microbial diversity8. Scientists
have attempted to examine whether microbial diversity displays
an environmental gradient like plant diversity, and whether
microbial community assembly follows the macroecological the-
ories10–16, such as the metabolic theory, the species energy theory,

the stoichiometry theory, and plant–soil interaction (Supple-
mentary Table 1). Yet, such attempts often fail for soil micro-
organisms13–15. For example, a recent global meta-analysis of
325 soil communities showed that the driver of microbial diver-
sity was often inconsistent among different studies15. Despite
recent individual experiments have examined the responses of
microbial diversity to GCFs, the effect of GCFs on microbial
diversity remains highly elusive and inconclusive.

Current evidence of plant community studies supports a
positive but saturating relationship between plant biodiversity
and ecosystem functioning17,18, which can result from niche
complementarity, positive interactions, greater use of limiting
resources, decreased herbivory and pathogens, the presence of
certain influential species, etc17,18. Consequently, an enormous
amount of research claims that ecosystem functioning is threa-
tened by an ongoing loss of species due to GCFs1–3,19. A common
notion seems to be developed, largely inspired by the studies on
aboveground communities, that microbial diversity drives
microbial functionality in terrestrial ecosystems7,8,20,21. However,
soil microorganisms are suggested to be too diverse and abundant
to assume that the biogeochemical cycling is limited by the
microbial diversity22–24. It is still unclear whether the biodiversity
loss of microbial communities reduces microbial functionality in
the ecosystems under GCFs.

Here, we conducted a global synthesis of 1235 GCF experi-
mental observations that measured microbial alpha diversity
(number of species coexisting within a local site), beta diversity
(the magnitude of similarity in species composition among dif-
ferent sites), and community structure with high-throughput
sequencing techniques, and corresponding biomass and ecosys-
tem functionalities from eight types of biomes (agriculture, tun-
dra, temperate/boreal forest, tropical/subtropical forest,
Mediterranean vegetation, grassland, desert, and wetland; Sup-
plementary References, Fig. 1, and Datasets 1–3). The microbial
groups include bacteria, fungi, and six specialized microbes (i.e.,
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Fig. 1 Responses of microbial diversity and community structure. a Response ratio (natural logarithm-transformed ratio of treatment to control, RR) of
microbial alpha diversity (richness and Shannon index). b RR of microbial beta diversity. c RR of microbial community structure. Weighted means and their
95% confidence intervals of RRs are given. The numbers at the right side of the confidence intervals represent the sample sizes. W warming, eCO2 carbon-
dioxide enrichment, PPT− decreased precipitation, PPT+ increased precipitation, P phosphorous addition, N nitrogen addition, LUC land-use change, W ×
eCO2 warming plus carbon-dioxide enrichment, N × PPT+ nitrogen addition plus increased precipitation, N × P nitrogen plus phosphorous addition, N × P ×
K nitrogen plus phosphorous plus potassium addition. Source data are provided as a Source Data file.
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denitrifier, nitrifier, diazotroph, phosphorous (P) mineralizer,
methanotroph, and methanogen). The GCFs include seven single-
factor experiments (W, eCO2, precipitation addition (PPT+),
precipitation reduction (PPT−), N deposition, P addition, and
LUC) and four combined-factor experiments (W × eCO2, N ×
PPT+, N × P addition, and N × P × potassium (N × P × K) addi-
tion). The questions we address include: first, what are the effects
of GCFs on microbial diversity and community structure
worldwide? Are the effects similar to those reported for plants
and animals? Second, what are the potential drivers of these
responses? As potential drivers of microbial responses to GCFs,
climate, biome type, microbial group, soil resources, soil pH, and
experimental forcing factors were evaluated by the model selec-
tion analysis based on the corrected Akaike information criterion
(AIC). Finally, how do GCFs-induced changes in microbial alpha
diversity affect the microbial functionality in the ecosystems?

Our results show that microbial community structure is sensitive
to GCFs, while GCFs affect microbial diversity inconsistently and do
not always lead to the loss of microbial diversity. Conversion from
highly diverse natural ecosystems to homogeneous agricultural
monocultures has a positive effect on microbial alpha diversity. Soil
pH is the most important factor to predict the GCFs effects on
microbial alpha diversity. Generally, if a GCF increases the soil pH,
the alpha diversity would increase; if it decreases the soil pH, the
alpha diversity would reduce; if it has no effect on soil pH, it would
not change the alpha diversity. The response of soil functionality to
GCFs can be explained by the responses of microbial community
structure and biomass rather than the response of microbial alpha
diversity. In summary, our findings of GCFs impacts on micro-
organisms are fundamentally different from previous knowledge for
the well-studied plant and animal communities.

