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Summary

1. Meta-analysis has become a standard way of summarizing empirical studies in many fields, including ecology

and evolution. In ecology and evolution, meta-analyses comparing two groups (usually experimental and control

groups) have almost exclusively focused on comparing the means, using standardized metrics such as Cohen’s /

Hedges’ d or the response ratio.

2. However, an experimental treatment may not only affect the mean but also the variance. Investigating differ-

ences in the variance between two groupsmay be informative, especially when a treatment influences the variance

in addition to or instead of themean.

3. In this paper, we propose the effect size statistic lnCVR (the natural logarithm of the ratio between the coeffi-

cients of variation, CV, from two groups), which enables us to meta-analytically compare differences between

the variability of two groups.We illustrate the use of lnCVRwith examples from ecology and evolution.

4. Further, as an alternative approach to the use of lnCVR, we propose the combined use of ln s (the log stan-

dard deviation) and ln �x (the logmean) in a hierarchical (linearmixed)model. The use of ln swith ln �x overcomes

potential limitations of lnCVR and it provides a more flexible, albeit more complex, way to examine variation

beyond two-group comparisons. Relevantly, we also refer to the potential use of ln s and lnCV (the log CV) in

the context of comparative analysis.

5. Our approaches to compare variability could be applied to already published meta-analytic data sets that

compare two-group means to uncover potentially overlooked effects on the variance. Additionally, our

approaches should be applied to future meta-analyses, especially when one suspects a treatment has an effect not

only on the mean, but also on the variance. Notably, the application of the proposed methods extends beyond

the fields of ecology and evolution.

Key-words: systematic reviews, meta-regression, effect size, variability, dispersion, parasite behav-

iourmanipulation, sex chromosomes, coefficient of variation

Introduction

Meta-analysis has become an indispensable quantitative tool

for summarizing empirical studies not only in medical and

social sciences (Egger, Smith & Altman 2001; Cooper, Hedges

&Valentine 2009), but also in biological sciences and especially

ecology and evolution (Nakagawa & Poulin 2012; Koricheva,

Gurevitch & Mengersen 2013). In almost all fields, it is com-

mon to make comparisons between the means of a certain

measurement in a treatment (experimental) group and a con-

trol group, such measurements include morphological, physio-

logical or behavioural traits.

The most common effect size statistic for comparing two

means is the standardized mean difference, often referred to as

Cohen’s d, or its bias-corrected metric, sometimes referred to

as Hedges’ g or Hedges’ d (referred to as d hereafter; Hedges &

Olkin 1985; Nakagawa&Cuthill 2007; Borenstein et al. 2009).

The standardizedmean difference, d and its sampling variance,

s2d are given by:

d ¼ �xE � �xC
spooled

J; eqn 1

J ¼ 1� 3

4ðnC þ nE � 2Þ � 1
; eqn 2

spooled ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnC � 1Þs2C þ ðnE � 1Þs2E

nC þ nE � 2

s
; eqn 3

s2d ¼
nC þ nE
nCnE

þ d2

2ðnE þ nCÞ ; eqn 4

where �xC and �xE are the samplemeans of the control group (C)

and experimental group (E), respectively, sC and sE are the stan-*Correspondence author. E-mail: shinichi.nakagawa@otago.ac.nz
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dard deviations of the two groups, nC and nE are the sample

sizes of the two groups, and J is a bias correction for small sam-

ple sizes. Note that d is referred to as Cohen’s d without J cor-

rection, but when the correction is used, d stands forHedges’ d.

Some authors recommend that Equation (4) be multiplied by

J2 (Borenstein et al.2009) andalso that oneuse 2(nE + nC � 2)

rather than2(nE + nC) (Nakagawa&Cuthill 2007).

Another metric that is commonly used in the fields of ecol-

ogy and evolution is the response ratio, which is the natural

logarithm of the ratio between the two means (lnRR). The

use of lnRR in meta-analysis was first formalized in Hedges,

Gurevitch & Curtis (1999); lnRR and its sampling variance,

s2lnRR , are given by:

lnRR ¼ ln
�xE
�xC

� �
; eqn 5

s2lnRR ¼ s2C
nC�x2C

þ s2E
nE�x2E

: eqn 6

One of the main reasons for the introduction of lnRR

is that d, by its construction as a standardized value, is

affected not only by the difference in the means of the

two groups but also by spooled (Equation 3), so that the

magnitudes of standard deviations of the two groups

influence the comparative effect of treatments (cf. Osen-

berg, Sarnelle & Cooper 1997; see also Hillebrand 2008).

As one can see, lnRR is free from the effects of the stan-

dard deviations, which are only present in the variance of

lnRR (Equation 6). Notably, lnRR makes sense only for

ratio scale data (Houle et al. 2011), that is, measurements

truly bounded at zero (e.g. survival time or body length).

