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Abstract 

The clinical outcome of COVID-19 has an extreme age, genetic and comorbidity bias that is 

thought to be driven by an impaired immune response to SARS-CoV-2, the causative agent of 

the disease. The unprecedented impact of COVID-19 on global health has resulted in multiple 

studies generating extensive gene expression datasets in a relatively short period of time. In 

order to better understand the immune dysregulation induced by SARS-CoV-2, we carried out a 

meta-analysis of these transcriptomics data available in the published literature. Datasets 

included both those available from SARS-CoV-2 infected cell lines in vitro and those from 

patient samples. We focused our analysis on the identification of viral perturbed host functions 

as captured by co-expressed gene module analysis. Transcriptomics data from lung biopsies 

and nasopharyngeal samples, as opposed to those available from other clinical samples and 

infected cell lines, provided key signatures on the role of the host’s immune response on 

COVID-19 pathogenesis. For example, severity of infection and patients’ age are linked to the 

absence of stimulation of the RIG-I-like receptor signaling pathway, a known critical immediate 

line of defense against RNA viral infections that triggers type-I interferon responses. In addition, 

co-expression analysis of age-stratified transcriptional data provided evidence that signatures of 

key immune response pathways are perturbed in older COVID-19 patients. In particular, 

dysregulation of antigen-presenting components, down-regulation of cell cycle mechanisms and 

signatures of hyper-enriched monocytes were strongly correlated with the age of older 

individuals infected with SARS-CoV-2. Collectively, our meta-analysis highlights the ability of 

transcriptomics and gene-module analysis of aggregated datasets to aid our improved 

understanding of the host-specific disease mechanisms underpinning COVID-19.  

 

Introduction 

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2 (severe acute respiratory 

syndrome coronavirus 2), a new coronavirus evolutionarily related to two other pathogenic 

betacoronaviruses that emerged in the last 20 years: SARS-CoV (referred to as SARS-CoV-1 

here for clarity) and MERS-CoV (Middle East respiratory syndrome coronavirus). SARS-CoV-2, 

like SARS-CoV-1, utilises ACE2 (angiotensin converting enzyme II) for cellular entry using its 

spike (S) protein (Zhou et al. 2020). The SARS-CoV-2 S-protein contains a polybasic cleavage 

site and is estimated to bind ACE2 with 10-20 fold higher affinity than SARS-CoV-1 spike, 

contributing to infection success, particularly in the upper respiratory tract, by making cells with 

lower ACE2 expression levels more accessible (Wrapp et al. 2020). Globally, as of April 2021, 

SARS-CoV-2 has caused over 3.1M recorded deaths. The majority of SARS-CoV-2 infected 

individuals are asymptomatic or display relatively mild symptoms including fever, cough and 

temporary anosmia (loss of the sense of smell). More severe cases can include symptoms 

associated with acute respiratory distress syndrome (ARDS), circulatory and heart problems, 

organ failure and death (Huang et al. 2020). 
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The severity of COVID-19 is highly correlated with age and certain comorbidities (Pinto et al. 

2020) and has been associated with host genetics linked to the immune response (Pairo-

Castineira et al. 2020). Virulent SARS-CoV-2 infections are associated with a dysfunctional 

immune response and “cytokine storm” is a particular marker of disease severity. For example, 

transcriptomics of BALF (bronchoalveolar lavage fluid) and PBMC (peripheral blood 

mononuclear cells) demonstrated extensive upregulation of cytokines in COVID-19 patients 

(Xiong et al. 2020). Moreover, it has been shown that SARS-CoV-2 infection in vitro triggers 

cGAS-STING mediated NF-�B response and a pro-inflammatory cytokine response (Neufeldt et 

al. 2020). Type I interferons (IFN) likely play a pivotal role in SARS-CoV-2 pathogenesis as 

genetic mutations in the IFN system and autoantibodies to type I IFNs predispose individuals to 

severe COVID-19 disease (Bastard et al. 2020, Zhang et al. 2020). Understanding the immune 

and inflammatory responses to SARS-CoV-2 is, thus, crucial to deciphering the mechanisms of 

viral pathogenesis. 

Here we report a detailed meta-analysis of available SARS-CoV-2 transcriptomics (RNA-Seq) 

datasets and focus on the relationships among groups of differentially expressed genes in order 

to enable standardised comparison between studies. Transcriptomics applied to virus-infected 

cells reveals how genes are regulated under specific biological conditions in the context of viral 

infection. ‘Gene sets’ are groups of genes that are commonly co-expressed as they contribute to 

a shared biological function, for example, a signaling pathway up-regulated by virus infection. 

Gene sets are usually derived from multiple studies and their activity under different conditions, 

in this case virus infection, provides a way to extract biological relationships from large disparate 

transcriptomics datasets. Crucially, gene set tests enable us to analyze groups of genes that 

represent biological functions as a group rather than individual differentially expressed genes 

which are prone to detection and measurement biases. Gene sets therefore are particularly 

helpful in meta-analysis of transcriptomics data from different sources. Competitive gene set 

testing methods such as gene set enrichment analysis (GSEA) (Subramanian et al. 2005) 

evaluate the statistical significance of enrichment by determining whether a set of genes are 

correlated to the diseased state compared to genes in other gene sets, while self-contained 

methods such as ROAST (Wu et al. 2010) evaluate whether any genes within a gene set are 

differentially expressed, allowing testing for co-regulated genes. 