Results and discussion
GCFs have little negative effect on microbial biodiversity.
Pooling all the data across microbial groups and biomes, we
found that GCFs do not always cause microbial diversity loss
(Fig. 1a, b) like that for aboveground communities1–6. The areas
of croplands, pastures, and plantations have been expanded
globally in recent decades, accompanied by large losses of the
alpha diversity of plants and animals1,3 and biotic homogeniza-
tion (beta diversity loss) as well25. Surprisingly, LUC has a
positive effect on microbial diversity, i.e., a significant increase of
alpha diversity and an insignificant positive effect on beta
diversity (Fig. 1a, b and Supplementary Fig. 2); such a positive
effect still exists when the paired alpha diversity and beta diversity
from the same case studies are compared (Supplementary Fig. 3).
In addition, a significant increase in alpha diversity during the
conversions from highly diverse natural ecosystems to homo-
geneous agricultural monocultures (Supplementary Fig. 2) implies
that changes in microbial alpha diversity are also uncoupled with the
shifts in plant alpha diversity. W, eCO2, altered precipitation, and P
addition do not result in loss of microbial alpha diversity either,
while W and P addition even improve the beta diversity (Fig. 1a, b).
N and N× P ×K additions significantly decrease the richness and
Shannon index but increase the beta diversity (Fig. 1a, b), indicating
that their effect on microbial diversity is uncertain. In addition, we
found that the absolute values of the response ratios (RRs, natural
logarithm-transformed ratio of treatment to control) of richness are
consistently greater than those of Shannon index (Fig. 1a), sug-
gesting that microbial rare species are more sensitive to GCFs than
common species, in agreement with a previous study26. We also
found that GCFs greatly change microbial community structure
regardless of the effects of GCFs on microbial diversity mentioned
above. The RRs of the community structure to all the GCFs (except
for eCO2) are significantly greater than zero especially for the

combined factors (Fig. 1c). This suggests that the response of
microbial community structure to GCFs is more sensitive than that
of microbial diversity, perhaps because of their different drivers
(Supplementary Figs. 4–6), consistent with previous works27.

We further split the data by microbial groups or biome types
and aforementioned patterns of GCFs effects on microbial alpha
diversity are largely maintained (Fig. 2). The macroecology theory
on ecosystem succession and disturbance have been applied in
microbial ecology field28, and LUC decreases the ratio of K-
strategical fungi to r-strategical bacteria and this ratio also has a
rising trend during secondary succession29,30. Fungi and bacteria
can be also differentiated into oligotrophic and copiotrophic
categories, and the former have higher biomass C to nutrients
ratios and need less nutrients12,31. LUC-induced shifts in
community structure from fungi dominated to bacteria domi-
nated29 and decreases in soil C:N (Supplementary Fig. 7) may
together explain the greater positive response of the alpha
diversity of bacteria to LUC than that of fungi (Fig. 2a, b). A
previous study had found that N addition increases bacterial
growth but inhibits fungal biomass32. Nevertheless, fungi and
bacteria have comparable negative RRs of richness and Shannon
index to N, N × P, and N × P × K additions (Fig. 2a, b). The RR of
Shannon index to W is affected by microbial groups (Fig. 2b), but
the underlying mechanism is unknown given that W does not
change the fungi to bacteria ratio and which microbial group
would dominate in the warmed plots is unclear33,34. PPT−
increases the fungal richness but does not change the bacterial
richness, while PPT+ increases the bacterial alpha diversity but
does not change the fungal alpha diversity. This phenomenon
partly coincides with our expectation because fungi are thought to
have a greater capability to tolerate water stress than bacteria due
to their ability to accumulate osmoregulatory solutes to protect
their metabolism and filamentous structure35–37. Specialized
microbes show some different responses to GCFs compared with
fungi and bacteria, but these differences are inconsistent between
richness and Shannon index (Fig. 2a, b).

A positive effect of W on microbial diversity in cold region is
anticipated because W has stronger positive effects on microbial
growth in cold than warmer regions34. However, tundra and
temperate/boreal forests have similar RRs of richness and
Shannon index to W compared with tropical/subtropical forests
(Fig. 2c, d), and RR of microbial alpha diversity to W is also
decoupled with mean annual temperature (MAT) (Supplemen-
tary Table 2). Microbial biomass is more sensitive (positive
response) to PPT+ at xeric than mesic sites, and it is more
responsive (negative response) to PPT− in humid than dry
sites38. Such patterns, however, do not exist for the RR of
microbial alpha diversity (Fig. 2c, d), i.e., this RR is comparable
between humid and dry biomes (Fig. 2c, d) and no significant
correlation between RR of microbial alpha diversity to altered
precipitation and mean annual precipitation (MAP) is found
(Supplementary Table 2). We also expect a positive effect of P
addition on microbial diversity in low latitudes with high MAT
and MAP because of the increasing P limitation from geologically
young tundra and boreal ecosystems toward tropical forest39–41,
while no significant correlation between RR of microbial alpha
diversity and MAT/MAP is found (Supplementary Table 2).
Some significant negative relationships exist for GCFs associated
with N inputs (N, N × P, and N × P × K additions, and N × PPT+;
Supplementary Table 2), which partly due to the high N
availability in the tropical regions39,40, external N input may
have stronger negative effects in low latitudes than high latitudes.
Similarly, although there are some differences in the RRs of beta
diversity and community structure to GCFs among microbial
groups and biomes, the potential mechanisms are missing partly
due to the limited sample size (Supplementary Fig. 8).
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Overall, these findings demonstrate that GCFs have little
negative effect on microbial biodiversity unlike for aboveground
communities1–6,25, suggesting that the responses of biodiversity
to GCFs may be decoupling between above- and below-ground
compartments in terrestrial ecosystems.