The difference in standard deviations (i.e. variation or dis-

persion) between two groups may also be important in itself,

although meta-analyses in the past have focused almost exclu-

sively on differences between means (but see Vehvilainen,

Koricheva & Ruohomaki 2007; Leinonen et al. 2008). Inter-

estingly, ecological researchers have recently urged a shift of

focus from themean to the variance, because they have noticed

that dispersion (variation) of traits within species and interspe-

cific differences in such dispersions are informative, albeit

neglected (Violle et al. 2012; see also Nakagawa & Schielzeth

2012). What is more, experiments and treatments are likely to

not only affect themean but also the variance (Osenberg, Sarn-

elle & Cooper 1997). There is, however, a dearth of statistics

that allow comparison of variability between two groups in a

meta-analytic framework (cf. Hedges & Nowell 1995),

although modelling variability has been an active area of

research (e.g. Lee&Nelder 2006). Here, we derive and describe

such a statistic, which is motivated by two previous papers:

Raudenbush & Bryk (1987) and Hedges, Gurevitch & Curtis

(1999). Then, we provide two examples from ecology and evo-

lution to illustrate the use of this new metric. We also describe

an alternative and flexible approach, which is more complex,

but may overcome potential limitations of the newly proposed

metric. We end by discussing the potential usage of our

approaches to meta-analyse variability across studies and their

implications.

Astatistic formeta-analytic comparison of
variability

Based on the results fromRaudenbush&Bryk (1987), an unbi-

ased estimator of the natural logarithm of the ‘population’

standard deviation (ln r) and its sampling variance (s2lnr) are

expressed, respectively, as:

ln r̂ ¼ ln sþ 1

2ðn� 1Þ ; eqn 7

s2ln r̂ ¼ 1

2ðn� 1Þ : eqn 8

where ln r̂ is an estimate of ln r. It is assumed that with

a large sample size and sufficiently large value of r, ln r
is normally distributed with variance s2lnr. We note that if

the standard deviation (s) is estimated from the residual

variance, (n � 1) in Equation (8) should be replaced by

the corresponding degrees of freedom. Given Equa-

tions (7) and (8), the logarithm of the ratio of the stan-

dard deviations of the experimental and control groups

(lnVR, termed ‘variability ratio’; cf. Hedges & Nowell

1995) and its sampling variance (s2lnVR) can be expressed

as:

ln VR ¼ ln
sE
sC

� �
þ 1

2ðnE � 1Þ �
1

2ðnC � 1Þ ; eqn 9

s2ln VR ¼ 1

2ðnC � 1Þ þ
1

2ðnE � 1Þ : eqn 10

However, lnVR may be limited in its applicability,

namely because when �xE is larger than �xC, it is likely

that sE is larger than sC. This dependence between the

mean and variance, known as the mean–variance relation-

ship, is common. A natural example is when the data are

counts that follow a Poisson distribution, so the mean is

equal to the variance. Thus, this mean–variance relation-

ship may make the use of lnVR as a measure of differ-

ences in variability somewhat limited, especially when one

wants to know a shift in variability, which accounts for

an accompanying mean change.

Therefore, we propose the natural logarithm of the

ratio between the coefficients of variation from two

groups (lnCVR; termed ‘coefficient of variation ratio’) as

a more general effect size statistic than lnVR for examin-

ing variability difference between the two groups. Using

Equations (5) and (9), lnCVR can be expressed as:

lnCVR ¼ ln
CVE

CVC

� �
þ 1

2ðnE � 1Þ �
1

2ðnC � 1Þ : eqn 11

where CVE and CVC are sE=�xE and sC=�xC, respectively. An

advantage of this formulation is that the use of CV removes

the effects of expected changes in the standard deviation due to

changes in the mean. We can derive the sampling variance for

Equation (11), using Equations (6) and (10) (for the details of

the derivation, see Appendix 1):
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s2lnCVR ¼ s2C
nC�x2C

þ 1

2ðnC � 1Þ � 2qln �xC ;ln sC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2C

nC�x2C

1

2ðnC � 1Þ

s

þ s2E
nE�x2E

þ 1

2ðnE � 1Þ � 2qln �xE;ln sE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2E

nE�x2E

1

2ðnE � 1Þ

s
;

eqn 12

where q ln �xC; ln sC and q ln �xE; ln sE are the correlations

between the means and the standard deviation in the control

and experimental groups on the log scale across studies. Also,

when sample size is small (i.e. in a meta-analytic context

equivalent to a small number of effect sizes), it may be

more practical to estimate the variance above assuming

q ln �xC; ln sC ¼ q ln �xE; ln sE. In this approximation, a com-

mon correlation is estimated by using all means and standard

deviations in the data set jointly. We now provide two exam-

ples to illustrate the use of lnCVR (all data sets and associated

files used in this study are supplied as Supporting informa-

tion).

Example 1: host–parasitemanipulation

Poulin (1994) investigated the effect of parasite infection on

host behaviour collecting the results from the experimental

studies on this topic (i.e. analysing the standardized mean dif-

ferences between infected groups and control groups, using

Hedges’ d; referred to as d hereafter). Later, Poulin (2000)

expanded this data set and tested a time-lag effect (Trikalinos

& Ioannidis 2005) to examine whether the effect size for para-

site infection on host behaviour had declined over time. These

two meta-analytic studies investigated mean differences in

behaviour, but not differences in behaviour variability between

infected groups and control groups. Some parasitic species are

known to manipulate host behavioural means (e.g. making

hosts more active or making hosts use shelters less frequently),

but it is possible that some parasites may manipulate behavio-

ural variability (Poulin & Thomas 1999; Poulin 2013). For

example, by reducing host behavioural variability (increasing

predictability), hosts may become more susceptible to preda-

tors, which are the next host of the parasitic species (cf. Briffa

2013).