In order to investigate transcriptional responses to SARS-CoV-2 infection in COVID-19 patients 

and to compare transcriptional signatures elicited by SARS-CoV-1 and MERS-CoV, we use a 

well-refined gene set established as ‘blood transcription modules’ (BTMs), defined by Li and co-

workers using large scale network integration of public data and context specific biological 

information (Li et al. 2014). While biological pathway based analysis focuses primarily on chains 

of interacting molecules perturbed in complex diseases such as cancer, BTMs provide high 

resolution gene modules that better represent the groups of molecules activated by host 

immunological responses (Li et al. 2016). Modules in BTMs are derived by gene co-expression 

patterns, supported by experimental information derived from various tissues, cell-types, 

interactome studies and molecular pathway information. As with canonical pathways, BTMs can 

be applied to transcriptomics datasets derived from various tissues and cell lines in order to 

better understand host responses triggered by infection. Higher classification of these functional 

modules into groups (Kazmin et al. 2017) based on the pathways or the cell lineages can be 

used to systematically capture altering responses to examine the differences in modules that 

have a common biological function or regulation. We also use the biological pathway software 
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Ingenuity Pathway Analysis (IPA) to compare signaling pathways among the various data sets. 

To identify the co-expressed networks of genes associated with viral load and different age 

groups in a large dataset of SARS-CoV-2 infected individuals (Lieberman et al. 2020), we use 

the weighted gene correlation network analysis (WGCNA), a well-developed co-expression 

method. By correlating groups of genes with BTMs, we assess the functional role of these 

networks in infected individuals and provide systems-level evidence of the networks that 

contribute to the pathology of the disease in different age groups. 

Results 

SARS-CoV-2 elicits signatures of adaptive immune pathways in cell lines. In order to 

assess the genes associated with the transcriptional dysregulation induced by SARS-CoV-2 in 

infected cell lines, we compared differential module enrichment profiles to the available SARS-

CoV-1 and MERS-CoV time-matched cell line data. We find SARS-CoV-2 has a distinct module 

enrichment profile compared to SARS-CoV-1 and MERS-CoV in the different cell lines 

analysed, confirming previous analysis (Blanco-Melo et al. 2020). In Calu-3 cells, SARS-CoV-2 

exhibits a profound upregulation of all essential B-cell modules (M47.4, M47.3, M54, M9, M58) 

at 24 hours post infection relative to SARS-CoV-1, while MERS-CoV elicits a complementary B-

cell response in Calu-3 cell lines (figure 1), similar to B-cell module enrichment by SARS-CoV-1 

and MERS-CoV in MRC5 cell lines.  
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Figure 1. Plot showing -log10(p-values) of differentially enriched B cell, Inflammatory/TLR/Chemokine 

and T cell modules (y-axis) for different transcriptome datasets (x-axis), see table 2. The size of the 

circles corresponds to the magnitude of the -log10(p-value), while their colour corresponds to the 

direction of enrichment as indicated by the MROAST function of ROAST R package (see key). 
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Figure 2. Heatmap of -log10(p-values) of the differentially enriched modules of PBMC, whole-blood, 

BALF and lung biopsy samples, up-regulation and down-regulation of modules shown in red and blue 

respectively. High level annotation of each module (row) is represented by the classification assigned by 

Kazmin et al. (2017) based on pathways or cell lineage each module represents.  

 

Interestingly, while MERS-CoV exhibits a ‘strong’ upregulation of T-cell modules in Calu-3 and 

MRC5 cell lines at 24 hours post infection, both the SARS-CoV-1 and -2 demonstrate a weak T-

cell response signature in both cell lines, indicating a failure of the SARS viruses to trigger 

genes associated with adaptive immune/innate T cell responses. ACE2 transduced A549 cells 

and ACE2 transduced Ruxolitinib treated A549 cells show a strong enrichment of T-cell 

modules, while A549 cells show a weak enrichment and NHBE cells lack significant enrichment 

of these modules. Both SARS-CoV-1 and 2 elicit a significant upregulation of the TLR (Toll-like 

receptors) and inflammatory signaling module (M16) in Calu-3 cells -- important in identifying 

different pathogen-associated molecular patterns (PAMPs) for the regulation of host innate 

immune response -- while MERS-CoV lacks a representation of this module consistent with 

MERS-CoV silencing the TLR response upon infection (Liang et al. 2020). All three 

betacoronavirus types exhibit evidence of a strong chemokine response (M27.1 and M27.0) in 

Calu-3 cells suggesting the activation of various cytokines to guide immune cell migration to the 

infection sites to elicit an active inflammatory response. SARS-CoV-2 is thus inducing a distinct 

transcriptional profile compared to both SARS-CoV-1 and MERS-CoV infected cell lines. 

Regulation of distinct functional modules exhibited by different clinical samples. A 

heatmap of the enrichment scores (negative log of p-values) of all dysregulated modules (figure 

2) indicates that different clinical samples (table 2 and supplementary table 1) from COVID-19 

patients display distinct transcriptional responses upon SARS-CoV-2 infection. BTMs have been 

categorized into functional groups by Kazmin et al. (2017) based on the common pathways or 

the cell lineages the genes represent. Comparison of these groups (each defined by the 

presence of enriched modules) show that, analogous to the severity of the disease, gene 

transcripts corresponding to the up-regulation of antigen presenting modules and dendritic cell 

activation modules, which are known to trigger strong innate immune response against 

respiratory infections, are upregulated in lung biopsy samples, while there is a profound down-

regulation, or no significant regulation of these modules, in BALF samples (figure 3). Strikingly, 

there is an inverse correlation in the regulation status between PBMC/whole-blood and BALF 

samples in cell cycle related modules and no representation of these modules in lung biopsy 

samples. This is consistent with coronaviruses perturbing cell cycle mechanisms to evade 

detection by the host immune system in order to facilitate viral replication (Dove et al. 2006).  
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Figure 3. Plot showing -log10(p-values) of differentially enriched antigen presentation, cell cycle and DC 

activation modules (y-axis) for different transcriptome datasets (x-axis), see table 2. The size of the circles 

corresponds to the magnitude of the -log10(p-value), while their colour corresponds to the direction of 

enrichment as indicated by the MROAST function of ROAST R package (see key). 