Soil pH dominantly controls the alpha diversity responses. RRs
of microbial richness (R2= 0.83, P < 0.001) and Shannon index
(R2= 0.81, P < 0.001) significantly increase as the changes in soil

pH increase (Fig. 3b). These correlations between changes in soil
pH and RR of microbial alpha diversity maintain across different
microbial groups and biome types (Fig. 4). The model selection
analysis further indicated that the changed soil pH by GCFs is the
most important predictor for the RRs of richness and Shannon
index among the potential factors examined, such as soil resource
contents and stoichiometry, microbial groups, biomes, climates,
and experimental forcing factors (Fig. 3a and Supplementary
Figs. 4, 5). As previous findings11,12, we did observe some positive
effects of soil C and N contents and negative effect of soil C:N
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stoichiometry on microbial alpha diversity (see the weighted
averages of model coefficients in Supplementary Fig. 5). Although
some correlations exist between changes in soil pH and the RRs of
soil resource contents and stoichiometric ratio (Supplementary
Fig. 7), the variability in the RR of alpha diversity to GCFs is
dominantly explained by the changed soil pH. Specifically,
atmospheric N deposition, N × P, and N × P × K additions
increase the soil C and nutrient contents and decrease soil C to
nutrient ratio (Supplementary Fig. 7), but they have negative
effects on microbial richness and Shannon index (Fig. 1a).
Conversely, LUC reduces soil C and nutrient contents

(Supplementary Fig. 7), but significantly stimulates microbial
alpha diversity (Fig. 1a). In addition, the model-averaged
importance for the RRs of soil C, N, and C:N is consistently
lower than 0.8 (the cutoff between important and nonessential
predictors; Supplementary Fig. 4).

Soil pH is an important predictor for microbial alpha diversity
in response to GCFs observed in this synthesis, which is consistent
with other studies at local sites42 and large spatial scales13,14. The
interpretation is that soil pH plays an important role in
membrane-bound proton pumps and protein stability43, and thus
directly imposes a physiological constraint on microorganisms,
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which reduces the net growth of individual taxa unable to survive
when the soil pH falls outside a certain range (niche) and may
alter the competitive outcomes. Consequently, extreme pH exerts
a significant stress to some taxa that may be less tolerant than
others (i.e., alkaliphiles or acidophiles)13,14,42,43.

Microbial diversity-structure-biomass-function responses. LUC
reduces both microbial biomass and functionality (including 16
microbial functions related to soil biogeochemical cycling; see
“Methods”), while W, PPT+, N × PPT+, and nutrients inputs
significantly increase the microbial function, which are different
with the response of microbial alpha diversity (Figs. 1a and 5a,
b). Consequently, GCFs-induced changes in microbial alpha
diversity do not mirror their functionality. Instead, significant
and negative relationships are found between RR of microbial
functionality and RR of microbial richness (R2= 0.78, P < 0.001)
and RR of Shannon index (R2= 0.73, P < 0.001) (Fig. 5c), and
the negative or decoupled relationships exist within different

microbial functions associated with decomposition (microbial
respiration), net N mineralization rate, oxidative C-cycling
enzymes, hydrolytic C-cycling enzymes, N-cycling enzymes,
and P-cycling enzymes (Supplementary Fig. 9). In addition,
microbial alpha diversity does not mirror microbial biomass
production (Fig. 5d). These findings are distinctive from the
positive but decelerating richness–functionality relationship in
macroecology17,18. One potential explanation is that a con-
sortium of microorganisms that carries out soil biogeochemical
processes is characterized by a redundancy of functions24;
and loss of some groups of the species may have little or no
effect on overall functionality because other groups can take
their place22–24. Microbial community structure is sensitive to
GCFs (Fig. 1c), and a positive relationship between RR of
community structure and functionality is observed (R2= 0.53,
P= 0.011; Fig. 5e), implying that variations in microbial com-
munity structure might play an important role in the func-
tionality changes despite that it is difficult to tell which
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microbial species shifts determining the changes in the config-
uration of samples on the ordination plots.