Here, we have updated the aforementioned data set (see

Supporting information for the details of this process). We

conducted meta-analyses on mean behavioural differences

between infected and control groups using d (Equation 1) and

lnRR (Equation 5) and also on differences in CV using lnCVR

(Equation 11). For each meta-analytic metric, we conducted

two kinds of meta-analysis: (i) a normal random-effects meta-

analysis (REMA) assuming independence of all effect sizes,

and (ii) a multilevel meta-analysis (MLMA) accounting for

correlated structures that may arise from effect sizes originat-

ing from the same studies (see Nakagawa & Santos 2012). The

rationale for running REMA is that REMA is probably the

most common meta-analytic model not only in the field of

ecology and evolution but also in other fields, such as medical

and social sciences. REMA was conducted in the R package

metafor (Viechtbauer 2010), while MLMA was undertaken

using the R package MCMCglmm (Hadfield 2010). The for-

mer is a likelihood-based package, while the latter is based on

Bayesian MCMC (Markov chain Monte Carlo); we note that

the likelihood and Bayesianmethods could produce equivalent

results when we use non-informative priors, as was the case for

our analyses (see Supporting information for details of statisti-

cal procedures such as the settings for Bayesian priors). Fur-

ther, by extending the multilevel meta-analytic models, we

constructed two multilevel meta-regression models (MLMR)

with each having one of the following twomoderators (predic-

tors): (i) a three-level categorical variable, denoting which of

the three parasitic phyla (Platyhelminthes, Nematoda and

Acanthocephala) an effect size originated fromand (ii) publica-

tion year, investigating a time-lag effect, as in Poulin (2000).

Note that positive d and lnRR values indicate that parasites

manipulated host behaviour in directions expected to increase

exposure to predation, whereas positive lnCVR values mean

that parasites increase behavioural variability (see Supporting

information formore details).

The patterns of results from the meta-analyses on mean dif-

ferences were similar when quantified by both metrics (i.e. d

and lnRR). The overall means for d and lnRR were positive

and similar in both the random-effects and multilevel models,

but the estimates for d and lnRR were statistically significant

only in the random-effect models (i.e. 95% confidence or credi-

ble intervals not spanning across zero; see Fig. 1; REMA:

meta-analytic mean for d, bd[overall mean] = 0�174, [95% confi-

dence/credible interval], [0�050, 0�298], meta-analytic mean for

lnRR, blnRR[overall mean] = 0�116 [0�039, 0�193]; MLMA: bd[over-

all mean] = 0�132 [�0�121, 0�354], blnRR[overall mean] = 0�044
[�0�051, 0�264]; see also Table S1 in Appendix S1). Moreover,

we observed large heterogeneity (sensu Higgins et al. 2003) in

the analysis of both metrics (REMA: I2 for d = 89�36%, I2 for

lnRR = 94�64%; MLMA: I2 for d = 90�78%, I2 for

lnRR = 96�51%; see also Table S2, for the details of I2 for

MLMA as described in Nakagawa & Santos 2012). The meta-

analyses suggest that parasite-induced behavioural changes

may occur, but large heterogeneity implies that such host

manipulation may be species or behaviour specific. Indeed, the

meta-regression models testing the effect of different phyla

showed that only the species from Acanthocephala induced

host behavioural changes in a direction that is expected to

increase parasite transmission (MLMR: bd[Acanthocephala] = 0�497
[0�149, 0�891] blnRR[Acanthocephala] = 0�334 [0�068, 0�590]; Fig. 1;
see also Table S2). In the other meta-regression models testing

a time-lag effect (originally performed in Poulin 2000), we did

not find statistically significant evidence for effect sizes becom-

ing smaller over years, but such an effect was in the expected

direction (i.e. negative, MLMR: bd[time-lag] = �0�172 [�0�395,
0�045], blnRR[time-lag] = �0�138 [�0�307, 0�008]; Fig. 1).
Unlike the results examining mean differences (i.e. d and

lnRR), we did not find any statistically significant or nota-

ble patterns for lnCVR in meta-analytic models (REMA:

blnCVR[overall mean] = �0�009 [�0�095, 0�078]; MLMA: blnCVR

[overall mean] = 0�018 [�0�142, 0�176 ]) or in meta-regression

models (Fig. 1; see also Table S1). However, we noted large

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 6, 143–152
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heterogeneity in the meta-analytic models (REMA:

I2 = 90�85% MLMA: I2 = 92�86%; Table S2). All these

findings suggest that variability in behaviour may increase

or decrease following parasitic infection. As far as we are

aware, this is the first meta-analytic attempt to investigate

changes in host behavioural variability due to parasitic

infection. Clearly, we require further analysis or more stud-

ies to pinpoint exactly under what circumstances one might

expect parasites to increase or decrease host behavioural

variability in a manner that increases parasitic transmission.

Example 2: variability differences between the
sexes

Reinhold & Engqvist (2013) tested the sex-chromosome

hypothesis, which postulates that one may expect larger trait

variability in the heterogametic than the homogametic sex.