To assess for transcriptional differences associated with age, we grouped 430 SARS-CoV-2 

positive and 54 negative samples, i.e., infected versus uninfected, from the surveillance study 

(referred to here as surveillance data) of Lieberman et al. (2020) into groupings reflecting the 

viral load and age as follows: low (≤30, 31-60 and >60), med (≤30, 31-60 and >60), high (≤30, 

31-60 and >60). Nasopharyngeal samples of the older infected individuals compared to the age-

matched negative controls (samples from the uninfected individuals) exhibited a strong 

downregulation of cell cycle related modules in samples with either medium or low viral load 

(possibly relating to the later stages of infection) showing host physiology modification by the 

virus. Antigen-presenting dendritic cell (DC) related modules are upregulated in younger adults 
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with high viral load (figure 4), correlating with the upregulation of dendritic cell activated T-cell 

modules (figure 5). Absence of the dysregulation of DC modules in older and younger 

individuals with low and medium viral load (figure 4) correlates with downregulation of some of 

the T-cell modules in these individuals (figure 5). It is important to note that irrespective of age, 

there is a profound downregulation of B-cell modules in all the samples with low viral load, while 

the crucial B cell development/activation module (M58) is downregulated only in older patients. 

Studies have shown that a subset of COVID-19 patients fail to develop long-lasting antibodies 

(Tay et al. 2020, Wang et al. 2020).  

 

 
 

Figure 4. Plot showing -log10(p-values) of differentially enriched antigen presentation, cell cycle and DC 

activation modules (y-axis) of the surveillance data (Lieberman et al. 2020) stratified by age and viral 

load. The size of the circles corresponds to the magnitude of the -log10(p-value), while their colour 

corresponds to the direction of enrichment as indicated by the MROAST function of ROAST R package 

(see key). 
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Figure 5. Plot showing -log10(p-values) of differentially enriched B cell, inflammatory/TLR/Chemokine 

and T cell modules (y-axis) of the surveillance data (Lieberman et al. 2020) stratified by age and viral 

load. The size of the circles corresponds to the magnitude of the -log10(p-value), while their colour 

corresponds to the direction of enrichment as indicated by the MROAST function of ROAST R package 

(see key). 

With respect to inflammatory, TLR and chemokine modules, lung samples have a 

representation of chemokine clusters (M27.0 and M27.1), demonstrating an inflammatory 

response by the host system that is consistent with other studies (Huang et al. 2020, Zhao 

2020, Mehta et al. 2020) while these modules are weakly enriched in BALF/whole-blood and 

completely absent in PBMC samples (figure 1). Heatmaps of log transformed scaled expression 

of the differentially regulated member genes of inflammatory, TLR and chemokine modules for 

Lung biopsy (and cell line) samples and PBMC-BALF samples are shown in supplementary 
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figure 1 and 2, respectively. These data indicate there is a strong upregulation of inflammatory 

genes in severely diseased COVID-19 patients. 
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Figure 6. Heatmap of negative log p-values of the differentially enriched modules of all the samples used 

in this meta-analysis study. High level annotation of each module (row) is represented by the 

classification assigned by Kazmin et al. (2017) based on pathways or cell lineage each module 

represents. 

The Calu-3 cell line resembles the in vivo host transcriptional response. It is important to 

identify cell lines that resemble the host response upon infection. Visualization of log 

transformed scaled expression of some of the differentially expressed genes of the lung biopsy 

samples of COVID-19 patients and cell lines infected by SARS-CoV-2 (supplementary figure 1) 

demonstrates that Calu-3, an epithelial human lung cancer cell line, more accurately resembles 

the host immune response to SARS-CoV-2 infection than other cell lines such as A549 and 

NHBE. Correlation analysis (supplementary figure 3) of log transformed expression ratios of the 

up-regulated genes (data from supplementary tables S1 and S4 of Blanco-Melo et al. 2020) and 

median values of the modules (supplementary figure 4) performed using corrplot R package 

(Wei et al. 2017) support this observation. Comparison of the enriched modules of various cell 

lines and clinical samples show that Calu-3 closely mirrors the host transcriptional response, 

i.e., similar to the clinical samples (figure 6) indicating this cell line’s greater suitability for SARS-

CoV-2 experimental studies. 

Delayed/altered immune response of COVID-19 patients. Differences in the transcriptional 

immune response of SARS-CoV-2 patient derived samples provide insights into how the virus 

evades host immune responses. Comparison of the significantly enriched modules of the 

interferon and antiviral signaling group indicates a lack of type I interferon response (M127) both 

in PBMC samples, as previously reported (Hadjadj et al. 2020), and in BALF samples. Lung 

samples (and cell lines infected in vitro with any of three coronaviruses analysed here) and 

whole-blood samples have a clear representation of this module (figure 7) and other modules 

(M111.1, M111.0, M150, M13, M75) of the interferon and antiviral signaling group 

demonstrating detection of a strong interferon response in patients with severe disease and 

infected cell lines. Visualization of the scaled expression of the differentially expressed member 

genes of type I interferon response module of SARS-CoV-2 samples (supplementary figure 5) 

shows that except for TAP1 gene (transporter associated with antigen processing 1, the gene-

product of which is associated with antigen presentation by MHC class I), all of the member 

genes are strongly upregulated in lung biopsy samples. Several viruses are known to evade 

immune system detection by expressing proteins that have a direct effect on the expression of 

TAP1, hampering detection of infected cells (Zeidler et al. 1997). Strikingly, irrespective of viral 

load, younger individuals (<=30 group) have upregulated enrichment of type I interferon 

response (M127) module upon SARS-CoV-2 infection (figure 8), while the other groups (31-60 

and >60 with medium and high viral load, 31-60 with low viral load) lack differential enrichment 

of this module, confirming an age-associated immune response to SARS-CoV-2 infection. 

