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Meta-analysis of the Parkinson’s disease gut microbiome

suggests alterations linked to intestinal inflammation
Stefano Romano 1✉, George M. Savva1, Janis R. Bedarf1,2, Ian G. Charles1,3, Falk Hildebrand1,4✉ and Arjan Narbad1

The gut microbiota is emerging as an important modulator of neurodegenerative diseases, and accumulating evidence has linked
gut microbes to Parkinson’s disease (PD) symptomatology and pathophysiology. PD is often preceded by gastrointestinal
symptoms and alterations of the enteric nervous system accompany the disease. Several studies have analyzed the gut microbiome
in PD, but a consensus on the features of the PD-specific microbiota is missing. Here, we conduct a meta-analysis re-analyzing the
ten currently available 16S microbiome datasets to investigate whether common alterations in the gut microbiota of PD patients
exist across cohorts. We found significant alterations in the PD-associated microbiome, which are robust to study-specific technical
heterogeneities, although differences in microbiome structure between PD and controls are small. Enrichment of the genera
Lactobacillus, Akkermansia, and Bifidobacterium and depletion of bacteria belonging to the Lachnospiraceae family and the
Faecalibacterium genus, both important short-chain fatty acids producers, emerged as the most consistent PD gut microbiome
alterations. This dysbiosis might result in a pro-inflammatory status which could be linked to the recurrent gastrointestinal
symptoms affecting PD patients.
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INTRODUCTION

Parkinson’s disease (PD) is the second most common neurode-
generative disorder after Alzheimer’s disease1. Globally, it has an
incidence of 10–50/100,000 person/year and a prevalence of
100–300/100,000 people, and due to the progressive aging of the
world population, the number of people with PD is expected to
double by 20301. PD affects predominantly dopaminergic neurons
in the brain, leading to decreased dopamine levels and motor
impairments, such as tremor, rigidity, balance difficulties, and loss
of spontaneous movement (akinesia)2. Its pathological hallmark
has long been considered to be the intracellular deposition of
aggregated α-synuclein, leading to neuronal cell death and
neuroinflammation3. PD is now considered a multi-systemic
disease, affecting the central as well as the peripheral nervous
system (CNS, PNS), resulting in several non-motor symptoms,
often including gastroparesis or constipation. Due to the early
involvement of the gastrointestinal tract, often preceding motor
symptoms for years4, changes in gut-microbiota composition have
been studied in relation to the pathophysiology of PD. The
potential role of gut microbiota in PD3 and other neurodegen-
erative diseases5 is supported by animal studies6, showing that
the microbiota can affect α-synucleinopathy as well as neuroin-
flammation. Thus, the microbiota is a putative therapeutic target
and has the potential for developing diagnostic biomarkers.
PD patients can have increased gut permeability and inflamma-

tion7,8, and these have been hypothesized to be linked to low
gastrointestinal short-chain fatty acids (SCFA) concentrations9.
SCFA are the end products of bacterial fermentation of dietary
components and play a pivotal role in fueling and maintaining the
integrity of the colonic epithelium. Low levels of SCFA have been
considered to be a consequence of a decreased abundance of
SCFA-producing taxa in PD patients10,11. To date, more than 20
case–control studies have investigated the composition of the PD
gut microbiota. Over 100 differently abundant taxa between PD

patients and controls have been reported10–19, and in some cases,
an association between taxa abundances and disease severity has
been detected11,12,16. Several studies suggested that individuals
with PD have an altered gut microbiota compared to controls,
even though findings are often inconsistent and a consensus on
the taxa associated with the disease is still lacking. Across most
studies, the genus Akkermansia and the Verrucomicrobiaceae
family have been found to be enriched in PD patients, while
bacteria belonging to the Lachnospiraceae family are depleted.
On the other hand, various inconsistencies have been found
among the different sampling cohorts. For example, the
Lactobacillaceae family has been generally detected to be
enriched in PD in the Western cohorts but never in Chinese
studies18,20,21. Similarly, conflicting results have been obtained for
bacteria within the Prevotellaceae family. Several studies detected
these taxa to be highly depleted in PD patients16,17,22,23, compared
to controls, whereas others found no differences in abundances11

or found these taxa enriched in PD patients13,20.
Inconsistencies amongst studies might arise from variations in

study designs and methods used for producing and analyzing 16S
rRNA-gene amplicon data, as well as from the natural variability of
the gut microbiota across populations, lifestyles, and diets24. To
further elucidate the significance of changes in the intestinal
microbiota composition in PD and to evaluate its potential as a
biomarker for PD risk, diagnosis, and prognosis it is important to
perform cross-study comparisons and identify disease-specific
alterations. Here, we provide an individual patient data meta-
analysis (pooled re-analysis) of all ten available studies that
described the gut microbiome in PD through 16S rRNA-gene
amplicon sequencing. We apply a standardized workflow to
analyze each study individually and combined different statistical
approaches to identify the major changes affecting the gut
microbiome of PD patients across sampling cohorts.
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RESULTS

Study selection

We identified a total of 22 studies that investigated the PD-
associated gut microbiome using 16S rRNA-gene amplicon
sequencing (March 2020; Supplementary Table 1). Of these, only
ten made raw sequencing data available and could be re-analyzed
in our study. These ten studies covered nine different cohorts (one
was reported at baseline then at follow-up 2 years later), across six
countries (Table 1). Overall, this resulted in 1269 samples (1211
after filtration of samples with low read counts) (Fig. 1a) all
obtained from case–control studies. Cases were usually selected
from clinics local to the investigating teams, were at different
stages of the disease, and almost all were using some form of PD
medication (Table 1). Controls were typically sampled by
convenience from the local population or from families of the
PD patients. All studies except one16 applied the UK brain bank
criteria to define PD. Cases had an average age of between 60 and
70 years in all studies, with controls typically well-matched in age.
Some studies matched on sex, while for others there were
significantly more males in the case compared to control
groups12,13, and significantly more cases than controls (Fig. 1a).
Various sampling protocols were used across studies, with

considerable variation in the methods adopted to preserve the
samples before processing (Table 1). In some cases, samples were
kept at room temperature for up to 48 hours before analysis14, in
others, samples were stored either in DNA preservative16,19 or on
ice18. DNA extractions and sequencing strategies also varied
across studies (Table 1). The Illumina MiSeq platform was the most
used sequencing technology, but the chosen variable region of
the 16S gene and sequencing strategy (paired-end vs single-end)
varied considerably (Table 1). Considering the heterogeneity
across studies, we first re-analyzed every single dataset individu-
ally, then we used a combination of statistical approaches to
obtain a consensus overview of the gut microbiome in PD
accounting for the heterogeneity between studies (Fig. 1b). Two
studies were based on the same cohort measured at different time
points, hence, we performed a sensitivity analysis by comparing
the results obtained considering both datasets with those
obtained after omitting the baseline samples15.