Indeed, the authors found strong support for this hypothesis,

showing that males have amore variable body size in twomale

heterogametic groups (i.e. mammals and insects, excluding

butterflies as this clade has homogametic males), and also that

females have more variable body size in female heterogametic

taxa (birds and butterflies). Interestingly, Reinhold & Engqvist

(2013) used the metric termed Ivar, defined as ln(CVmale size/

CVfemale size). As you can see, Ivar is conceptually identical to

lnCVR above (Equation 11). However, their original analyses

did not account for sampling (error) variance and phylogenetic

relatedness, although some taxonomic relatedness was incor-

porated in the models. Here, we reanalysed the mammal and

bird data sets fromReinhold & Engqvist (2013) by conducting

formal meta-analyses. As in Example 1, we performed REMA

and MLMA, which incorporated article and species identities

(see Appendix S1 formore details). In addition, we used phylo-

genetic models building upon our multilevel meta-analyses,

assuming aBrownianmotionmode of evolution (i.e. multilevel

phylogenetic meta-analyses, MLPMA; Hadfield & Nakagawa

2010; Nakagawa & Santos 2012; see also Lajeunesse, Rosen-

berg& Jennions 2013). To correct for phylogenetic relatedness,

we used trimmed andmodified versions of themammalian tree

from Bininda-Emonds et al. (2007) and of the avian tree from

Jetz et al. (2012). We used the natural logarithm of the ratio

between CV for the heterogametic sex (numerator) and CV for

the homogametic sex (denominator) in our analysis. Therefore,

positive lnCVR values indicate that the body size of the heter-

ogametic sex is more variable than that of the homogametic

sex (see Appendix S1 formore details).

In all the random-effects andmultilevel meta-analyses of the

mammals and birds data sets, overall means for lnCVR were

positive and statistically significant (Fig. 2; REMA blnCVR[mean

for mammals] = 0�041 [0�012, 0�070], blnCVR[mean for birds] = 0�056
[0�024, 0�089]; MLMA: blnCVR[mean for mammals] = 0�046 [0�012,
0�083], blnCVR[mean for birds] = 0�062 [0�026, 0�100]; Table S3).

Therefore, as in the original analysis by Reinhold & Engqvist

(2013), this result showed that the heterogametic sex exhibits

more variability than the homogametic sex, in both mammals

and birds. Ourmeta-analyses, however, also revealed large het-

erogeneity in all meta-analytic models (REMA: I2[mammals]

= 76�13%, I2[birds] = 88�17%; MLMA: I2[mammals] = 77�79%,

I2[birds] = 88�55%), suggesting that much of variability in effect

sizes, lnCVR, is due to either differences among studies or

among species (see Table S4). The incorporation of phyloge-

nies did not change point estimates but increased the CI of the

overall mean lnCVR, rendering themean estimates statistically

non-significant (MLPMA: blnCVR[mean for mammals] = 0�043
[�0�032, 0�119], blnCVR[mean for birds] = 0�060 [�0�002, 0�119]).
We note that overall means produced by phylogenetic models

could represent an ancestral value (Hadfield & Nakagawa

2010), so it is perhaps not surprising that such estimates have

higher uncertainty. However, it is important to note that our

point estimates from the three different meta-analytic models

–1·0 –0·5 0·0 0·5 1·0 –1·0 –0·5 0·0 0·5 1·0 –1·0 –0·5 0·0 0·5 1·0

d

REMA

MLMA

MLMR
Time-lag

Acanthocephala

Nematoda

Platyhelminthes

Mean

Mean

lnRR lnCVR

152

152

85

20

47

n

152

Fig. 1. Forest plots ofHedges’ d, lnRR, lnCVR from the data set of parasitic effects onhost behaviour. Point estimates and 95%confidence intervals

or credible intervals (CIs) are shown. Solid diamonds are estimates from random-effects meta-analysis (REMA), while solid squares and solid circles

are estimates frommultilevelmeta-analyses (MLMA) andmultilevelmeta-regressionmodels (MLMR; note that publication year was z-transformed

so that the regression coefficient for time-lag effect is comparable to other estimates), respectively. Sample sizes (n; the number of effect size values) for

different estimates are listed on the right-hand side of the figure. Note that positive effect size values in d and lnRR indicate that parasites manipulate

host behaviour to facilitate their transmission,while positive values in lnCVRmean that parasites increase variability (CV)of host behaviour.
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are very similar, and these point estimate values are in accor-

dance with the sex-chromosome hypothesis. Nonetheless, the

results from ourMLPMA indicate the importance of consider-

ing phylogeny in meta-analysis, as recently demonstrated by

Chamberlain et al. (2012).

Limitations of lnCVR and an alternative approach

We see two potential limitations for lnCVR. First, as for the

log response ratio, lnRR, the use of lnCVR is only limited to

ratio scale data (note that this is not the case for ln r̂ or lnVR).