It is important to note that active alpha diversity rather than
total alpha diversity may be positively correlated with the
ecosystem functionality21, and active microorganisms compose
only about 0.1–2% of the total microbial biomass44. However,
cautions should be taken when interpreting this notion. On the
one hand, the microbial transition from potentially dormant to
active state can occur quickly (in minutes to hours)44. The total
biomass of microbial community is positively correlated with the
microbial functions (R2= 0.53, P= 0.011; Fig. 5f), which suggests
that the whole microbial community is important for the
functions22. On the other hand, positive relationships between
active microbial alpha diversity and functions may not be
universal27 because there is similar alpha diversity between total
and active microbial communities45. In addition, concerns have
been raised that not all functions are carried out by the whole
microbial community; instead, some key soil functions may be
carried out by specialized microbes (like ammonia oxidizer,
diazotrophic, methanotrophic, phosphorus mineralizer, etc.),
which may be vulnerable to diversity loss partly due to their
lower richness46,47. Although few studies have evaluated GCFs
impacts on both specialized microbial diversities and the
functions synchronously in our dataset (Supplementary Data-
set 1), the limited data reveal significant negative relationships
between RR of alpha diversity and RR of functionality for
denitrifier and nitrifier, and decoupled correlations for diazo-
trophic and P mineralizer communities (Supplementary Fig. 10).
A recent study also found that soil N transformation rates are
regulated by the biomass of ammonifiers and nitrifiers but not the
alpha diversity48. Collectively, the aforementioned results suggest
that GCFs-induced changes in soil microbial alpha diversity have
no significant effect on the shifts of microbial functionality in the
ecosystems.

In summary, our global synthesis verifies that microbial rare
species are more sensitive to GCFs than common species and
microbial diversity is not always threatened by GCFs. Increase in
microbial alpha diversity during LUC implies the decoupling of
plant and microbial alpha diversity. Microbial groups, biomes,
climates, experimental forcing factors, resource contents, and
stoichiometric ratios contribute to the variabilities in RRs of
richness and Shannon index, while GCFs shape microbial alpha
diversity predominately by changing the soil pH. Microbial alpha
diversity is not necessary to mirror microbial biomass production
and functionality in the ecosystems, while GCFs-induced shifts in
soil functionality are well explained by the changes in microbial
community structure and biomass. Overall, our findings indicate
that the responses of microbial communities to global changes are
fundamentally different from those of macro-communities, which
are crucial to the policy-making to preserve microbial diversity
hotspots under global environmental changes.

Methods
Data collection. An extensive literature survey was conducted through the Google
Scholar databases until February 2020 with no restriction on publication year. The
keywords were “soil” and “OTU” and “W or elevated carbon-dioxide or elevated
CO2 or CO2 enrichment or drought or decreased precipitation or altered pre-
cipitation or increased precipitation or water addition or phosphorus addition or N
addition or N deposition or fertilization or land use or forest conversion”. A total of
1235 observations of GCF experiments were included in the present study from 341
publications (Supplementary References), which quantified the microbial diversity
and community structure by high-throughput sequencing techniques, including
the data from Illumina, 454, and ABI platform (Supplementary Fig. 1 and Data-
sets 1–3). The following criteria were used to select appropriate studies: (1) only
field studies of GCFs are selected, and laboratory incubation studies are not
included; (2) at least one microbial community metric, including alpha diversity
(OTU, Chao, ACE, or Shannon index), beta diversity, and community structure is

reported; (3) the study duration of the experiment is longer than 1 year/growing
season.

Besides the microbial community metrics, the dataset also included soil pH, soil
organic C, soil total N, location (i.e., latitude and longitude), MAT, MAP, and
experimental forcing factors (i.e., magnitude of W, CO2 concentration elevation,
percentage changes in precipitation, addition rate of N or P or K, LUC types
(conversion of native ecosystem to secondary ecosystem, plantation, pasture, or
agricultural land; secondary ecosystem differs from plantation and pasture mainly
in terms of human activity involved in the stand establishment and
development29,49), and length of the manipulation experiment). Overall, the
dataset covered broad variations in ecosystem types, climates, magnitude of GCFs,
and experimental duration; and it contained seven single-factor GCFs experiments
(i.e., W, eCO2, PPT+ , PPT-, N deposition, P addition, and LUC), and only four
combined-factors (i.e., W × eCO2, N × PPT+, N × P and N × P × K additions)
because of the limited number of multifactor studies (Supplementary Dataset 3).
To explore the GCFs-induced effects specific for microbial groups and biomes
based on the data availability, we binned the dataset by such microbial groups as
fungi, bacteria, and the specialized microbes (denitrifier, 46 observations; nitrifier,
50 observations; diazotroph, 42 observations; P mineralizer, 17 observations;
methanotroph, 21 observations; and methanogen, 2 observations), and by such
biome types as agriculture, tundra, temperate/boreal forest, tropical/subtropical
forest, Mediterranean vegetation, grassland, desert, and wetland.