The gut microbiome differs significantly between PD patients
and controls

Measures of microbial alpha-diversity and abundances of rare
taxa, based on species profiles, were higher in PD samples
compared to controls in three out of ten studies (Supplementary
Fig. 1). Interestingly, these three datasets were the only ones using
single-end sequencing approaches, suggesting that this might
influence the estimation of bacterial diversity. These differences in
diversity were statistically significant when we pooled estimates
across studies using random-effect meta-analysis (Fig. 2 and
Supplementary Fig. 1). Specifically, PD samples had a higher
overall richness as indicated by a significantly higher number of
observed species and higher Fisher’s alpha, ACE, and Chao1
indices (Fig. 2 and Supplementary Fig. 1). Our analyses suggest
that this higher diversity might derive from a decrease in the
abundance of dominant species and an increase in rare/low
abundant ones, as dominance indices were lower and a rarity
index was significantly higher in PD patients (Fig. 2 and
Supplementary Fig. 1). Previous studies reported a higher
abundance of Firmicutes in control samples compared to PD11,
and the Firmicutes to Bacteroidetes ratio (F/B ratio) has been
frequently used to assess gut health. Therefore, we calculated F/B
ratios across all studies. Only in the study of Keshavarzian et al.11,
we observed a significant difference in the F/B ratio between PD
and control, but this difference was not significant overall
(Supplementary Fig. 2). Similarly, Aho et al.16 reported that
controls had an increased Prevotella to Bacteroides ratio (P/B ratio)

in the baseline samples15 of their longitudinal study. We
confirmed this result and detected an increased P/B ratio in one
additional cohort but not in the rest of the datasets, and there was
only weak evidence for a higher P/B ratio in controls when results
were pooled (Supplementary Fig. 2). Omitting the baseline
samples from the longitudinal Finnish cohort did not alter the
conclusions of the alpha-diversity analyses, and attenuated the P/
B ratio difference between PD and controls (data not shown).
The genera Bacteroides and Prevotella and the Firmicutes

phylum are key gut-microbiota taxa and their abundances have
been used to define three enterotypes, ET_B, ET_P, and ET_F,
representing the Bacteroides, Prevotella, and Firmicutes entero-
types, respectively25. To verify the prevalence of these gut
microbiome types among PD patients, we assigned each
microbiome to one of the three known enterotypes, classifying
592 samples. The distribution of assigned enterotypes varied
enormously across studies, but there was no significant difference
between PD and control samples in any individual study and no
trend toward specific enterotypes when studies were considered
together (Supplementary Fig. 3). For example, the majority of PD
samples from the Finnish cohort15,16 were assigned to the ET_F,
whereas in the study of Hill-Burns et al.12 and Pietrucci et al.19

most of the PD samples were classified as ET_B. Interestingly, only
in the Finnish cohorts was the ET_P more common among control
samples, in agreement with the authors’ finding of Prevotella
being enriched in the control groups.
Considering the variability among studies and the potential

data-dependent effect of different microbiome analysis work-
flows26, we used a thorough and comprehensive approach to
investigate the structure of the bacterial communities associated
with PD (Fig. 1b). We used three independent normalization
strategies (Variance Stabilizing Transformation, VST; Total Sum
Scaling, TSS, Centered Log-Ratio, CLR) combined as appropriate
with three beta-diversity distances (Bray–Curtis, BC;
Jensen–Shannon divergence, JSD; Euclidean) and statistical testing
via permutational multivariate analysis of variance using distance
matrices (PERMANOVA). We applied these strategies to all three
taxonomy ranks we considered (species, genus, and family). In
most studies, disease status significantly explained the differences
within the data, even though it accounted only for a limited
portion of data variability (from < 1% to <13%; R2 expressed in
percentage; Fig. 3). When the datasets were pooled, both study
and disease status statistically significantly explained the separa-
tion of the samples, but the proportion of variance explained by
the disease status was in all cases <1% (Fig. 3), whereas the study
explained between 28 and 53% of the variance.
We wanted to verify whether underlying differences, unrelated

to the origin of the sampling cohorts, existed between the gut
microbiome of PD patients and controls. Moreover, we aimed at
identifying which study-specific factors most defined the differ-
ences across datasets. To reach these goals, we used the
normalization-distance pairs which best captured the variability
of the data (Fig. 3; JSD-TSS) to perform a distance-based
redundancy analysis (dbRDA) on the pooled data (Supplementary
Figs 4–6). First, we ordinated the combined data without
constraints and without accounting for the variability introduced
by the study. In accordance with the previous PERMANOVA
analyses, the separation of the samples was driven by the study of
origin (Supplementary Figs. 4–6). We then inferred the degree of
similarities between studies using the sample coordinates in the
dbRDA (Supplementary Fig. 7, see “Methods” for details). The only
four strongly divergent datasets were from Weis et al.27, who used
the sequencing platform IonTorrent; Hopfner et al.14, who
maintained the samples at room temperature up to 48 h and
analyzed them using the V1–V2 variable region of the 16S rRNA
gene; Keshavarzian et al.11, who collected samples in anaerobic
pouches; and from Heintz-Buschart et al.13, who immediately
flash-frozen the samples after collection and used a lab-specific
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DNA extraction protocol. We then verified which study-specific
aspects (e.g., sequencing strategy, DNA extraction) most influ-
enced the structure of the bacterial communities. We created
additional dbRDAs constraining the data by country of origin and
other known study-specific technical factors. Each factor signifi-
cantly shaped the clustering of the data when considered
individually, and this was observed for all taxonomic ranks and
normalization approaches we used (Supplementary Data 1). In
general DNA extraction protocols, country of origin, and 16S
variable region were the factors that explained most of the
variance within the data (Supplementary Data 1). Finally, we
compared the dbRDA models constrained by all confounding
factors and disease status with the one constrained only by the
disease status and study and verified that both models explained
the same proportion of data variability (Supplementary Data 1).
Hence, removing the influence of the study will simultaneously
eliminate the effects of other known study-specific technical
confounders.
Accounting for the variability introduced by the study within