Silencing of RIG-I pathway by SARS-CoV-2 to evade detection by the host immune 

system. The RIG-I-like receptor signaling (M68) module includes genes that influence antiviral 

immunity by playing a key role in pathogen sensing. Interestingly, these pathways are not 

enriched in any of the SARS-CoV-2 patient samples (or infected cell lines) (figure 7). In addition, 

in lung biopsy samples, the interferon alpha response I module (M158.0 -- genes unique to this 

module are COL8A1, FGF5, IMPG2, ITGB4, LAMC2, MMP12, SFN, ST14, TNR) is 

downregulated, while the interferon alpha response II module (M158.1 -- genes unique to this 

module are FAM123A, IFNA2, IFNA21, IFNA5, IFNA8, PRL) is upregulated. Irrespective of the 
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viral load (low, med, high) and the age groups (<=30, 31-60 and >60), none of the samples in 

the surveillance data (see supplementary table 1) have the M68, M158.0 or M158.1 modules 

enriched, demonstrating a lack of the interferon alpha response and inactivation/silencing of 

RIG-I-like receptor signaling in SARS-CoV-2 infected individuals. RIG-I-like receptors (RLRs) 

are expressed in various tissues and coordinate the induction of type I interferons (IFNs) (Loo et 

al. 2011) upon infection and act as the first line of defense against viral pathogens. TRIM25, an 

IFN inducible gene is known to mediate ubiquitylation of RIG-I (also known as DDX58), forming 

a complex that promotes interferon induction (Liu et al. 2016; Ozato et al. 2008; Gack et al. 

2007). Visualization of the log transformed fold changes of the member genes of M158.0, 

M158.1 and M68 modules along with ZAP (also known as ZC3HAV1) (supplementary figure 6) 

in all SARS-CoV-2 samples shows that as a consequence of infection there is a profound 

upregulation of interferon alpha genes, with no change in the expression of TRIM25, and a 

striking downregulation of SFN (also known as stratifin, 14-3-3ε) in the lung biopsy samples. 

SFN belonging to M158.0 (interferon alpha response I module) is known to be a binding factor 

of RIG-I and is essential for the stable interaction between TRIM25 and RIG-I, promoting 

ubiquitylation and thereby facilitating interferon induction (Liu et al. 2012). Ingenuity pathway 

analysis of the differentially expressed genes confirms there is a distinct immune pathway 

regulation profile for each of the SARS-CoV-2 clinical samples (supplementary figure 7) and no 

enrichment of the RIG-I signaling pathway in any of the patient samples.   
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Figure 7. Plot showing -log10(p-values) of differentially enriched interferon and antiviral sensing modules 

(y-axis), colour of the circles corresponds to the direction of enrichment as indicated by the MROAST 

function of ROAST R package. 
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Figure 8. Plot showing -log10(p-values) of differentially enriched interferon and antiviral sensing modules 

(y-axis) of the surveillance data (Lieberman et al. 2020) stratified by age and viral load, colour of the 

circles corresponds to the direction of enrichment as indicated by the MROAST function of ROAST R 

package. 

Gene co-expression analysis by WGCNA. To elucidate transcriptional response of the host in 

an unbiased way, weighted gene co-expression network analysis (WGCNA, see methods) was 

used to construct co-expression networks focusing on the correlated gene expression of the 

batch corrected surveillance data from Lieberman et al. (2020). WGCNA extracts modules of 

interest by identifying correlation-based interaction between genes and associates module 

‘eigengenes’ with meta-data information such as gender and viral load, where an eigengene is a 

representative summary of the expression profile of each module from the first principal 

component of the standardized expression profile. WGCNA was separately applied to groups of 

samples belonging to the same age groups and infection status (Table 1).  

Table 1. Table showing infection status, age group, number of samples in each age group, number of 

identified modules with the range of numbers of genes in each group for the surveillance data from 

Leiberman et al. (2020)  

 

Sample (Infection 
status and age 

group) 

Number of samples Number of modules Range (Min - Max)  

neg <=30 16 36 59 - 474 

neg 31-60 24 9 116 - 514 
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neg >60 14 29 59 - 533 

pos <=30 52 3 432 - 653 

pos 31-60 194 8 95 - 1697 

pos >60 167 3 231 - 3015 

Co-expression analyses identified three modules in SARS-CoV-2 positive individuals aged 

<=30. Interestingly, none of these three modules are correlated with viral load or gender, 

suggestive of a relatively measured host immune response in younger individuals (figure 9, 

functional annotation of modules by GSEA explained later in this paragraph). Eight modules are 

identified in SARS-CoV-2 positive individuals aged between 31-60: two of which are strongly 

positively correlated with high viral load (MEred - r:0.42;p:2e-09 and MEblue - r:0.34;p:1e-06) 

and are strongly negatively correlated with low viral load (MEred - r:-0.3;p:2e-05 and MEblue - 

r:-0.26;p:3e-04), while three modules (two of which are positively correlated with high viral load 

(MEbrown - r:0.27;p:5e-04 and MEturquoise - r:0.27;p:4e-04) and two are negatively correlated 

with low viral load (MEblue - r:-0.27;p:4e-04 and MEturquoise - r:-0.34;p:6e-06) are identified in 

infected individuals aged >60. Gene set enrichment analysis with BTMs as reference modules 

performed with GeneOverlap package in R was used to identify the functional role of each 

identified module in all the groups. Within each age group, multiple assignments to the same 

reference module are aggregated by taking the maximum negative log of p-value from 

GeneOverlap package and significant enrichments grouped by their annotations are shown in 

figure 10. 