Secondly, more importantly, the use of CV in lnCVR assumes

that the standard deviation is proportional to the mean. In

many ecological and evolutionary data sets, such an assump-

tion may not be supported. This is especially so given Taylor’s

law, also known as the power law. Taylor’s law is an empiri-

cally derived relationship, which states that the variance is a

power function of the mean in many biological and physical

systems (Taylor 1961; see also Kilpatrick & Ives 2003). Tay-

lor’s law can be defined as:

s2 ¼ a�xb; eqn 13

where a and b are some constants. As one can see, when Equa-

tion (13) holds, the standard deviation is not proportional to

themean undermost circumstances.However, on the log scale,

the mean and standard deviation (or variance) have a linear

relationship:

2 ln s ¼ ln aþ b ln �x: eqn 14

Therefore, when the Taylor’s law appears to hold in data,

we recommend an alternative approach that is equivalent to

meta-analysis using lnCVR. This alternative approach uses a

hierarchical model with ln r̂ as the response (Equation 7), and

ln �x and groupings (i.e. control and experiment) as predictors.

We describe this model below, but first, we feel it is also impor-

tant to describe a comparablemeta-analytic model for clarity.

The REMA using lnCVR such as those used in Examples 1

and 2, can be written as:

lnCVRi ¼ lþ si þmi; eqn 15

si �Nð0;r2
sÞ; eqn 16

mi �Nð0;r2
lnCVRi

Þ; eqn 17

where lnCVRi is the effect statistic, as in Equation (11), for the

ith study (i = 1, 2,. . ., k; k is the number of studies or papers), µ
is the overall mean (i.e. meta-analytic mean), si is a random-

effects term describing the deviation from µ for the ith study

(i.e. a study-specific effect), which is assumed to be normally

distributed around 0 with a variance of r2
s (i.e. the between-

study variance), mi is a random-effects term describing the

sampling variation for the ith study, which is assumed to be

normally distributed with r2
lnCVRi

(i.e. the within-study vari-

ance for the ith study). Typically, r2
lnCVRi

is substituted by the

plug-in value s2lnCVRi
(Equation 12), although the variation in

this estimate can also be included in the analysis (Schmid &

Mengersen 2013).We can use a hierarchical/multilevel (2-level)

model, or a random-slope linearmixed-effects model (Rauden-

bush & Bryk 2002), to compare variability between two

groups, using ln r̂ and ln �x. An equivalent model to Equa-

tions (15–17) can be written as (cf. Schielzeth & Forstmeier

2009):

ln r̂j ¼ ðb0 þ siÞ þ ðb1 þ uiÞGroupj þ b2 ln �xj þ ej þmj;

eqn 18

si
ui

� �
�N

0
0

� �
;

r2
s qrsru

qrsru r2
u

� �� �
; eqn 19

ej �Nð0;r2
eÞ; eqn 20

mj �Nð0;r2
lnrj

Þ; eqn 21

where ln r̂j is the jth effect size as in Equation (7) (j = 1, 2,. . .,

n; n is the number of effect sizes), ln �xj is the mean estimate for

the jth effect size, Group is a (binary) dummy variable (e.g. the

control group = 0 and the treatment group = 1), b0 is the

grand intercept (the overall mean for control groups), b1 is the
grand slope or regression coefficient for Group (it is perhaps

most intuitive to think b1 as the difference between control and
treatment groups), b2 is the slope or regression coefficient for

ln �x, si (random intercept) is the deviation from b0 for the ith
study (i = 1, 2,. . ., k), ui (random slope) is the deviation from

b1 for the ith study, si and ui have a multivariate normal

–0·2 –0·1 0·0 0·1 0·2
lnCVR

Birds
REMA

MLMA

MLPMA

Mammals
REMA

MLMA

MLPMA

n

250

201

201

201

250

250

Fig. 2. A forest plot of meta-analytical comparisons of variability

(CV) in the body size of the two sexes performed using lnCVR metric

on two data sets: mammals and birds. Point estimates and 95% confi-

dence intervals or credible intervals (CIs) are shown. Solid diamonds

are estimates from random-effects meta-analysis (REMA), solid circles

are estimates from multilevel meta-analyses (MLMA), and empty cir-

cles are estimates from multilevel phylogenetic meta-analyses

(MLPMA). Sample sizes (n; the number of effect size values) for the

two data sets are shown on the right side. Note that positive values in

lnCVR mean that the heterogametic sex has higher variability (CV) in

body size than the homogametic sex, as predicted by the sex-chromo-

some hypothesis.
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distribution with the variance–covariance structure specified in

Equation 19 (q is the correlation between si and ui), and ej is
the jth residual value which is normally distributed with r2

e ,

andmj is a sampling error effect for the jth effect size, normally

distributed with r2
lnrj

, which is the sample variance for the jth

effect size (in practice, s2ln r̂i
as in Equation (8) is usually used).

In this formulation, we are assuming that each study has only

one pair of control and treatment groups, but this does not

need to be the case (e.g. more than one pairs of such groups

can come from one study, see Example 3 and Appendix S1).