the dbRDA drastically decreased the batch effect, irrespectively of
the normalization-distance pair used (Supplementary Figs. 4–6).
However, samples did not cluster according to the disease status,
suggesting that the environmental variability is higher than the
variability explainable by the disease. Therefore, we constrained
the dbRDAs conditioned for study by disease status, to maximize
the divergence between PD and control samples. We used this
approach to determine the major taxa driving the separation
between conditions. In accordance with the above results, the
newly created constrained axis along which PD and controls
diverged, significantly explained the clustering of the data
(ANOVA-like permutation test; Fig. 4, Supplementary Figs. 4–6
and 8), but accounted for only <1% of the data variability. Since
the constrained ordination obtained for the TSS–JSD pair
explained a slightly higher proportion of variance, we selected

this approach to identify taxa that strongly influenced the
separation of the samples. The divergence between PD and
controls was mainly driven by the bacterial families Bifidobacter-
iaceae and Akkermansiaceae, which were more enriched in PD,
and Lachnospiraceae, which was more abundant in control
samples (Supplementary Fig. 8). Similarly relevant, but with a
minor difference between conditions were the families Rikenel-
laeae, Porphyromonadaceae, Christensenellaceae, Oscillospira-
ceae, and the Clostridium methylpentosum group in the
Oscillospirales order, all of which were more enriched in PD
(Supplementary Fig. 8). These results were mirrored in the dbRDA
performed using genus and species abundances, which revealed
that species in the Akkermansia and Bifidobacterium genera were
strongly enriched in PD, whereas several species belonging to the
Lachnospiraceae family caused the divergence of control samples
(Supplementary Fig. 8 and Fig. 4). When we omitted the baseline
samples of the longitudinal Finnish cohort15, the overall results did
not change, and only minor differences were observed (some
genera and species in the Lachnospiraceae family were not
detected as main drivers of sample separation, whereas the
Faecalibacterium genus and a species within this genus were
additionally detected as influencing the divergence of controls).

The gut microbiome of PD patients and controls are enriched
in different bacterial groups

In the first instance, we analyzed all ten datasets individually using
three separate approaches. The number of taxa that showed a
statistically significant difference in abundance between PD and
controls varied greatly across studies and methods (Supplemen-
tary Fig. 9 and Supplementary Data 2). Among all studies, the
highest number of significant taxa were detected in the datasets
of Hill-Burns et al.12 and Petrov et al.17, whereas the lowest
number was observed in Qian et al.18 and Hopfner et al.14

Fig. 1 Sample distribution across studies and bioinformatic workflow adopted in our study. a The number of control and PD samples
refers to the data that could be recovered from the Sequence Read Archive (SRA) or the European Nucleotide Archive (ENA) and passed the
quality filtering we applied. b Overview of the bioinformatic workflow adopted in our study. TSS total sum scaling, VST variance stabilizing
transformation, CLR centered log ratios, WMWWilcoxon–Mann–Whitney test, ANCOM analysis of the composition of microbiomes, lm linear
models, genodds Agresti’s generalized odd ratios, meta random-effect meta-analysis.
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(Supplementary Fig. 9 and Supplementary Data 2). To obtain a
generalizable overview of the PD-associated microbiome, we
combined two independent approaches that we refer to as the
Pooled data and the Pooled results approach. In the first, we

pooled the count tables obtained for each study and used the
same three methods we applied to the individual datasets and
statistically accounted for the variability introduced by the study.
Taxa were considered differentially abundant between PD and
controls when detected as statistically significantly different by
two out of three methods. This first list of taxa was then merged
with the outcome of the Pooled results approach, in which we first
estimated the differences in abundance for each taxon in the
individual datasets and then used random-effect meta-analysis to
pool the results (Fig. 5, Supplementary Figs. 10, 11, and
Supplementary Data 3).
After obtaining the first list of differentially abundant taxa, we

used the metadata made available by five of the ten studies we re-
analyzed to verify whether age and/or gender influenced the
abundances of the taxa we detected to be enriched or depleted in
PD. By comparing generalized linear mixed models (GLMMs) with
and without accounting for the disease status, we identified taxa
that showed a significant alteration in abundance in PD
irrespective of age and gender (Supplementary Data 4). In the
majority of the cases, the disease status was required to best
explain taxa abundances, underlining the robustness of our
approaches. For 14 species, 12 genera, and 6 families, models
not containing the factor disease status were selected among the
best GLMMs (ΔAIC < 2). Hence, we concluded that the available
data do not allow to clearly establish whether the disease status is
essential to explain the abundances of these taxa (Supplementary
Data 4), and we did not consider them further. For example, the
Prevotellaceae family and species within this family (Supplemen-
tary Data 4) were detected differentially abundant between PD
and controls. However, the abundance of these taxa was also well
explained by gender and/or age alone (Supplementary Data 4 and
Supplementary Fig. 12).
Among the remaining genera, after controlling for metadata,

Roseburia, Blautia, Fusicatenibacter, Faecalibacterium, Moryella,
Anaeorostipes, and three other unknown genera belonging to the
family Lachnospiraceae were strongly enriched in the control
samples (Fig. 5b) in several datasets (Fig. 5c). Consistently, the
Lachnospiraceae family and species within this family and affiliated
to the Fusicatenibacter, Blautia, and Roseburia genera were strongly
enriched in control samples (Supplementary Figs. 10, 11).

Fig. 3 The gut microbiome structure differs significantly between PD patients and controls. Data were normalized using three
independent approaches (VST variance stabilizing transformation, TSS total sum scaling, CLR centered log-ratio) and beta-diversity was
estimated using three indices (Bray–Curtis, BC; Jensen–Shannon divergence, JSD; Euclidean). The effect of the disease status on the clustering
of the data was assessed using a permutational analysis of variance (PERMANOVA). In the majority of the studies and approaches considered,
and across all taxonomic ranks (a, b, c), the gut microbiome of PD patients resulted significantly different from the one of controls. The disease
status explains only a small fraction of the data variability (<13% R2), indicating that other environmental factors might have a stronger role in
shaping the bacterial communities. The dataset obtained by pooling all ten studies is referred to as “Combined” in the figure.