Among the three age groups (<=30, 31-60 and >60), relative to their age matched control 

groups, older individuals (>60) have the ‘strongest’ host response upon infection, i.e., the 

highest levels of perturbation/inflammation - either strong up-regulation or down-regulation of 

the enriched immunity-associated modules. Cell cycle related modules in older SARS-CoV-2 

(>60) infected individuals with lower viral load appear to be disrupted (figure 9), possibly due to 

the cell cycle arrest mechanisms, which coronaviruses are known to activate for promoting viral 

replication (Dove et al. 2006). Another striking class of modules hyper-enriched in the older 

individuals (>60) are the monocyte related modules (figure 10) that contribute both to the innate 

and adaptive immunity of the host. We speculate that this enrichment, again possibly associated 

with the aging process, could be contributing to the dysregulated immune response in older 

patients. Due to the lack of recorded disease characteristics for these surveillance samples 

(Lieberman et al. 2020), we are unfortunately unable to further associate the enrichment of 

these pathways with disease outcomes. 
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Figure 9. Circos plot showing enrichment of modules in the surveillance data (Lieberman et al. 2020) 

stratified by age groups (<=30, 31-60 and >60, denoted by outer black lines), a heatmap (blue scale) 

representing the negative log of p-values of enriched modules. Concordant modules (see methods) 

shared between age groups are linked by green ribbons and discordant modules by red ribbons. 

Significant (p<0.05) positively (r >= 0.3) and negatively (r <= -0.3) correlated modules with viral load are 

shown in purple and grey links, respectively. 

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2020.12.29.424739doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.29.424739
http://creativecommons.org/licenses/by-nc/4.0/


18 

 

Figure 10. Heatmap of negative log of p-values less than 10^-5 of the WGCNA identified modules, 

functionally characterized by GeneOverlap package using BTMs as reference modules. High level 

annotation of each module (row) is represented by the classification assigned by Kazmin et al. 2017 

based on pathways or cell lineage each module represents. 

We don’t detect any of B cell modules to be significantly enriched in the three age groups, 

possibly corresponding to the evasion mechanisms the virus uses in order to escape host 
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mechanisms. As expected, inflammatory, TLR and chemokine related modules are hyper-

enriched in older patients (>60) in comparison to the samples from the 31-60 age group. 

Interestingly some of the modules are strongly enriched even in the negative older individuals 

(>60), possibly correlated to aging or underlying disease responses. It would be potentially 

informative to analyse how the enrichment of these modules accounts for the clinical 

characteristics of the disease and association with comorbidities. 

 
Figure 11. Dotplot of p-values of concordant and discordantly enriched modules identified by the tmod 

package in R, based on the disco score of the differential co-expressed member genes of WGCNA 

modules. 
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Performing enrichment analysis with tmod (see methods) confirms most of the enriched 

modules are consistent in the age groups 31-60 and >60. Discordant modules between these 

age groups include antigen presentation and dendritic cell related modules, leading to 

differential enrichment of T cell activation and immune activation related modules. In line with 

the results of WGCNA analysis, tmod analysis shows that the cell cycle and transcription related 

modules are different between the age groups 31-60 and >60. Type I interferon response and 

other antiviral response modules are concordant among the three groups, while some of the 

samples in the 31-60 group have these modules differentially enriched in comparison to the 

<=30 group and >60 groups (figure 11). These observations highlight the importance of age as 

a determining factor of altering viral inducible immune activation pathway mechanisms that lead 

to immune dysregulation in infected older individuals. 

Decrease in oxidative phosphorylation (OxPhos) activity 

 

Figure 12. Dotplot of -log10(p-values) of dysregulated pathways identified by IPA, based on the 

differential co-expressed member genes of WGCNA modules, colour corresponds to the direction of 

enrichment as inferred by IPA z-score. 

To characterize immune response differences between age groups based on the viral load, we 

extracted differential expression information of the member genes of identified WGCNA 

modules from the results of limma-voom workflow (see methods section) and used IPA to 

identify dysregulated pathways and their activation statuses. IPA infers activation status of 

pathways by calculating z-scores based on the differential regulation of genes and the direction 

of the effect associated with edges of experimentally observed molecular networks. Irrespective 

of the viral load, infected individuals in the age groups 31-60 and >60 have a decreased activity 

of oxidative phosphorylation pathway (figure 12) and altered regulation of mitochondrial 

dysfunction (supplementary figure 8) as inferred by IPA. Oxidative phosphorylation (OxPhos), a 
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functional unit of mitochondria plays an important role in ATP (adenosine 5 -triphosphate) 

synthesis and apoptosis. Any reduction in OxPhos activity leads to dysregulated mitochondrial 

ROS (reactive oxygen species) signaling, reduced cellular ATP and trigger ROS-mediated cell 

damages (Fekete et al. 2018; Yoshizumi et al. 2017). Recovery of OxPhos activity re-

establishes RIG-I-like receptor (RLR) mediated signal transduction counteracting impaired 

induction of interferons in viral infected cells (Yoshizumi et al. 2017), indicating OxPhos activity 

could be an important requirement for RLR-mediated signaling transduction. We hypothesize 

that SARS-CoV-2 suppresses RIG-I mediated antiviral innate immunity by impairing oxidative 

phosphorylation activity of the host. 

Discussion 

Understanding mechanistically how SARS-CoV-2 perturbs and evades the immune system will 

provide much needed insights into viral escape mechanisms, immunopathology and directions 

for the development of novel therapeutics. In this study, we use a meta-analysis approach to 

compare enriched gene sets/functional modules in transcriptomics datasets, combined with a 

network approach, to identify distinct transcriptional profile signatures exhibited by SARS-CoV-2 

infected patient samples and cell lines (figure 13). For this analysis, we used a well-defined 

functional blood transcription module set that integrates data obtained from more than 500 

transcriptomics studies and context specific biological information (Li et al. 2014). These 

modules have more discriminative power in identifying context-specific gene modules than 

results arising from individual experiments, and are being increasingly used as a data-rich 

context in transcriptomics studies. We also used Ingenuity pathway analysis software to identify 

pathways that are dysregulated upon SARS-CoV-2 infection in patient and cell line samples. 