Importantly, the overall mean (µ) in Equation (15) and the

regression coefficient (b1) in Equation (18) are the equivalent

parameters of interest, because they both represent the differ-

ence in variability between the two groups. We can flexibly

change Equation (18) to make this model suitable for different

types of data. For example, if we use �x and possibly the square

term of �x, instead of ln �x, then there is no requirement for ratio

scale data. That is, sets of interval scale data, which can span

around 0 (e.g. the degree Celsius, °C), can also be used to com-

pare variability. Additionally, the term relating to themean (�x)

is not necessary if the mean and standard deviation are inde-

pendent (i.e. nomean–variance relationship).We note that one

possible shortcoming of this hierarchical model formulation is

that we assume that �x is estimated without error. Clearly, this

is usually not the case. However, often the variation induced

by this estimate is negligible compared with the total variation

in the data, so can be justifiably ignored (cf. Raudenbush &

Bryk 1987, 2002). This is analogous to the common practice of

ignoring the variability associated with the estimation of the

within-study variance. Alternatively, we could accommodate

these sources of variation in the model by including measure-

ment error, often called measurement error models (i.e. explic-

itly modelling sample variance in predictors; see Buonaccorsi

2010). We could also employ a bivariate-response meta-ana-

lytic model by using the first response as ln r̂ with sampling

(error) variance, 1/2 (n � 1) (as in Equation 8) and the second

response as ln �x with the sampling variance, s2=n�x2 (cf. Equa-

tion 6), thus simultaneously modelling both effects with varia-

tion (see Raudenbush & Bryk 2002; Nam, Mengersen &

Garthwaite 2003). A difficulty of such a bivariatemeta-analytic

model is that we do not know sampling (error) covariance

(Riley 2009), although we note some solutions to this issue

have been proposed (Riley, Thompson&Abrams 2008). Obvi-

ously, the implementation of bivariate meta-analytic models,

as well as measurement errormodels, is more complex than the

random-slope mixed models described above (Equation 18)

and beyond the scope of this study.

Example 3: reanalysis of variability differences
between the sexes

We used models based on Equation (18) to reanalyse data sets

from Example 2. We fitted two kinds of random-slope mixed-

effects models (i.e. without phylogeny, RSMM and with phy-

logeny, PRSMM) for both mammal and bird data sets (see

Appendix S1 for more details). As seen in Fig. 3, our main

assumption that ln s and ln �x have a linear relationship

seemed to be well supported (Fig. 3b,d). In contrast (and

as anticipated given the previous observation), the linear-

ity between s and �x seemed to be less well supported

with variation in s increasing with increasing �x (i.e. het-

eroscedasticity; Fig. 3a,c). Nonetheless, our results from

the random-slope mixed models are largely consistent with

those from models using lnCVR (Example 2). The Group

effect (as described in Equation 18) was in the expected

direction (Fig. 4). In other words, the heterogametic sex

showed more variation in body size in both mammals

and birds regardless of phylogenetic corrections in the

models (RSMM: bln r̂½Group formammals� = 0�036 [0�006–0�064],
bln r̂½Group for birds� = 0�053 [0�026–0�090]; PRSMM:

bln r̂½Group formammals� = 0�039 [0�010–0�067], bln r̂½Group for birds� =
0�053 [0�026 = 1–0�088]; details of results in Table S5).

These results are in line with the original conclusions of

Reinhold & Engqvist (2013), which find support for the

sex-chromosome hypothesis.

Anextension: phylogenetic comparative analysis

The hierarchical/multilevel model described above (Equa-

tion 18) can be used in the context of comparative biology

(Hadfield & Nakagawa 2010; Nakagawa & Santos 2012). For

example, wemay be interested in evaluating interspecific differ-

ences in variability of a trait, after accounting for sampling

(error) variability (e.g. leaf size; cf. Violle et al. 2012). We may

also want to test a hypothesis regarding how aspects of species’

distribution (e.g. altitude) explain such variability. In such

instances, amodel can be written as:

ln r̂l ¼ b0 þ b1w1 þ b2 ln �xl þ al þ ul þml; eqn 22

al �Nð0;r2
aAÞ; eqn 23

ul �Nð0;r2
uÞ; eqn 24

ml �Nð0; s2ln r̂l
Þ; eqn 25

where ln r̂l is the estimated log standard deviation of a trait

of interest (e.g. leaf size) for the lth species (l = 1, 2,. . ., t; t is

the number of species), ln �xl is the log trait mean for the lth

species, wl is a value of a predictor for the lth species (e.g.

altitude), b0 is the intercept, b1 is the slope or regression

coefficient for w, b2 is the slope or regression coefficient for

ln �x, al is the phylogenetic effect for the lth species, which is

normally distributed with r2
aA where r2

a is the variance due

to phylogeny and A is a l by l matrix of distances between

species derived from a phylogenetic tree (see below), ul is the

species-specific effect (including a residual) for the lth species,

which is normally distributed with a variance of r2
u, and ml

is sampling variance for the lth species and is normally dis-

tributed with a variance of s2ln r̂l
(as in Equation 8). A group

of models, which incorporate phylogenetic relatedness (e.g.

using A in Equation 23), are often referred to as phyloge-

netic comparative methods (Paradis 2012). Thus, this model

(Equation 22) can be seen as another example of just such a

method. The correlation matrix A can be changed according
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to different models of evolution (Nakagawa & Santos 2012;

Paradis 2012); note that in the above analyses, we used the

Brownian motion model of evolution, which assumes that

trait differences are proportional to phylogenetic distances.

