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Basic life science literature is rich with information, however methodically quantitative

attempts to organize this information are rare. Unlike clinical research, where

consolidation efforts are facilitated by systematic review and meta-analysis, the basic

sciences seldom use such rigorous quantitative methods. The goal of this study

is to present a brief theoretical foundation, computational resources and workflow

outline along with a working example for performing systematic or rapid reviews of

basic research followed by meta-analysis. Conventional meta-analytic techniques are

extended to accommodate methods and practices found in basic research. Emphasis

is placed on handling heterogeneity that is inherently prevalent in studies that use

diverse experimental designs and models. We introduce MetaLab, a meta-analytic

toolbox developed in MATLAB R2016b which implements the methods described in

this methodology and is provided for researchers and statisticians at Git repository

(https://github.com/NMikolajewicz/MetaLab). Through the course of the manuscript, a

rapid review of intracellular ATP concentrations in osteoblasts is used as an example to

demonstrate workflow, intermediate and final outcomes of basic researchmeta-analyses.

In addition, the features pertaining to larger datasets are illustrated with a systematic

review of mechanically-stimulated ATP release kinetics in mammalian cells. We discuss

the criteria required to ensure outcome validity, as well as exploratory methods to identify

influential experimental and biological factors. Thus, meta-analyses provide informed

estimates for biological outcomes and the range of their variability, which are critical for

the hypothesis generation and evidence-driven design of translational studies, as well as

development of computational models.

Keywords: meta-analysis, basic research, rapid review, systematic review, MATLAB, methodology

INTRODUCTION

Evidence-based medical practice aims to consolidate best research evidence with clinical and
patient expertise. Systematic reviews andmeta-analyses are essential tools for synthesizing evidence
needed to inform clinical decision making and policy. Systematic reviews summarize available
literature using specific search parameters followed by critical appraisal and logical synthesis of
multiple primary studies (Gopalakrishnan and Ganeshkumar, 2013). Meta-analysis refers to the
statistical analysis of the data from independent primary studies focused on the same question,
which aims to generate a quantitative estimate of the studied phenomenon, for example, the
effectiveness of the intervention (Gopalakrishnan and Ganeshkumar, 2013). In clinical research,
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systematic reviews and meta-analyses are a critical part of
evidence-based medicine. However, in basic science, attempts
to evaluate prior literature in such rigorous and quantitative
manner are rare, and narrative reviews are prevalent. The goal
of this manuscript is to provide a brief theoretical foundation,
computational resources and workflow outline for performing a
systematic or rapid review followed by a meta-analysis of basic
research studies.

Meta-analyses can be a challenging undertaking, requiring
tedious screening and statistical understanding. There are several
guides available that outline how to undertake a meta-analysis in
clinical research (Higgins and Green, 2011). Software packages
supporting clinical meta-analyses include the Excel plugins
MetaXL (Barendregt and Doi, 2009) and Mix 2.0 (Bax, 2016),
Revman (Cochrane Collaboration, 2011), Comprehensive Meta-
Analysis Software [CMA (Borenstein et al., 2005)], JASP (JASP
Team, 2018) and MetaFOR library for R (Viechtbauer, 2010).
While these packages can be adapted to basic science projects,
difficulties may arise due to specific features of basic science
studies, such as large and complex datasets and heterogeneity
in experimental methodology. To address these limitations, we
developed a software package aimed to facilitate meta-analyses of
basic research, MetaLab in MATLAB R2016b, with an intuitive
graphical interface that permits users with limited statistical
and coding background to proceed with a meta-analytic
project. We organized MetaLab into six modules (Figure 1),
each focused on different stages of the meta-analytic process,
including graphical-data extraction,model parameter estimation,
quantification and exploration of heterogeneity, data-synthesis,
and meta-regression.

In the present manuscript, we describe each step of the
meta-analytic process with emphasis on specific considerations
made when conducting a review of basic research. The
complete workflow of parameter estimation using MetaLab is
demonstrated for evaluation of intracellular ATP content in
osteoblasts (OB [ATP]ic dataset) based on a rapid literature
review. In addition, the features pertaining to larger datasets
are explored with the ATP release kinetics from mechanically-
stimulated mammalian cells (ATP release dataset) obtained
as a result of a systematic review in our prior work
(Mikolajewicz et al., 2018).