Calculation of the individual RRs. The effect of GCFs on individual variable was
estimated for each case study and calculated as the natural logarithm-transformed
(ln) RR

RR ¼ ln
Xt

Xc

� �
¼ ln Xt

� �� ln Xc

� �
; ð1Þ

where Xt and Xc are the means of the concerned variable in the treatment and
control, respectively. However, the GCFs effect on soil pH was represented as
change in soil pH, i.e., pH difference between treatment and control according to a
previous meta-analysis50. Its variances (ν) were calculated as:

v ¼ S2t
ntXt

2 þ
S2c

ntXc
2 ð2Þ

where nt and nc are the sample sizes of the variable in the treatment and control,
respectively; st and sc are the standard deviations of the variable in the treatment
and control, respectively.

Microbial alpha diversity. Richness and Shannon index are highly recommended
when analyzing microbial alpha diversity11–14,20,26. Microbial richness metric is
frequently reported by OTU, Chao, and ACE in the literature, while different
studies use different metrics (Supplementary Dataset 1). The difference in RRs
among OUT, Chao, and ACE within each case study was tested by a fixed-effect
model with the moderator of metric of richness using the R package of metafor51.
We chose the fixed-effect model because of the technical problems to conduct a
random-effect model by few data points51. A total of 434 case studies reported at
least two types of alpha diversity metrics, of which only 20 (<5%) showed sig-
nificant differences (Supplementary Fig. 11) and different metrics had very little
effect on the RR of microbial richness to GCFs (Supplementary Fig. 12a), indicating
that using different metrics would not introduce much bias in richness analysis.
Therefore, we chose a random-effect model to calculate the overall RR of richness
for each case study.

Beta diversity and community structure. The ordination analysis is a key method
for analyzing community of ecological data, e.g., principal component analysis,
redundancy analysis, correspondence analysis, principal coordinate analysis, and
nonmetric multidimensional scaling, and so on52. These techniques identify the
similarity between species or samples generally by projecting them onto two
dimensions in such a way that similar species or samples are clustering, while
dissimilar ones fall apart52. In other words, these ordination plots display beta
diversities within each treatment and the community structure differences among
treatments52,53. However, as the meta-analysis is based on one-dimensional data,
we used the following method to conduct the meta-analysis using the community
data from the ordination plots with two dimensions. In specific, the effect of global
change on community structure is considered if the distance between control and
treatment is significantly greater than the distance within group, i.e., the positions
of samples for control and treatment are not overlapped. The effect of global
change on beta diversity is considered if the distance within treatment is sig-
nificantly different from that within control (Supplementary Fig. 13).

Therefore, we firstly extracted the positions of samples on first two ordination
axes (Supplementary Dataset 2). Second, Euclidean distances among different
samples were calculated with the R packages of vegan54, including the distance
within control (Dc), that within treatment (Dt), and that between control and
treatment (Db). Third, we calculated the means, standard deviations, and sample
sizes of Dc, Dt, Db, and overall Dc and Dc (Dc+Dc), respectively. Finally, the RR of
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microbial community structure (RRStructure) and RR of beta diversity (RRBeta) were
calculated as:

RRStructure ¼ ln
Db

Dc þ Dt

� �
; ð3Þ

RRBeta ¼ ln
Dt

Dc

� �
; ð4Þ

where Dc , Dt , Db and Dc þ Dt are the means of the Dc, Dt, Db and Dc+Dc,
respectively (Supplementary Fig. 13). Their corresponding variances were
calculated as Eq. (2).

RRStructure < 0 indicates that the GCF has no effect on microbial community
structure; and a greater positive value of RRStructure indicates a greater magnitude of
change in the community structure. If RRBeta < 0, beta diversity was considered to
be decreased by GCF, otherwise to be increased by GCF (Supplementary Fig. 13).
Ordination methods inconsistently influence the responses of microbial beta
diversity and community structure to GCFs, and most of the GCFs effects were
not significant based on the omnibus test (Supplementary Fig. 12b, c). These
results suggest that the current calculation makes it possible to compare the
responses of microbial beta diversity and community structure to GCFs from
different studies.

Microbial ecosystem functionality. We recoded 16 microbial functions related to
soil biogeochemical cycling from the papers or their cited papers or the papers
from the same experiment, including (1) microbial respiration, (2) net N miner-
alization rate, (3) nitrification activity, (4) denitrification activity, (5) biological N2