 

Contrary to expectation and confirming Blanco-Melo et al.’s (2020) results, our comparison of 

SARS-CoV-2 infected cell lines and patient derived samples collected with published SARS-

CoV-1 and MERS-CoV datasets, showed that host responses to SARS-CoV-2 are less similar 

to those against SARS-CoV-1 than the latter are to responses to MERS-CoV (figure 13). SARS-

CoV-1 and MERS-CoV elicit differential regulation of genes responsible for important immune 

functions such as adaptive immunity, cell cycle damage, inflammation and innate immunity, 

while in COVID-19 patients and SARS-CoV-2 infected cell lines, some of these crucial signaling 

pathways are being repressed (Blanco-Melo et al. 2020).  
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Figure 13. Circos plot showing enrichment of modules in SARS-CoV-2 clinical samples and SARS-CoV-

2, SARS-CoV-1 and MERS-CoV infected cell lines. Each circle represents the negative log of p-values of 

enriched modules in each sample, coloured by virus (see ‘samples’ legend at 11 o’clock). The 3 outer 

circles represent the direction of enrichment of modules of the clinical samples of SARS-CoV-2 (PBMC, 

BALF and lung samples) as predicted by the MROAST function of ROAST R package; a circle indicates  

down-regulation, while an arrow indicates up-regulation of the module. 

The gene-module analysis indicates SARS-CoV-2 potentially evades innate immunity by not 

triggering RIG-I signaling pathway, thereby delaying the type-I interferon response. The RIG-I 

signaling pathway is known to be interfered with by the nucleocapsid protein in both SARS-CoV-

1 and MERS-CoV, through interaction of N protein with TRIM25 thereby inhibiting TRIM25-

mediated RIG-I ubiquitination and suppressing type I IFN production (Hu et al. 2017). In SARS-

CoV-1, increased infection dose has been shown to enhance suppression of RIG-I signaling (Hu 

et al. 2017) and delayed ISG expression combined with immune dysregulation has been 
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observed (Channappanavar et al. 2016) to be a contributor to disease severity in mice, 

indicating the role of innate immunity in control of infection and how in older individuals can lead 

to severe disease. Unlike SARS-CoV-1, avoidance/delaying of type-I interferon response in 

SARS-CoV-2 infection is probably linked to CpG depletion and ZAP-TRIM25 evasion (Li et al. 

2017). Zinc finger antiviral protein (ZAP, also known as ZC3HAV1) acts against RNA viruses by 

detecting viral RNAs that have a higher CpG dinucleotide frequencies than the host mRNAs. 

TRIM25 interacts with ZAP through its SPRY domain and enhances its ability to inhibit 

translation of the viral genomes. The shorter isoform of ZAP, ZAPS associates with RIG-I and 

functions as a stimulator of interferon responses during viral infections (Hayakawa et al. 2011). 

Detection of the viral genes by ZAP, which in turn depends on the CpG frequencies of the viral 

mRNA, is crucial for the activation of RIG-I signaling pathway and induction of interferon alpha 

responses. We are unable to determine from the available data if the avoidance of RIG-I 

signaling is a determinant of disease severity in COVID-19 patients. Possibly the infection dose 

accounts for severity of illness: older/co-morbid patients having their interferon alpha pathway 

evaded for longer due to (relatively) lower virus dose, with younger-severe cases due to a 

higher dose-effect. A recent study has demonstrated that the nonstructural protein 1 (NSP1) of 

SARS-CoV-2 blocks RIG-I dependent immune responses (Thoms et al. 2020), while another 

showed that ZAP restricts SARS-CoV-2 and its knock down in Calu-3 cells enhanced viral 

replication particularly upon treatment with IFN-� or IFN-� (Nchioua et al. 2020). 

The susceptibility of SARS-CoV-2 to IFN-I has been tested by pretreating Vero E6 cells with 

IFN-� (Lokugamage et al. 2020) resulting in a significant reduction in viral replication and 

reduced nucleocapsid protein production of SARS-CoV-2, while SARS-CoV-1 robustly 

expressed viral proteins in IFN-� treated cells after 48 hours. This sensitivity to interferon 

indicates immunotherapy that activates the RIG-I pathway may lead to restoration of early type I 

interferon response in patients, counteracting SARS-CoV-2 infection. A recent PRRs (pattern 

recognition receptor) stimulating study demonstrates the pathophysiological role of type III 

interferons in COVID-19 patients (Broggi et al. 2020). Collectively these results indicate 

immunopathology due to SARS-CoV-2 infection predominant in older people is driven by 

immune dysregulation, i.e., an inability to control disease. Regulation of interferon alpha 

response despite being a moderator of SARS-CoV-2 infection in cells will probably not work in 

older people due to immune dysregulation. A recent retrospective study shows administration of 

IFN in later stages of the disease to be associated with increased mortality and delayed 

recovery in COVID-19 patients (Wang et al. 2020), suggesting the timing of the therapy to be 

crucial for favorable clinical outcomes. Another interesting study compared type I interferon 

response in mild vs severe patients using single-cell transcriptomics data to determine its role in 

aggravating inflammation in COVID-19 patients (Lee et al. 2020). 