MetaLab can be freely accessed at Git repository (https://
github.com/NMikolajewicz/MetaLab), and a detailed
documentation of how to use MetaLab together with a working
example is available in the Supporting materials.

VALIDITY OF EVIDENCE IN THE
BASIC SCIENCES

To evaluate the translational potential of basic research, the
validity of evidence must first be assessed, usually by examining
the approach taken to collect and evaluate the data. Studies in
the basic sciences are broadly grouped as hypothesis-generating
and hypothesis-driven. The former tend to be small-sampled
proof-of-principle studies and are typically exploratory and less
valid than the latter. An argument can even be made that studies
that report novel findings fall into this group as well, since their

findings remain subject to external validation prior to being
accepted by the broader scientific community. Alternatively,
hypothesis-driven studies build upon what is known or strongly
suggested by earlier work. These studies can also validate prior
experimental findings with incremental contributions. Although
such studies are often overlooked and even dismissed due to a
lack of substantial novelty, their role in external validation of
prior work is critical for establishing the translational potential
of findings.

Another dimension to the validity of evidence in the
basic sciences is the selection of experimental model. The
human condition is near-impossible to recapitulate in a
laboratory setting, therefore experimental models (e.g., cell
lines, primary cells, animal models) are used to mimic
the phenomenon of interest, albeit imperfectly. For these
reasons, the best quality evidence comes from evaluating
the performance of several independent experimental models.
This is accomplished through systematic approaches that
consolidate evidence from multiple studies, thereby filtering
the signal from the noise and allowing for side-by-side
comparison. While systematic reviews can be conducted to
accomplish a qualitative comparison, meta-analytic approaches
employ statistical methods which enable hypothesis generation
and testing. When a meta-analysis in the basic sciences is
hypothesis-driven, it can be used to evaluate the translational
potential of a given outcome and provide recommendations for
subsequent translational- and clinical-studies. Alternatively, if
meta-analytic hypothesis testing is inconclusive, or exploratory
analyses are conducted to examine sources of inconsistency
between studies, novel hypotheses can be generated, and
subsequently tested experimentally. Figure 2 summarizes this
proposed framework.

STEPS IN QUANTITATIVE
LITERATURE REVIEW

All meta-analytic efforts prescribe to a similar workflow, outlined
as follows:

1) Formulate research question

• Define primary and secondary objectives
• Determine breadth of question

2) Identify relevant literature

• Construct search strategy: rapid or systematic search
• Screen studies and determine eligibility

3) Extract and consolidate study-level data

• Extract data from relevant studies
• Collect relevant study-level characteristics and experi-

mental covariates
• Evaluate quality of studies
• Estimate model parameters for complex relation-

ships (optional)

4) Data appraisal and preparation

• Compute appropriate outcome measure
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FIGURE 1 | General framework of MetaLab. The Data Extraction module assists with graphical data extraction from study figures. Fit Model module applies

Monte-Carlo error propagation approach to fit complex datasets to model of interest. Prior to further analysis, reviewers have opportunity to manually curate and

consolidate data from all sources. Prepare Data module imports datasets from a spreadsheet into MATLAB in a standardized format. Heterogeneity, Meta-analysis

and Meta-regression modules facilitate meta-analytic synthesis of data.

• Evaluate extent of between-study inconsistency
(heterogeneity)

• Perform relevant data transformations
• Select meta-analytic model

5) Synthesize study-level data into summary measure

• Pool data and calculate summary measure and confidence
interval

6) Exploratory analyses

• Explore potential sources of heterogeneity (ex. biological
or experimental)

• Subgroup and meta-regression analyses

7) Knowledge synthesis

• Interpret findings
• Provide recommendations for future work

META-ANALYSIS METHODOLOGY

Search and Selection Strategies
The first stage of any review involves formulating a primary
objective in the form of a research question or hypothesis.
Reviewers must explicitly define the objective of the review before
starting the project, which serves to reduce the risk of data
dredging, where reviewers later assign meaning to significant
findings. Secondary objectives may also be defined; however,
precaution must be taken as the search strategies formulated for
the primary objective may not entirely encompass the body of
work required to address the secondary objective. Depending on
the purpose of a review, reviewers may choose to undertake a
rapid or systematic review.While the meta-analytic methodology
is similar for systematic and rapid reviews, the scope of literature

assessed tends to be significantly narrower for rapid reviews
permitting the project to proceed faster.