fixation; and 11 types of enzymes related to soil C, N, and P cycling. They included
oxidative C-cycling enzymes: (6) phenol oxidase (oxidize phenols using oxygen)
and (7) peroxidase (oxidize aromatic and aliphatic hydrocarbons using peroxide);
hydrolytic C-cycling enzymes: (8) α-1,4-glucosidase (starch degradation), (9) β-1,4-
glucosidase (hydrolyze glucose from cellobiose and cellulose oligomers), (10) cel-
lobiohydrolase (cellulose degradation), (11) β-1,4-xylosidase (hydrolyze xylose
from hemicellulose and extracellular polysaccharides), and (12) invertase (hydro-
lysis of sucrose to glucose and fructose); N-cycling enzymes: (13) N-acetyl-β-
glucosaminidase (chitin and peptidoglycan degradation), (14) L-leucine amino-
peptidase (hydrolyses leucine and other hydrophobic amino acids from the N
terminus of polypeptides), and (15) urease (catalyzes the hydrolysis of urea into
ammonia and carbon dioxide); and P-cycling enzymes: (16) phosphatase (miner-
alize organic P into phosphate)55–57. Therefore, these indices are good proxies of
processes driving soil biogeochemical cycling, and are frequently used to estimate
the ecosystem multifunctionality of microbial communities20,58. The random-effect
model was used to calculate RRs of oxidative C-cycling enzymes, hydrolytic C-
cycling enzymes, N-cycling enzymes, and overall microbial ecosystem functions (all
of the 16 functions) for each observation. We also analyzed the relationships
between RR of alpha diversity and RR of functionality for specialized microbes
except for methanogenic and methanotrophic communities because the limited
data of functions (2 points for methane emission rate and 3 points for methane
oxidation rate, respectively; Supplementary Dataset 1).

Calculation of the overall RR. The mixed-effect model was used to calculate the
overall RR and corresponding 95% confidence intervals of target variables to dif-
ferent GCFs with a moderator of GCF types. It was also used to compare the RRs of
target variables to each GCF among different microbial groups and biome types by
the omnibus test (QM). The groups with small sample size (<5) were removed in
these analyses. If the 95% confidence intervals for one RR overlapped with zero,
then it was considered as an insignificant response to GCF.

Model selection. Model selection was based on AIC corrected (AIC corrected for
small samples). The relative importance value for a particular predictor was equal
to the sum of the Akaike weights (probability that a model is the most plausible
model) for the models in which the predictor appears. Hence, a predictor that is
included in models with large Akaike weights will receive a high importance value.
These values can be regarded as the overall support for each variable across all
models. A cutoff of 0.8 is set to differentiate between important and nonessential
predictors. For this purpose, we used the R packages of gmulti59.

Six types of candidate predictors were considered in the model selection
analysis, that are, (1) climate factors, including MAT and MAP; (2) GCFs regimes,
including GCF types, magnitude of W, percentage changes in precipitation, LUC
types, N addition rate, P addition rate, K addition rate, and study duration; (3)
changes in soil resources conditions, including the RRs of soil C, N, and C:N; (4)
changes in soil pH; (5) microbial groups; and (6) biome types. For microbial
community structure, the absolute values of RRs of soil C, N, C:N, and pH change
were used in the model selection analysis because it is meaningless to consider
community structure increasing or decreasing, we consequently hypothesis that
greater absolute change in soil C, N, C:N, and pH would result in greater change in
community structure (see the calculation of community structure). We did not

conduct this analysis for eCO2 and W × eCO2 due to the limited sample sizes
(Supplementary Dataset 1 and 3).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study are available in
Supplementary Dataset 1 and 2. Source data are provided with this paper.

Code availability
The authors declare that the R (R-3.6.2) codes used to generate the results and figures
reported in this study are available in Supplementary Software 1.

Received: 18 December 2019; Accepted: 29 May 2020;

References
1. Sala O. E. et al. Global biodiversity scenarios for the year 2100. Science 287,

1770–1774 (2000).
2. Hooper D. U. et al. A global synthesis reveals biodiversity loss as a major

driver of ecosystem change. Nature 486, 105–108 (2012).
3. Foley J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).
4. Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts

of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
5. Thomas C. D. et al. Extinction risk from climate change. Nature 427, 145–148

(2004).
6. Bobbink R. et al. Global assessment of nitrogen deposition effects on terrestrial

plant diversity: a synthesis. Ecol. Appl. 20, 30–59 (2010).
7. Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and

ecosystem functioning. Nature 515, 505–511 (2014).
8. Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil

biodiversity and soil community composition determine ecosystem
multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).

9. Schimel, J. Microbial ecology: linking omics to biogeochemistry. Nat.
Microbiol. 1, 15028 (2016).

10. Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial diversity.
Proc. Natl Acad. Sci. USA 113, 5970–5975 (2016).

11. Delgado-Baquerizo, M. et al. Carbon content and climate variability drive
global soil bacterial diversity patterns. Ecol. Monogr. 86, 373–390 (2016).

12. Delgado-Baquerizo, M. et al. It is elemental: soil nutrient stoichiometry drives
bacterial diversity. Environ. Microbiol. 19, 1176–1188 (2017).

13. Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial
communities. Proc. Natl. Acad. Sci. USA 103, 626–631 (2006).