Fig. 2 Alpha-diversity indices are significantly different between
PD patients and controls. Indices were calculated at the species
level for each dataset. Results were then combined using a random-
effect meta-analysis approach. The log-generalized Odds Ratios
indicate the degree of variation of each index between controls and
PD. The richness of the samples was estimated using the observed
number of species and the indices Chao1, ACE, and Fisher’s alpha. To
estimate evenness, which indicates how different the species
abundances in a community are from each other, we used the
Bulla and Simpson indices. Finally, we estimated dominance, which
describes how much one or few species dominate the community,
and rarity, which assesses the number of species with low
abundance in the samples. The data suggest that the gut microbiota
of PD patients is more diverse (higher richness) than controls and
this is likely a consequence of an increase in rare taxa (rarity).
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The family Butyricicoccaceae was also more abundant in controls,
even though it was detected differentially abundant in fewer
studies (Supplementary Fig. 10). PD samples were instead most
often enriched in the genera Lactobacillus, Bifidobacterium,
Hungatella, and Akkermansia (Fig. 5). Additionally, the R-7 group
of the Christensenellaceae family, the genera Methanobrevibacter,
Oscillobacter, Frisingicoccus, and Varibaculum were also detected
more abundant in PD, but with smaller effect size and higher
variability across studies (Fig. 5). PD samples were enriched in
species belonging to different taxonomic groups e.g., Ruminococ-
caceae, Christensenellaceae, Bifidobacterium, Lactobacillus, Hunga-
tella, and Alistipes (Supplementary Fig. 11). Other species, such as
Intestinimonas sp, species within the Oscillospiraceae family were
also more abundant in PD, but in fewer studies (Supplementary
Fig. 11). In contrast, the majority of species enriched in controls
belonged to the families Lachnospiraceae, Eubacteriaceae, and
Ruminococcaceae (Supplementary Fig. 11). The shifts in taxa
abundances outlined above were robust to the sensitivity analysis
we performed omitting the baseline data of the longitudinal
Finnish cohort, which overall resulted in minor differences affecting
only taxa having a small effect size (Supplementary Fig. 13). When
this dataset has removed the genus Alistipes and the species
Massiliomicrobiota timonensis did not result in enriched in PD,
which instead had higher abundances of bacteria within the
Coprobacillus genus (Supplementary Fig. 13).

Finally, for each dataset, we obtained hypothetical functional
predictions based on the 16S profiles. Differential abundance
testing of predicted-pathways between PD and controls was
performed as for the taxonomic data. The majority of predicted-
pathways enriched in PD were related to ubiquinone (Coenzyme
Q; CoQ) and menaquinone (vitamin K2) biosynthesis, glutamate
degradation, methanogenesis, and lactic-type fermentation (Sup-
plementary Data 2, 3; Fig. 6 and Supplementary Fig. 14). Instead,
the control samples were enriched in pathways involved in the
biosynthesis of cobalamin (vitamin B12) and glutamine/glutamate,
degradation of glucuronate and galactoglucuronate, and methane
production via acetate degradation (Supplementary Data 2, 3;
Fig. 6 and Supplementary Fig. 14). Omitting the baseline of the
Finnish cohort just affected some pathways involved in the
menaquinone and ubiquinone biosynthesis which had higher
variability and small effect size (Supplementary Fig. 13).

DISCUSSION

In recent years, several studies have analyzed the gut microbiome
of PD patients reporting various degrees of alteration compared to
healthy controls. We wanted to verify whether consistent changes
in the gut microbiome of PD patients can be identified across
studies, as often contrasting results have been reported. Hence,
we performed a meta-analysis re-analyzing all publicly available

Fig. 4 Most important species driving the divergence of the gut microbiome between PD patients and controls. Distance-based
redundancy analysis (dbRDA) was performed on Jensen–Shannon divergence (JSD) calculated on data normalized through total sum scaling
(TSS). dbRDA was conditioned (blocked) by study and constrained by disease status. Data refer to species abundances. The limited proportion
of data variability explained by the axis constrained for disease status (CAP1) indicates that environmental factors have a major influence in
shaping the bacterial communities. However, the influence of the disease status on the community structure is statistically significant (ANOVA-
like permutation test). Only taxa showing a significant association with the clustering of the samples and the strongest abundance variation
between conditions are reported.
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16S rRNA-gene amplicon datasets obtained by studies that
compared PD patients with healthy controls, to offer a compre-
hensive and robust description of the PD-associated gut micro-
biome. Studies were heterogeneous in methodological
approaches, and the interstudy variability was the main factor
driving bacterial community structures, as observed in previous
microbiome-based meta-analyses performed in the context of diet
and colorectal cancer28,29. Our analyses suggest that particular
methodological approaches, such as sample collection and
transport, sequencing platform, and the chosen variable region
of the 16S rRNA gene might be the main reasons for the
heterogeneity across the datasets we considered. Moreover, we
show here that some differences between bioinformatic
approaches exist, and we believe that the most robust and
comparable results were obtained using the V3–V4 region of the
16S rRNA gene and data normalized via TSS or CLR. Variability
across the studies we re-analyzed was also a reflection of the
difference in the sampling populations, and the criteria used for
recruiting participants. For example, the use of antibiotics was not
always adopted as an exclusion criterion, and when included,
different time intervals were chosen between the last treatment
and sample collection (i.e 1 month, 3 months). Confounding
factors and reverse causation might also explain the observed
associations. In particular, the vast majority of PD patients were
using PD-related medication (e.g., Levodopa), most cases were
progressed in the disease, and in some studies, controls differed
considerably from cases in terms of age, sex and ethnicity. Hence,
it is important to stress that using the available data it is
impossible to determine whether the associations reported are

causally linked to PD. Future studies should concentrate on
standardizing the recruitment criteria and preferentially focus on
early-stage drug-naive patients to evaluate the causality links
between microbiome alterations and PD.
By stratifying the analysis by study, we could simultaneously

account for the variability introduced by all study-specific factors
and methodologies, such as country of origin, DNA extraction, and
sequencing. In agreement with previous studies11–13,15,18,19, we
show that the gut microbiome of PD patients significantly differs
from those of controls. Although PD can explain only a limited
portion of data variability the observed differences are robust to
the technical heterogeneities across sampling cohorts, indicating
that the alteration in the gut microbiome of PD patients is a
general phenomenon. The analysis of the bacterial alpha-diversity
suggests that such alterations might be explained by a decrease in
the abundances of the most abundant species and an increase in
the rare ones. An increase in bacterial diversity in the gut
microbiome of PD patients has been previously reported both in
the studies we re-analyzed and studies for which data were not
available11,18,21,30. Similarly, a recent study reported no differences
in OTU-based alpha-diversity but found that in controls 98% of
OTUs could be assigned to the four dominant Phyla, whereas only
88% of OTUs belonged to these Phyla in PD31. This suggests a
decrease in dominant taxa and an increase in less abundant ones
as underlined by our results.
PD samples had a lower abundance of the genera Roseburia,