As discussed earlier, we could employ a bivariate-response

model with ln �x and ln r̂. In such a model, one could investi-

gate what are termed, ‘phylogenetically heritable’, ‘additive

phylogenetic’ or just ‘phylogenetic’ correlations (sensu Lynch

1991; Housworth, Martins & Lynch 2004); this correlation is

the phylogenetic equivalent of a genetic correlation in quan-

titative genetics. Interestingly, the phylogenetic correlation

could represent the degree of co-evolution or independent

evolution between the mean and variance of the trait.

We also note that if the mean and standard deviation are

proportional, the use of the log CV (lnCV) could be a useful

simplification in the context of comparative analysis. The effect

statistic, lnCV and its sampling variance can be given by (see

Appendix 1):

lnCV ¼ ln s� ln �xþ 1

2ðn� 1Þ ; eqn 26

s2lnCV ¼ s2

n�x2
þ 1

2ðn� 1Þ � 2qln �x;ln s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

n�x2
1

2ðn� 1Þ

s
: eqn 27

Then, themodel equivalent to Equation (22) using lnCV is:

lnCVl ¼ b0 þ b1wl þ al þ sl þml: eqn 28

In comparative analysis, ecologists and evolutionary biolo-

gists have already used CV as a statistic (e.g. Shine & Seigel

1996; Garcia-Gonzalez et al. 2012). However, CV is bounded

at zero so that in many cases, CVmay not conform to the nor-

mality assumption, when used as the response variable in a sta-

tistical model. The use of lnCV as well as ln r̂, which are both

unbounded, may prove a useful solution to this shortcoming

of CV. Finally, we can easily extend the relatively simple

comparative models above to more complex models, by add-

ing any arbitrary number of fixed and random factors as

required (such models can be implemented, for example, in
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Fig. 3. Scatter plots of the standard deviation

and the mean for the mammalian data set (a)

and for the avian data set (c), and of the log

standard deviation and the log mean for the

mammalian data set (b) and for the avian data

set (d); empty data points are for the heteroga-

metic sex, while solid data points are for the

homogametic sex.
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Fig. 4. A forest plot of comparisons of variability (ln r̂) in the body

size of the two sexes performed using random-slopemixed-effects mod-

els, RSMM (with and without phylogeny) on two data sets: mammals

and birds. Point estimates and 95% credible intervals (CIs) are shown.

Solid circles are estimates from random-slope mixed-effects models

without phylogeny (RSMM), and empty circles are estimates from ran-

dom-slope mixed-effects models with phylogeny (PRSMM), Sample

sizes (n; the number of group pairs or comparisons) for the two data

sets are shown on the right side. Note that positive values in the differ-

ence in ln r̂ , that is lnðr̂E=r̂CÞ, means that the heterogametic sex has

higher variability (ln r̂ ) in body size than the homogametic sex, as pre-

dicted by the sex-chromosome hypothesis.

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 6, 143–152

Meta-analysis of variation 149



MCMCglmm; see Hadfield &Nakagawa 2010; de Villemereuil

&Nakagawa 2014).

Discussion

In this paper, we have proposed the meta-analytic metric,

lnCVR (and lnVR), to compare differences in variability

between two groups. As one can see from Examples 2 and 3,

the groups do not necessarily need to pertain to a treatment

(experimental) group and a control group, as long as the pair-

wise comparison is biologically or physically meaningful. An

advantage of the proposed meta-analytic metric, lnCVR

(Equation 11) is that it can be used along with all previously

developed statistical tools for meta-analysis and meta-regres-

sion. For instance, although not implemented in our examples,

there are numerous methods to examine publication bias in

meta-analytic data such as funnels plots, Egger’s tests and

trim-and-fill methods (reviewed in Rothstein, Sutton & Boren-

stein 2005; for examples of funnels plots, see Figs S1 and S2 in

Appendix S1), all of which can be conducted on meta-analysis

of variance using lnCVR. Importantly, lnCVR can be used in

conjunction with any standard meta-analytic package cur-

rently available (reviewed in Schmid et al. 2013).

However, we have also outlined the limitations of using

lnCVR. We recommend that one check for linearity between

the mean and the standard deviation before the use of lnCVR

in one’s meta-analysis. As shown above, our proposed alterna-

tive method using ln s and ln �x, in conjunction with RSMM, is

likely to overcome the limitations of lnCVR. Further, this

approach provides a very flexible platform for not only com-

paring variability between two groups, but also for modelling

variabilitymeta-analytically or comparatively under numerous

circumstances. A disadvantage of the random-slope mixed-

effects method is its relative complexity compared to the use of

lnCVR; unlike lnCVR, we cannot use many of the statistical

tools developed for meta-analysis (e.g. quantification of publi-

cation bias). Therefore, both approaches should probably be

used in a complementary way, bearing in mind the assumption

associated with the use of lnCVR.

Another issue may be how one interprets magnitudes of

effect size in the proposed metric lnCVR and when using ln

s (with ln �x). Famously, Cohen (1988) established bench-

marks for traditional metrics such as d and r (correlation

coefficient) to help practical, clinical or biological interpreta-

tion of effect sizes. For example, d values of 0�3, 0�5 and

0�8 are considered to be small, moderate and large, respec-

tively. Unfortunately, Cohen’s benchmarks cannot be

obtained for metrics such as lnRR, lnVR and lnCVR.