14. Fierer, N. et al. Microbes do not follow the elevational diversity patterns of
plants and animals. Ecology 92, 797–804 (2011).

15. Hendershot, J. N., Read, Q. D., Henning, J. A., Sanders, N. J. & Classen, A. T.
Consistently inconsistent drivers of patterns of microbial diversity and
abundance at macroecological scales. Ecology 98, 1757–1763 (2017).

16. Zhou J. Z. et al. Temperature mediates continental-scale diversity of microbes
in forest soils. Nat. Commun. 7, 12083 (2016).

17. Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature
448, 188–190 (2007).

18. Gamfeldt, L. & Roger, F. Revisiting the biodiversity–ecosystem
multifunctionality relationship. Nat. Ecol. Evol. 1, 0168 (2017).

19. Cardinale B. J. et al. Biodiversity loss and its impact on humanity. Nature 486,
59–67 (2012).

20. Delgado-Baquerizo M. et al. Microbial diversity drives multifunctionality in
terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).

21. Bastida F. et al. The active microbial diversity drives ecosystem
multifunctionality and is physiologically related to carbon availability in
Mediterranean semi-arid soils. Mol. Ecol. 25, 4660–4673 (2016).

22. Nannipieri P. et al. Microbial diversity and soil functions. Eur. J. Soil Sci. 54,
655–670 (2003).

23. Wertz S. et al. Decline of soil microbial diversity does not influence the
resistance and resilience of key soil microbial functional groups following a
model disturbance. Environ. Microbiol. 9, 2211–2219 (2007).

24. Louca S. et al. Function and functional redundancy in microbial systems. Nat.
Ecol. Evol. 2, 936–943 (2018).

25. Gossner M. M. et al. Land-use intensification causes multitrophic
homogenization of grassland communities. Nature 540, 266–269 (2016).

26. Wang, C., Liu, D. & Bai, E. Decreasing soil microbial diversity is associated
with decreasing microbial biomass under nitrogen addition. Soil Biol.
Biochem. 120, 126–133 (2018).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16881-7 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:3072 | https://doi.org/10.1038/s41467-020-16881-7 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


27. Bastida F. et al. Differential sensitivity of total and active soil microbial
communities to drought and forest management. Glob. Change Biol. 23,
4185–4203 (2017).

28. Bardgett, R. D., Bowman, W. D., Kaufmann, R. & Schmidt, S. K. A temporal
approach to linking aboveground and belowground ecology. Trends Ecol. Evol.
20, 634–641 (2005).

29. Zhou, Z., Wang, C. & Luo, Y. Effects of forest degradation on microbial
communities and soil carbon cycling: a global meta‐analysis. Glob. Ecol.
Biogeogr. 27, 110–124 (2018).

30. Zhou, Z., Wang, C., Jiang, L. & Luo, Y. Trends in soil microbial communities
during secondary succession. Soil Biol. Biochem. 115, 92–99 (2017).

31. Zechmeister-Boltenstern, S. et al. The application of ecological stoichiometry
to plant-microbial-soil organic matter transformations. Ecol. Monogr. 85,
133–155 (2015).

32. Zhou, Z., Wang, C., Zheng, M., Jiang, L. & Luo, Y. Patterns and mechanisms
of responses by soil microbial communities to nitrogen addition. Soil Biol.
Biochem. 115, 433–441 (2017).

33. Gang, F., Haorui, Z., Shaowei, L. & Wei, S. A meta-analysis of the effects of
warming and elevated CO2 on soil microbes. J. Resour. Ecol. 10, 69–76 (2019).

34. Chen J. et al. Stronger warming effects on microbial abundances in colder
regions. Sci. Rep. 5, 18032 (2015).

35. Manzoni, S., Schaeffer, S. M., Katul, G., Porporato, A. & Schimel, J. P. A
theoretical analysis of microbial eco-physiological and diffusion limitations to
carbon cycling in drying soils. Soil Biol. Biochem. 73, 69–83 (2014).

36. Manzoni, S., Schimel, J. P. & Porporato, A. Responses of soil microbial
communities to water stress: Results from a meta-analysis. Ecology 93,
930–938 (2012).

37. Nielsen, U. N. & Ball, B. A. Impacts of altered precipitation regimes on soil
communities and biogeochemistry in arid and semiarid ecosystems. Glob.
Change Biol. 21, 1407–1421 (2015).

38. Zhou, Z., Wang, C. & Luo, Y. Response of soil microbial communities to altered
precipitation: A global synthesis. Glob. Ecol. Biogeogr. 27, 1121–1136 (2018).

39. Zheng, M., Zhou, Z., Luo, Y., Zhao, P. & Mo, J. Global pattern and controls of
biological nitrogen fixation under nutrient enrichment: a meta‐analysis. Glob.
Change Biol. 25, 3018–3030 (2019).