It has become clear that the pathology of SARS-CoV-2 infection depends on many factors such 

as gender, age, host genetics, virus properties and comorbidities, with increasing age probably 

the most important determinant of the disease outcome in COVID-19 patients, with those 80 

years or older having more than 20-fold risk of death than those aged between 50 to 59 

(Williamson et al. 2020). Age-related changes in the host innate immune system such as 

declining activities of monocytes, macrophages and dendritic cells weaken the ability to respond 

to infections or gain protective immunity from vaccination and this immunosenescence impacts 

the adaptive immune response of the host (Panda et al. 2009). During inflammation associated 

with infection or not, monocytes are recruited through blood circulation, differentiate into antigen 
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presenting cells and are then involved in resolving inflammation (Kratofil et al. 2017). Reduced 

expression of certain chemokine receptors like CX3CR1, due to aging, affects the ability of 

monocytes to migrate to the inflammatory sites to clear up inflammation. Thus an increased 

number of monocytes in older individuals is not necessarily positively correlated with increased 

functionality (Seidler et al. 2010). Our results demonstrate that the hyper-enrichment of 

monocyte related modules, not only in SARS-CoV-2 infected older individuals but also in older 

negative controls may play an important role in immunopathology in the older individuals, 

possibly correlating with clinical outcomes (Pence 2020). A recent study (Giamarellos-

Bourboulis et al. 2020) observed a sudden decrease in monocyte expression preceding 

respiratory failure in COVID-19 patients.  

SARS-CoV-2 RNA transcripts are enriched in the host mitochondria and nucleolus and this 

localization is predicted to induce mitochondrial dysfunction, which is likely to increase viral 

replication without being detected by the host immune system (Singh et al. 2020). SARS-CoV-1 

encodes an ORF, ORF9b, known to influence innate immunity by localizing to host mitochondria 

and promoting viral replication (Shi et al. 2014). Several viruses modulate mitochondria-

mediated antiviral immunity and possess strategies either to hijack host mitochondrial proteins 

or to mimic them (Anand and Tikoo 2013). In this study, we show that SARS-CoV-2 infected 

individuals irrespective of age have their mitochondrial mechanisms altered by the virus leading 

to mitochondrial dysfunction. As oxidative phosphorylation generates energy important for viral 

replication, selective regulation of this activity by the viruses results in sustained viral replication 

(Cao et al. 2017) during host shutoff induced by viral infections. Early after infection, hepatitis C 

virus limits oxidative phosphorylation activity to efficiently allow for viral replication (Gerresheim 

et al. 2019) and several other viruses suppress immune responses by reprogramming OxPhos 

activity and other mitochondrial functions (Moreno-Altamirano et al. 2019), thereby manipulating 

type I interferon response of the host. RIG-I mediated antiviral responses are known to rely on 

oxidative phosphorylation activity to produce type I interferons (Yoshizumi et al. 2017; Fekete et 

al. 2018); mitochondrial DNA deficiency with abnormal OxPhos activity results in impairment of 

RLR-mediated antiviral signaling enhancing susceptibility of the host to viral infection 

(Yoshizumi et al. 2017). SARS-CoV-2 seems to down-regulate OxPhos activity that is crucial for 

early detection of the virus by the host innate immune system mechanisms, thus accelerating 

viral replication inside the host.  

 

In conclusion, meta-analysis of SARS-CoV-2 transcriptomic data sets coupled with focused 

gene set and network analysis provides valuable insights into the disease characteristics of 

COVID-19. Our analysis indicates SARS-CoV-2 establishes infection by delaying/avoidance of 

type-I interferon response by suppressing OxPhos dependent RIG-I signaling pathway, possibly 

by avoiding TRIM25-ZAP detection by the immune system of the host. Immunosenescence in 

older individuals exhibited by negative controls in the surveillance data reveals that the host 

factors such as age related immune dysregulation and co-morbidities play a crucial role in 

determining severity and outcome of the disease. Collectively these results support the use of 

gene-module methods to compare transcriptomes of virus-infected samples from different 

sources.  

 

Methods 

The SARS-CoV-2 PBMC-BALF transcriptome patient dataset (Xiong et al. 2020) was 

downloaded from the Genome Sequence Archive (https://bigd.big.ac.cn/) using the accession 
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number CRA002390. The paired end reads were mapped onto the human hg38 genome using 

STAR aligner (Dobin et al. 2013). The resulting mapped reads were quantified using the 

featureCounts program (Liao et al. 2014) in the Subread R package (Liao et al. 2019). SARS-

CoV-2 whole-blood data (Thair et al. 2021), SARS-CoV-2 cell line and lung biopsy data (Blanco-

Melo et al. 2020; Wyler et al. 2020), SARS-CoV-1 (Josset et al. 2013; Sims et al. 2013; Frieman 

et al. 2014) and MERS-CoV (Josset et al. 2013; Frieman et al. 2013) were downloaded from 

NCBI GEO using the following accession numbers: GSE152641, GSE147507, GSE45042, 

GSE33267, GSE56192, GSE148729. Where available, the mapped read count data was 

downloaded for each RNA-seq dataset and analysed. If mapped data was unavailable, the 

sequencing data was downloaded and processed as described above. Microarray data of 

SARS-CoV-1 and the MERS-CoV were processed using the GEOquery package (Davis and 

Meltzer 2007), implemented in the R statistical language. Differential expression and BTM 

enrichment analysis of all the datasets were performed with limma workflow (Ritchie et al. 

2015), using a design model specifying sample types, time points wherever applicable, and 

infection status as covariates. As an additional preprocessing step, RNA-seq counts were 

scaled and normalized by the TMM (trimmed mean of M-values) method of edgeR package 

(Robinson et al. 2010) and log transformed using voom (Law et al. 2014), followed by 

differential expression analysis using the limma workflow.  