However, these three metrics can be interpreted in a very

intuitive way because they represent ratios between two val-

ues once back-transformed to the original scale. For exam-

ple, the value of 0�05 in lnCVR is c. 1�051 on the original

scale (i.e. the exponentiation of 0�05), and it can be inter-

preted as the CV of the experimental group (or the group

in the numerator) being 5�1% higher than that of the con-

trol group (or the group in the denominator). In a similar

manner, the Group effect (Equation 18) represents the differ-

ence in ln s between the two groups after correction for dif-

ferences in the mean; in other words, the ratio of standard

deviations between the two groups on the log scale, that is

lnðr̂E=r̂CÞ . Therefore, the Group effect of 0�05 can be

interpreted as the standard deviation of the experimental

group (coded as 1 in the dummy variable) being 5�1%
higher than that of the control group (coded as 0 in the

dummy variable) after controlling for ln �x (assuming the

model includes ln �x as for Equation 18).

Asmentioned earlier, our proposedmethods aremost useful

when one expects an effect to induce changes not only in the

mean but also in the variability of a measure. A familiar exam-

ple of this may be that climate change could induce not only

changes in the average temperature but also changes in temper-

ature variability (e.g. Schar et al. 2004). Although we provided

examples from ecology and evolution, we see applications of

the proposed methods in a number of fields. The first ever

meta-analysis using the standardized mean difference (Glass’s

Δ, which is a special case of Cohen’s/Hedges’ d) examined the

effectiveness of psychotherapy and showed its considerable

efficacy (Smith &Glass 1977). Another finding of this pioneer-

ing study was that there were little differences (in means)

among various types of psychotherapy (e.g. behavioural and

non-behavioural therapies). It remains to be tested whether

outcomes of different types of therapy differ in variability and

thus in their reliability. Additionally, in medical fields, it may

be desirable to reduce variance rather than means using a

treatment or a drug (e.g. for heart rate or sugar levels in the

blood).

Finally, there have been hundreds, if not thousands, of

meta-analyses comparing themeans of two groups (Nakagawa

& Poulin 2012; Koricheva, Gurevitch &Mengersen 2013). We

point out that our methods of comparing variability between

two groups can be retrospectively applied to these past meta-

analyses to gain additional insights. Notably, studies making

use of d and lnRR have already gathered all the data necessary

to quantify lnCVR or the other relevant metrics outlined here.

Furthermore, in future meta-analyses, we recommend examin-

ing not only mean differences but also variability differences

when comparing two groups. In particular, payingmore atten-

tion to changes in variance will facilitate a better understanding

of phenomena not only in biological fields but also medical

and social sciences.
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Data S10.Bird data file for Example 2 (birdsMLfinaltrait.csv).

Data S11. Mammal data file for Example 2 (mammalsMLfinal-

trait.csv).

Data S12.Data file for Example 1 (ParasiteData.csv).

Data S13.Mammal data file for Example 3 (mammalslongformat.csv).

Data S14.Tree file formammals (mammals81spsubtree.tre).

Appendix S1. Detailedmethods for Examples 1–3 (supinfo.doc).

Appendix 1: Derivation of the variance for lnCVR (the

logarithmof the ratio between two coefficients of

variation)

We use two basic properties of variance. When we have two random

variablesA andB and a constant is c, then:

varðA� BÞ ¼ varðAÞ þ varðBÞ � 2rA;B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðAÞvarðBÞ

p
(A1)

varðAþ cÞ ¼ varðAÞ; (A2)

where ‘var’ indicates variance, and rA, B is the correlation

between A and B. Equation (11) (the main text) can be rewrit-

ten as:

lnCVR ¼ ln sE � ln �xE þ 1

2ðnE � 1Þ
� ln sC � ln �xC þ 1

2ðnC � 1Þ
� �

;

(A3)

where the symbols are as in eqns 5–12. Because both 1/2(nE –

1) and 1/2(nC – 1) are bias correction factors, these can be

regarded as scalars (i.e. c in Equation A2). As in Hedges, Gu-

revitch & Curtis (1999) and Raudenbush & Bryk (1987), we

assume that with large sample sizes, all ln �xC, ln �xE, ln sC and

ln sE are normally distributed. The means and the variances

(ln �xC and ln sC, and ln �xE and ln sE, respectively) covary,

whereas themeans for the two groups (ln �xC and ln �xE) and the

variances (ln sC and ln sE) are independent from each other.

Thus, using Equations (6) and (10) and Equations (A1) and

(A2), the variance of lnCVR can be expressed as:

s2lnCVR ¼ s2C
nC�x2C

þ 1

2ðnC � 1Þ

þ s2E
nE�x2E

þ 1

2ðnE � 1Þ � 2qln �xE;ln sE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2E

nE�x2E

1

2ðnE � 1Þ:

s

(A4)

EquationA4 is the same as Equation (12).

Alternatively, CV can be seen as the inverse of z value. In this

case, the equation for the variance of lnCVR can be simplified to

Equation (6).

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 6, 143–152

152 S. Nakagawa et al.