Fusicatenibacter, Blautia, Anaerostipes (Lachnospiraceae family),
and Faecalibacterium (Ruminococcaceae family), which have also
been detected depleted in other neuro-inflammatory and

Fig. 5 Genera showing a significant difference in abundance between PD patients and controls. The relative abundances of the genera
retrieved from the rarefied pooled data are reported in panel a. Effect sizes were estimated via the mean difference in CLR (panel b) using a
random-effect meta-analysis approach (Pooled results approach). This was calculated for all taxa resulting differentially abundant in the
Pooled results or Pooled data approaches. The color of the dots indicates which of the two above approaches detected the taxa differentially
abundant. Taxa more abundant in controls have an effect size shifted to the left, whereas taxa more abundant in PD have an effect size shifted
to the right. Panel c shows the number of times each genus was detected differentially abundant between PD patients and control samples
across studies (diamonds) and approaches (bars). We used ten studies and three approaches, hence the maximum number of times a taxon
can be detected differentially abundant is 30.
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neurodegenerative disorders (e.g., multiple sclerosis)32,33. Most of
these taxa are abundant and widespread bacteria in the gut
microbiota of healthy individuals, they are major butyrate
producers and have often been found depleted in IBD34. Similarly
depleted in IBD are bacteria of the Butyricicoccaceae family35,
which are important butyrate producers and were highly depleted
in PD in our analyses. The depletion of these taxa could indicate a
lowered level of butyrate in the gut of PD patients. Butyrate is a
fundamental energy source for intestinal epithelial cells and can
reinforce the intestinal epithelium lowering the risk of inflamma-
tion and carcinogenesis36. Our findings are consistent with
previous studies showing low levels of butyrate and increased
gut permeability and inflammation in PD patients7,9. Butyrate and
other SCFA are not only relevant for gut health, but they can also
influence the enteric nervous system (ENS), have systemic anti-
inflammatory properties, promote normal microglia development,
and potentially affect epigenesis in the CNS3. Importantly, PD
patients have been shown to have increased levels of various pro-
inflammatory cytokines in both the colon and serum, suggesting
that they suffer from systemic inflammation which could result in
microglial activation driving disease progression37. To the best of
our knowledge, only Aho et al.16 identified bacteria of the
Butyriciccocaceae enriched in controls. Similarly, only Aho et al.16

and Weis et al.27 detected Fusicatenibacter to be significantly
depleted in PD patients. Specifically, Weis et al. report that the
decrease of this genus together with that of Faecalibacterium was
correlated to the degree of gut inflammation27. Interestingly, both
of these genera were low in abundance in IBS and ulcerative
colitis38,39, and Faecalibacterium showed strong anti-inflammatory
and protective effects in an acute colitis mouse models40. Our
analysis suggests that the depletion of taxa playing a key role in
maintaining gut health is widespread in PD across populations.

Such depletion resembles dysbiosis observed in other gastro-
intestinal dysfunctions (e.g., IBD) and supports the link between
PD and gut health as underlined by retrospective studies
indicating that the overall risk of developing PD in IBD was
significantly higher. Specifically, the risk increased by 28% and
30% in patients with Crohn’s disease (CD) and ulcerative colitis,
respectively37.
Our results indicate a higher abundance of the genera

Lactobacillus, Akkermansia, Hungatella, and Bifidobacterium in PD
gut microbiome. Interestingly, Lactobacillus and Bifidobacterium
have been reported to be enriched in the gut of CD patients, and
this increase coincided with a decreased abundance of Faecali-
bacterium sp41, similarly to what we have observed in PD. These
taxa are commonly considered to be beneficial bacteria, and
whether they are influencing PD or are simply well adapted to
thrive in a pro-inflammatory gut environment remains to be
elucidated. The genus Lactobacillus, and the Lactobacillaceae
family, were the most strongly enriched taxa in PD across the
studies we re-analyzed, in line with the previous find-
ings11,12,17,19,42. Lactobacillus strains are low abundant members
of the gut microbiota and their abundance varies greatly across
human disease and chronic conditions41. Some strains of
Lactobacillus are able to produce enzymes that can degrade
levodopa into dopamine, suggesting that their abundances might
be a consequence of the use of this medication in PD43,44.
Levodopa is absorbed in the small intestine, but it has been
reported that 10–20% can reach the large intestine45 and could
thus help these bacteria to proliferate.
Akkermansia has been repeatedly shown to be more abundant

in PD compared to controls11–13,20,22. Akkermansia spp is
considered beneficial for human health and is potential probiotics,
as they fortify the integrity of the epithelial cell layer and can

Fig. 6 Metabolic pathways showing a significant difference in abundance between PD patients and controls. Only selected relevant
pathways are shown (a full overview is reported in Supplementary Fig. 14). The relative abundances of the pathways retrieved from the
rarefied pooled data are reported in panel a. Effect sizes were estimated via the mean difference in CLR (panel b) using a random-effect meta-
analysis (Pooled Results approach). This was calculated for all pathways resulting differentially abundant in the Pooled results or Pooled data
approaches. The color of the dots indicates which of the two above approaches detected the pathway differentially abundant. Pathways more
abundant in controls have an effect size shifted to the left, whereas pathways more abundant in PD have an effect size shifted to the right.
Panel c shows the number of times each pathway was detected differentially abundant between PD patients and controls across studies
(diamonds) and approaches (bars). We used ten studies and three approaches, hence the maximum number of times a pathway can be
detected differentially abundant is 30.
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modulate the immune system46,47. However, contrasting results
regarding the influence of Akkermansia spp on gut health exist48.
Recently, safety concerns have been raised about the use of A.
municiphila as a probiotic, as its enrichment in neurodegenerative
diseases (e.g., Alzheimer’s disease, multiple sclerosis) could
contribute to the progression of neural pathologies by degrading
mucin, increasing gut inflammation and permeability and finally
leading to higher endotoxaemia, and systemic inflammation33,49.
Intriguingly, constipated individuals have been shown to have a
gut microbiome enriched in Akkermansia50–52, and constipation is
one of the major non-motor symptoms in PD, often starting
decades before motor symptoms arise. The increase in Akkerman-
sia could be a consequence of constipation, even though animal
studies suggest that this genus might contribute to an increased
transit time. Akkermansia spp is mucin-degrading bacteria and
studies on mice suggest that they might lead to a depletion of the
intestinal mucus-layer, drier stools, decreased number of goblet
cells, and impaired intestinal barrier function when the gut
microbiota is unbalanced53,54. The unbalanced microbiota
observed in PD patients might lead to a proliferation of
Akkermansia spp, which in turn might lead to decreased mucus
thicknesses and constipation. It is important to point out that
multiple strains belonging to the same Akkermansia species can
co-exist in the gut and the modulation of host-response can be
strain-specific55,56. For example, different A. munichipalia strains
have different effects on the differentiation of Regulatory T cells
(Tregs) and SCFA production56, both factors altered in blood and
gut, respectively, of PD patients6,9,57. Altogether these data
indicate that the increased abundance of Akkermansia spp in PD
might be linked to alterations in the immune response and
constipation. These effects might be strain-specific and more in-
depth strain-resolved metagenomics are needed to elucidate
these aspects in PD.
Among the most abundant taxa in PD, there were bacteria