40. Du E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation.
Nat. Geosci. 13, 221–226 (2020).

41. Hou E. et al. Global meta-analysis shows pervasive phosphorus limitation of
aboveground plant production in natural terrestrial ecosystems. Nat.
Commun. 11, 637 (2020).

42. Rousk J. et al. Soil bacterial and fungal communities across a pH gradient in
an arable soil. ISME J. 4, 1340–1351 (2010).

43. Booth I. R. Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49,
359–378 (1985).

44. Blagodatskaya, E. & Kuzyakov, Y. Active microorganisms in soil: critical review
of estimation criteria and approaches. Soil Biol. Biochem. 67, 192–211 (2013).

45. Baldrian P. et al. Active and total microbial communities in forest soil are
largely different and highly stratified during decomposition. ISME J. 6,
248–258 (2012).

46. Trivedi C. et al. Losses in microbial functional diversity reduce the rate of key
soil processes. Soil Biol. Biochem. 135, 267–274 (2019).

47. Philippot L. et al. Loss in microbial diversity affects nitrogen cycling in soil.
ISME J. 7, 1609–1619 (2013).

48. Isobe K. et al. Consequences of microbial diversity in forest nitrogen cycling:
diverse ammonifiers and specialized ammonia oxidizers. ISME J. 14, 12–25
(2020).

49. Don, A., Schumacher, J. & Freibauer, A. Impact of tropical land-use change on
soil organic carbon stocks–a meta-analysis. Glob. Change Biol. 17, 1658–1670
(2011).

50. Meng C. et al. Global soil acidification impacts on belowground processes.
Environ. Res. Lett. 14, 074003 (2019).

51. Viechtbauer W. Conducting meta-analyses in R with the metafor package.
J. Stat. Softw. 36, 1–48 (2010).

52. Paliy, O. & Shankar, V. Application of multivariate statistical techniques in
microbial ecology. Mol. Ecol. 25, 1032–1057 (2016).

53. Cajo, J. F. & Braak, T. Principal components biplots and alpha and beta
diversity. Ecology 64, 454–462 (1983).

54. Oksanen, J. et al. Vegan: community ecology package. R. package version
2.5–4 (2019).

55. Sinsabaugh, R. L., Shah, J. J. F., Hill, B. H. & Elonen, C. M. Ecoenzymatic
stoichiometry of stream sediments with comparison to terrestrial soils.
Biogeochemistry 111, 455–467 (2012).

56. German D. P. et al. Optimization of hydrolytic and oxidative enzyme methods
for ecosystem studies. Soil Biol. Biochem. 43, 1387–1397 (2011).

57. Kandeler, E., Luxhøi, J., Tscherko, D. & Magid, J. Xylanase, invertase and
protease at the soil–litter interface of a loamy sand. Soil Biol. Biochem. 31,
1171–1179 (1999).

58. Delgado-Baquerizo M. et al. Soil microbial communities drive the resistance of
ecosystem multifunctionality to global change in drylands across the globe.
Ecol. Lett. 20, 1295–1305 (2017).

59. Calcagno, V. & de Mazancourt, C. glmulti: an R package for easy automated
model selection with (generalized) linear models. J. Stat. Softw. 34, 1–29
(2010).

Acknowledgements
We thank all the researchers whose data were used in this global synthesis. We appreciate
Alexa McKay for their valuable comments. We also thank Noah Fierer and Ben Bond-
Lamberty for the suggestions on this study. This work was financially supported by
the National Natural Science Foundation of China (31901293), the Young Elite Scientists
Sponsorship Program by China Association for Science and Technology
(2018QNRC001), the National Key Technology Research and Development Program of
China (No. 2011BAD37B01), the Program for Changjiang Scholars and Innovative
Research Team in University (IRT_15R09), and the Heilongjiang Touyan Innovation
Team Program for Forest Ecology and Conservation.

Author contributions
Z.Z. and C.W. conceived the study, and developed it with Y.L.; Z.Z. collected and
organized the data, and wrote the first draft of the paper; all authors contributed to
discussing the results, writing, and editing the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-16881-7.

Correspondence and requests for materials should be addressed to C.W.

Peer review information Nature Communications thanks Brajesh Singh, Marcel van der
Heijden, and the other, anonymous, reviewer(s) for their contribution to the peer review
of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16881-7

10 NATURE COMMUNICATIONS |         (2020) 11:3072 | https://doi.org/10.1038/s41467-020-16881-7 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-020-16881-7
https://doi.org/10.1038/s41467-020-16881-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality
	Results and discussion
	GCFs have little negative effect on microbial biodiversity
	Soil pH dominantly controls the alpha diversity responses
	Microbial diversity-structure-biomass-function responses

	Methods
	Data collection
	Calculation of the individual RRs
	Microbial alpha diversity
	Beta diversity and community structure
	Microbial ecosystem functionality
	Calculation of the overall RR
	Model selection
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information