Genes with an absolute log transformed expression ratio of ≥1, and with a Benjamini and 

Hochberg (BH) (Benjamini and Hochberg 1995) adjusted p-value of ≤0.01, were considered 

differentially expressed. The differential gene lists containing gene identifiers, log transformed 

fold change and their corresponding false discovery rates (FDR) were analysed with the 

Ingenuity Pathway Analysis (IPA) software 

(https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis) and differentially 

regulated canonical pathways identified. Gene set testing using downloaded BTMs were 

performed using the MROAST function of ROAST R package (Wu et al. 2010) with the same 

design model described above. For both the IPA and BTM enrichment analysis, p-value 

correction for multiple testing was using the BH method; those with an FDR of 5% were 

considered differentially regulated. Dysregulated canonical pathways and enriched BTMs were 

compared across all SARS-CoV-2 datasets, to differentiate host immune response in different 

samples upon infection, as well as to elucidate differences between patient samples and cell 

line responses. By comparing SARS-CoV-2 module enrichment with SARS-CoV-1 and MERS-

CoV, differences in the overall response exhibited by these viruses in cell lines and distinct 

responses of the SARS-CoV-2 were identified. 

Mapped read counts from a transcriptomic dataset of nasopharyngeal swabs comprising 430 

SARS-CoV-2 positive and 54 negative samples (Lieberman et al. 2020), downloaded from NCBI 

GEO using the accession number GSE152075, were analyzed to understand the differences 
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associated with age and viral load in SARS-CoV-2 infected individuals. We used the 

variancePartition package (Hoffman et al. 2016) in R to compute the fraction of variance 

explained by known biological and technical covariates such as sequencing batch and gender. 

Violin plots demonstrating known sources of variation in the data before and after correction are 

depicted in supplementary figure 9, showing the major technical driver of variation to be 

sequencing batch and biological variation to be viral load. We used the voom function in the 

limma R package to correct for batch and gender and retained the effect of viral load to stratify 

data.  

Co-expression networks were constructed using the weighted gene correlation network analysis 

(Langfelder et al. 2008) in R. Based on the hierarchical clustering of the normalized expression 

of the genes, correlated networks of genes were identified among different age groups using a 

dynamic cuttree algorithm. The minimum module size was set to 50 and correlation of module 

eigengenes with viral load computed using Pearson correlation analysis. To determine the 

functional roles of the constructed WGCNA modules, the Fisher exact test was used, 

implemented in the GeneOverlap package (Shen 2020), using BTMs as reference modules and 

enriched modules across age groups were compared. Concordance and discordance of module 

enrichment across age groups were determined by calculating the disco.score of the differential 

co-expressed member genes of WGCNA modules using the disco package (Domaszewska et 

al. 2017) in R. For each gene-pair, the degree of change in gene expression (log-fold change), 

statistical significance of the differential expression (p-values) and direction of differential 

expression are used to calculate the disco.score. Gene set enrichment analysis on decreasing 

and increasing ordered lists of genes based on the disco.score were used to identify concordant 

and discordant modules, respectively, across each pairwise age groups using the tmod package 

(Weiner et al. 2016) in R against the reference modules.  

Table 2. Datasets used in the manuscript and images. Source and reference information is shown. More 

detailed information about the datasets can be found in supplementary table 1. 

Sample  Virus Reference 

PBMC SARS-CoV-2 Xiong et al. 2020 

Whole-Blood SARS-CoV-2 Thair et al. 2021 

BALF SARS-CoV-2 Xiong et al. 2020 

Lung Biopsy SARS-CoV-2 Blanco-Melo et al. 2020 

Calu-3 
a. SARS-CoV-2 
b. SARS-CoV 
c. MERS-CoV 

a. Blanco-Melo et al. 2020 
b. Josset et al. 2013 

           Sims et al. 2013 
c. Josset et al. 2013 

A549 SARS-CoV-2 Blanco-Melo et al. 2020 
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Supplementary table 1. Datasets and abbreviations used in the manuscript and images. Data identifiers, 

their source and reference information is shown. 
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Supplementary figure 1. Heatmap of the scaled expression values of the member genes of the modules 

belonging to the Inflammatory/TLR/Chemokine group of Lung biopsy and cell line samples, generated 

using ComplexHeatmap (Gu et al. 2016).  
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Supplementary figure 2. Heatmap of the scaled expression values of the member genes of the modules 

belonging to the Inflammatory/TLR/Chemokine group of PBMC-BALF samples, generated using 

ComplexHeatmap (Gu et al. 2016).  
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Supplementary figure 3. Correlation plot of data from Blanco-Melo et al. 2020, showing significant 

correlation between Lung biopsy and SARS-CoV-2 infected Calu-3 samples. 
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Supplementary figure 4. Correlation plot of median values derived from log transformed expression 

ratios (Blanco-Melo et al. 2020) of the member genes of the enriched modules, showing significant 

correlation between Lung biopsy and SARS-CoV-2 infected Calu-3 samples. 
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Supplementary figure 5. Heatmap of the scaled expression values of the member genes of the type I 

interferon module (M127) of lung biopsy and cell line samples, generated using ComplexHeatmap (Gu et 

al. 2016).  
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Supplementary figure 6. (A) Log transformed fold changes of the member genes of type I interferon 

response module (M127). (B) Log transformed fold changes of the member genes of interferon alpha 

response I (M158.0), interferon alpha response II (M158.1) and RIG-I like receptor signaling pathway 

(M68) and ZAP (ZC3HAV1) of SARS-CoV-2 clinical samples and cell lines. 
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Supplementary figure 7. Heatmap showing negative log of p-values of differentially regulated immune 

response pathways in SARS-CoV-2 infected cell lines and clinical samples, as identified by IPA. 
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Supplementary figure 8. Heatmap showing negative log of p-values of differentially regulated pathways 

in the surveillance data stratified by viral load and age as identified by IPA. 
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Supplementary figure 9. Violin plots

demonstrating known sources of biological and technical variations in the surveillance data before and

after batch correction inferred by variancePartition package in R. 
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