belonging to the Christensenellaceae family, in line with the
previous reports11,12,21,42. These bacteria are widespread in the gut
of healthy individuals and their abundances positively correlate to
the intestinal transit time58. Via the production of H2 Christense-
nella spp. can support the proliferation of the archeon Methano-
brevibacter59, the major hydrogenotrophic methane producer in
the human gut. This explains the positive correlation between the
abundance of these two taxa59, which we also observed in our
dataset (Spearman rank test: PD, Z= 10.3, P value= 0.0005;
controls, Z= 8.8, P value= 0.0005; Supplementary Fig. 15).
Consistently, Methanobrevibacter and the 16S-predicted metabolic
pathways for the production of methane from H2 and CO2, and for
the synthesis of key co-factors involved in methanogenesis
(coenzyme B and M, Factor 420) were more abundant in PD
patients compared to controls. These data suggest an increased
production of methane in the gut of PD patients that could
influence the intestinal transit, as Methanobrevibacter is enriched
in constipated patients51,52, just as Akkermansia, and methane can
decrease peristaltic movements60. Surprisingly, to the best of our
knowledge, only one other study reported an enrichment in
Methanobrevibacter in PD20. It is worth noting that another 16S-
predicted pathway for the production of methane through acetate
degradation was enriched in controls. This pathway is mainly
found in Archaea of the genus Methanosarcina. However, we
detected these taxa enriched only in one dataset18 and only by a
single method (Supplementary Data 2). Hence, these data need to
be interpreted with caution as they might be an artifact of the
16S-based predictions. It is important to specify that in the human
gut-microbiota Archaea are considerably less abundant than
Bacteria, and current methodologies (DNA extraction, primers
used for 16S amplification) strongly discriminate against
Archaea61. Hence, it is possible that the abundances and the
diversity of these microorganisms are currently poorly represented
in the available datasets.

At the functional level, the depletion of the glutamate/
glutamine biosynthesis pathway and the higher abundance of
the glutamate degradation pathway in PD suggests an alteration
in the enteric production of these neurotransmitters. The gut
microbiota has been previously suggested to alter the
glutamate–glutamine–GABA cycles in schizophrenia and aut-
ism62,63 and alterations in the level of this transmitter have been
found in brains of PD patients64,65. Hence, it is intriguing to
speculate that the gut microbiota might influence the concentra-
tions of these chemicals in PD patients. Further experimental work
will be required to verify whether these metabolic changes in the
PD microbiota can induce alterations in the CNS. Surprisingly, the
majority of the predicted-pathways enriched in the PD microbiota
were related to ubiquinone (CoQ) and menaquinone (vitamin K2)
biosynthesis. Data from animal and pre-clinical studies showed
that both CoQ and vitamin K have a crucial role in avoiding the
mitochondrial dysfunctions observed in PD66,67. Therefore, the
increased biosynthetic capacity we observed in the PD-associated
microbiota is surprising. Although these findings would need to
be confirmed via e.g., shot-gun metagenomics/metabolomics, it is
tempting to speculate that the potential increase of vitamin K2
production in the gut might increase systemic concentrations of
these chemicals in PD potentially influencing disease develop-
ment. In fact, vitamin K plays an important role in the biosynthesis
of sphingolipids68 which are emerging as an important determi-
nant in PD development69. These data suggest novel mechanisms
through which the gut microbiota might potentially influence PD
development.
In summary, our analyses reveal consistent differences in the

average gut-microbiota composition between PD patients and
controls. The variation among studies is the strongest factor in
shaping the data structure, but by accounting for the variability
derived by the sampling cohorts we were able to show that the
alteration of the gut microbiome in PD is consistent across studies
and countries. Additional datasets would help to better quantify
the differences observed between PD and controls, helping to
identify country-specific effects that we could not resolve.
Moreover, the heterogeneity in the available metadata did not
allow us to account for more detailed confounding factors such as
co-morbidities, drug therapies, and diet. These data would help to
further refine the associations between PD and microbiome, and
identify taxa that could be mechanistically linked to the disease.
The differences in taxa abundances between PD and controls
indicate that the gut microbiota of PD patients shares similarities
with those of other neurological (e.g., multiple sclerosis) and
inflammatory gastrointestinal diseases. Taxa important in main-
taining gut integrity and health via the production of SCFA are
depleted in PD and this together with the growing evidence of
gut and systemic inflammation in PD, points towards an important
role of the gut microbiota in modulating the immune function in
this disease. Moreover, we were able to identify previously
overlooked taxa enriched in PD such as Methanobrevibacter and
Butyriciccocaceae, and identified some potentially new metabolic
routes through which the microbiota might influence PD. Our
findings align with the accumulating evidence indicating gut and
systemic inflammation in PD and suggest that the dysbiotic gut
microbiota could influence host immune function and be linked to
the gastrointestinal symptoms often observed in PD patients.

METHODS

Study selection

On March 29, 2020, Google Scholar was searched for publications that
contained all the words “16S”, “gut”, “Parkinson”, “metagenomic”, the exact
phrase “Parkinson’s disease”, at least one of the words “microbiota” [OR]
“microbiome” [OR] “gut” [OR] “intestinal” anywhere in the article. This
resulted in 1010 entries. Titles were then manually screened and if they
contained the words “microbiome” or “microbiota” and “Parkinson’s
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disease” the abstracts were further consulted. Moreover, the Sequence
Read Archive (SRA) in NBCI was queried with the following term
“Parkinson” [AND] “microbiome”, resulting in two additional studies
(Bioprojects): PRJNA530401 and PRJEB14928. We managed to match only
the latter Bioproject ID to a published study14, hence we considered only
this dataset in our analyses.

Inclusion criteria

We included all studies comparing the composition of the gut microbiota
between patients with confirmed PD to a control population without PD,
and that made the raw reads of the 16S rRNA-gene amplicon sequencing
available. Studies with any design (e.g., cohort studies, case–control
studies, or cross-sectional studies), and from any geographical area were
included. Studies could use any method for the acquisition and analysis of
samples. We identified a total of 23 studies that cataloged the gut
microbiome of PD patients using metagenomics (Supplementary Table 1).
Nine of these studies did not make the raw data publicly available. We
were unsuccessful in obtaining the raw reads from the authors, as data
were either protected by ethical restrictions or the authors did not answer
our requests. In other cases, the raw reads were available, but it was
impossible to associate the data with the disease status as this information
was not reported in the metadata. The samples from Scheperjans et al.15,
originally sequenced using a 454 technology, were recently re-sequenced
in a follow-up study by the same group using Illumina MiSeq16. Hence, we
only included in our analysis the most recent datasets. Finally, one study
used shot-gun metagenomics10, and three studies were available only as
pre-prints at the time of writing and the raw reads were not made
public yet.

Data retrieval and zOTU picking

Raw reads were downloaded from SRA or the European Nucleotide Archive
(ENA). Adapters were removed using the bbtools suit70. Data were
analyzed using Lotus71 and the UNOISE372 algorithm for zOTUs calculation,
bundled in a new Lotus version (Lotus2), currently under development.
Due to the technical variability among datasets (e.g., 16S region,
sequencing technology) the filtering parameters used by the sdm program
called by Lotus, were adjusted for each dataset independently and are
reported in the supplementary materials (Supplementary Data 5). For the
datasets of Petrov et al.17 and Weis et al.27, we had to decrease the
accepted minimum error due to the low quality of the sequencing data
(Supplementary Data 5). 16S-based functional predictions were obtained
using the default settings in picrust273 and the Metacyc database. In this
analysis, the dataset of Qian et al.18 was not included, as with the default
cutoffs the sequences aligned poorly with the reference database used.
Count tables for species, genera, families, and functional predictions were
then analyzed using R v3.6.274 and processed using the phyloseq R
package75. We then retained all samples with >4500 reads, as well as taxa
with >5 counts and predicted functionalities with >20 counts in at least
2.5% of the samples. These filtration steps left a total of 1211 (530 control,
and 681 PD samples) and 1121 samples (485 control and 636 PD samples)
for the taxonomic and predicted-function data, respectively. Enterotypes
were predicted using rarefied relative abundances of genera via the
https://enterotypes.org/ web-platform.

Statistical analyses of single studies

Alpha-diversity indices at the species level were calculated using the
microbiome R package76 after rarefying without re-sampling at the even
depth of 5000. Due to rarefaction eight samples were further removed,
leaving a total of 1203 samples (523 control and 680 PD samples). We
measured richness using the number of observed species, Chao1, Fisher’s
alpha, and ACE indices; evenness using the Bulla and Simpson indices,
dominance using the core abundance, which measures the relative
proportion of core species that exceed relative abundance of 0.2% in over
50% of the samples, and the Simpson’s index of dominance. Finally, we
estimated rarity using the low abundance index, which considers the
relative proportion of the least abundant species below a detection level of
0.2%, and the rare abundance index, which estimates the relative
proportion of the non-core species exceeding the detection level of
0.2% at 50% prevalence. In addition, we calculated the ratios of Firmicutes
to Bacteroidetes phyla and Prevotella to Bacteroides genera, as log2 ratios of
their relative abundances. In each dataset, the differences in alpha-
diversity between control and PD samples were assessed using Agresti’s
generalized odd ratios using the genodds function in the genodds

R package77. This statistic, based on ranks and analogous to the U statistic
underlying the Mann–Whitney test, does not make strong assumptions
about the distributions of measures and is comparable between measures
of diversity with different scales.
For each dataset, beta-diversity and differential abundance analyses

were performed using three independent approaches (described in the
sections below): (i) normalization via total sum scaling (TSS; i.e., relative
abundances) and differential abundance (DA) inference through
Wilcoxon–Mann–Whitney (WMW) tests; (ii) variance stabilizing transforma-
tion (VST) and DA inference using DESeq278; (iii) compositional approach
based on centered log ratios (CLR) and DA inference using analysis of the
composition of microbiomes (ANCOM)79. We then reported the number of
times each taxon showed a significant difference in abundance between
PD and controls across studies and statistical approaches. For example, a
taxon detected differentially abundant across all ten datasets and all three
approaches would have a final score of 30 (panel c in Figs. 5 and 6 and
Supplementary Figs. 10, 11, 14). Differential abundances of picrust2
predicted functionalities between PD and controls were inferred using
the same approach outlined above. The rarefaction used in the TSS
approach did not result in a loss of samples for the 16S-based predicted
functionalities.

Total sum scaling (TSS) and non-parametric tests

After rarefying without re-sampling at the even depth of 5000, data were
normalized by dividing the counts of each taxon for the total counts of all
taxa (total sum) in the sample. Beta-diversity matrices were calculated
using the Bray–Curtis (BC) dissimilarity index and the Jensen–Shannon
distances (JSD). Statistical differences between control and PD groups were
then tested using the permutational multivariate analysis of variance
(PERMANOVA) as implemented in the adonis2 (analysis of variance using
distance matrices, ADONIS) function in the vegan R package80. DA analysis
was performed using a two-sided WMW test, using the Benjamini–
Hochberg (BH) P value correction.

Variance stabilizing transformation (VST) and DESeq2
analyses

Since the DESeq2 approach does not account for zero-inflated data, the
correction factors were calculated using the GMPR method that is based
on geometric means of pairwise ratios81. Euclidean, BC, and JSD distances
were used as beta-diversity estimators after normalizing the data via VST
through the DESeq2 package. Statistical differences between control and
PD groups were tested using the adonis2 function as specified above. DAs
were calculated using default DESeq2 parameters that include a negative
binomial GLM fitting and a Wald test78. Multiple testings were accounted
for using BH P value correction.

Compositional analysis: centered log ratios (CLR) and ANCOM

Data were transformed using CLR, after imputing zeros through Bayesian-
multiplicative replacements via the count zero multiplicative approach
(“CZM”) in the cmultRepl function of the zCompostions R package82.
Euclidean distances, which for such data correspond to Aitchison
distances, were then calculated79. Statistical differences between control
and PD groups were tested using the adonis2 function as specified above.
DA analysis was performed using the count tables and the ANCOM
approach as implemented in the R script ancom_v2.083 using a 0.95 zero-
cutoff and significance at the 0.6 percentile.

Statistical analyses of the combined studies

The Agresti’s generalized odd ratios estimated for each alpha-diversity
index and each individual study were pooled using a random-effect meta-
analysis via the function metagen in the R package meta84.
Count tables obtained for each dataset were pooled and beta-diversity

analyses were performed using the three approaches described above
(TSS-, VST-, CLR-based analysis). For each normalization approach,
statistical differences between control and PD groups and the marginal
effects of study and disease status were tested using the adonis2 function.
We then used the distance measure that captured a highest fraction of the
variability to compute distance-based redundancy analyses (dbRDA).
dbRDAs were performed using the “CAP” option in phyloseq, which calls
the capscale function in the vegan package. Data were clustered without
conditioning (blocking) for studies and without constraining, by condition-
ing for study, and by conditioning for study and constraining for disease
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status (PD vs control):

Distance � 1

Distance � 1þ ConditionðstudyÞ

Distance � statusþ ConditionðstudyÞ

The significance of the constrain was tested using an ANOVA-like
permutation test (anova.cca function in the vegan R package). For each
normalization method, we investigated the effect of study-dependent
factors such as country, sequencing platform (e.g., MiSeq vs IonTorrent),
sequencing approach (single-end vs paired-end), the region of the 16S
gene used (e.g., V4 vs V1–V2), and extraction methods by creating
additional dbRDAs and constraining the data for each individual factor. The
effect of each constraining variable was tested using an ANOVA-like
permutation test. We then verified whether accounting for the variability
introduced by the study alone will allow us to simultaneously account for
the variation derived by the other technical factors. We compared the
adjusted R2 (R2adj) of a dbRDA obtained using the full model distance ~
country+ 16S region+ ends+ seq+ extraction+ extraction type+ status
with the one of a reduced model including only disease status and study
(distance ~ study+ status). Similar R2adj, differences ≤0.1%, indicates that
the two models are equivalent. The influence of study-specific factors on
microbial community structure was assessed at the species, genus, and
family level. Finally, we used the TSS normalized data to correlate the
relative abundance of the taxa to the constrained and conditioned dbRDA
via the envfit function in the vegan package. We selected only taxa
significantly correlated with the clustering (P value < 0.01), and showing
the highest degree of variation (≥ |0.095| for genus and species, and ≥ |
0.07| for family) along the constrained axis (CAP1).

Similarity among studies

We used the unconstrained and unconditioned dbRDA performed on the
TSS normalized species data to estimate dissimilarity among studies. We
selected the coordinates of each sample across all axis that explained 90%
of the data variance. These scores were then used to calculated Euclidean
distances amongst samples. We then calculated distances between study
centroids using the R package usedist85. Similarity among studies was then
visualized using non-metric multidimensional scaling (NMDS) via the
metaMDS function in the vegan R package.

Differential abundance analyses of the combined datasets

We combined two independent approaches to gather a consensus view on
the taxa/pathways differentially abundant between PD patients and controls.
We refer to these two approaches as Pooled data and Pooled results. In the
Pooled data approach, the count tables obtained for each dataset were
pooled and processed with the same methods used for the single datasets: (i)
TSS normalization on rarefied data and independence_test in the coin R
package86 blocking data for the study; (ii) DESeq2 approach adding the
“study” variable as a covariate in the model; (iii) ANCOM performed using a
mixed-effect model with the effect of PD allowed to vary across study (via the
formula “random.formula= “~1+ status | study”), using a zero-cutoff 0.975
and significance at the 0.6 percentile. For all three methods, BH P value
correction was used and the threshold for significance was set at ≤0.05. If a
taxon or pathway had a significant difference in abundance in two out of
three approaches, it was then retained (Consensus).
To this first list of differentially abundant taxa/pathways, we added the

data obtained from the Pooled results approach. In this approach, we
normalized the count table of each individual dataset using CLR after
adding a pseudo-count of 1 to 0 values. We then selected all taxa and
pathways detected in at least three studies and estimated their shift in
abundance between PD and controls using linear models for family,
genera, and 16S-based predicted functionalities and Agresti’ generalized
odd ratios for species. We then pooled these results using a random-effect
meta-analysis via the metagen R function. The resulting P values were
corrected using BH. All taxa/pathways showing an adjusted P value ≤0.05
and a 95% confidence interval (CI) not crossing 0 were retained.
Taxa and pathways showing significant differences in abundance between

PD and controls in the Pooled data (two out of three methods referred to as
Consensus) or Pooled results approach were further considered. All taxa
having abundances potentially influenced by age and/or gender were then
removed (see below). For each taxa/pathway, the effect size and the
respective 95% CI were estimated using the Pooled results approach

(random-effect meta-analysis). Finally, the correlation between the genera
Christensenellaceae R-7 group and Methanobrevibacter was calculated on the
relative abundances of non-rarefied data using a Spearman correlation test
by blocking the data by study (spearman_test in the coin R package).

Influence of confounding factors on differential abundances

The metadata made available by five studies were used to assess the
influence of age and gender (the only two factors reported in all five
studies) on taxa abundances. We used generalized linear mixed models
(GLMMs) controlling for zero-inflation as implemented in the R package
glmmTMB87.

Abundance � status � genderþ status � ageþ 1þ statusjstudyð Þ

We created random slope and random intercept GLMMs for all taxonomic
ranks we analyzed (species, genus, family). Models were fitted using either
a negative binomial or a generalized Poisson distribution. First, we
constructed zero-inflated and non-zero-inflated models, and choose the
best model using the Akaike information criterion (AIC; ΔAIC > 2). We then
created reduced models omitting each of the predictors (status, age,
gender), their interactions (status:gender, status:age), and considering a
constant effect of the disease status across studies (i.e., random effect = 1 |
study). We then compared all models using the model.sel function and the
AIC in the R package MuMIn88. If one of the best models (within a ΔAIC of
2) did not contain the variable disease status we concluded that the
disease status might be not an essential factor needed to explain the taxon
abundance. Hence, we removed these taxa from further discussion. If all
best models contained the variable disease status, we consider PD as an
essential factor shaping taxa abundances, thus we retained the taxa. For
building the GLMMs, raw counts were used and data were rarefied to a
fixed depth of 10,000 to avoid overparameterization.

Reporting summary

Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.
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