Systematic Review and Meta-Analysis
Systematic reviews involve comprehensive search strategies that
enable reviewers to identify all relevant studies on a defined
topic (DeLuca et al., 2008). Meta-analytic methods then permit
reviewers to quantitatively appraise and synthesize outcomes
across studies to obtain information on statistical significance
and relevance. Systematic reviews of basic research data have the
potential of producing information-rich databases which allow
extensive secondary analysis. To comprehensively examine the
pool of available information, search criteria must be sensitive
enough not to miss relevant studies. Key terms and concepts
that are expressed as synonymous keywords and index terms,
such as Medical Subject Headings (MeSH), must be combined
using Boolean operators AND, OR and NOT (Ecker and Skelly,
2010). Truncations, wildcards, and proximity operators can also
help refine a search strategy by including spelling variations
and different wordings of the same concept (Ecker and Skelly,
2010). Search strategies can be validated using a selection of
expected relevant studies. If the search strategy fails to retrieve
even one of the selected studies, the search strategy requires
further optimization. This process is iterated, updating the search
strategy in each iterative step until the search strategy performs
at a satisfactory level (Finfgeld-Connett and Johnson, 2013). A
comprehensive search is expected to return a large number of
studies, many of which are not relevant to the topic, commonly
resulting in a specificity of <10% (McGowan and Sampson,
2005). Therefore, the initial stage of sifting through the library to
select relevant studies is time-consuming (may take 6months to 2
years) and prone to human error. At this stage, it is recommended
to include at least two independent reviewers to minimize
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FIGURE 2 | Schematic of proposed hierarchy of translational potential in basic research.

selection bias and related errors. Nevertheless, systematic reviews
have a potential to provide the highest quality quantitative
evidence synthesis to directly inform the experimental and
computational basic, preclinical and translational studies.

Rapid Review and Meta-Analysis
The goal of the rapid review, as the name implies, is to
decrease the time needed to synthesize information. Rapid
reviews are a suitable alternative to systematic approaches if
reviewers prefer to get a general idea of the state of the
field without an extensive time investment. Search strategies
are constructed by increasing search specificity, thus reducing
the number of irrelevant studies identified by the search
at the expense of search comprehensiveness (Haby et al.,
2016). The strength of a rapid review is in its flexibility
to adapt to the needs of the reviewer, resulting in a lack
of standardized methodology (Mattivi and Buchberger, 2016).
Common shortcuts made in rapid reviews are: (i) narrowing
search criteria, (ii) imposing date restrictions, (iii) conducting the
review with a single reviewer, (iv) omitting expert consultation
(i.e., librarian for search strategy development), (v) narrowing
language criteria (ex. English only), (vi) foregoing the iterative
process of searching and search term selection, (vii) omitting
quality checklist criteria and (viii) limiting number of databases
searched (Ganann et al., 2010). These shortcuts will limit
the initial pool of studies returned from the search, thus
expediting the selection process, but also potentially resulting in
the exclusion of relevant studies and introduction of selection
bias. While there is a consensus that rapid reviews do not
sacrifice quality, or synthesize misrepresentative results (Haby
et al., 2016), it is recommended that critical outcomes be

later verified by systematic review (Ganann et al., 2010).
Nevertheless, rapid reviews are a viable alternative when
parameters for computational modeling need to be estimated.
While systematic and rapid reviews rely on different strategies
to select the relevant studies, the statistical methods used
to synthesize data from the systematic and rapid review
are identical.

Screening and Selection
When the literature search is complete (the date articles were
retrieved from the databases needs to be recorded), articles
are extracted and stored in a reference manager for screening.
Before study screening, the inclusion and exclusion criteria
must be defined to ensure consistency in study identification
and retrieval, especially when multiple reviewers are involved.
The critical steps in screening and selection are (1) removing
duplicates, (2) screening for relevant studies by title and abstract,
and (3) inspecting full texts to ensure they fulfill the eligibility
criteria. There are several reference managers available including
Mendeley and Rayyan, specifically developed to assist with
screening systematic reviews. However, 98% of authors report
using Endnote, Reference Manager or RefWorks to prepare their
reviews (Lorenzetti and Ghali, 2013). Reference managers often
have deduplication functions; however, these can be tedious
and error-prone (Kwon et al., 2015). A protocol for faster
and more reliable de-duplication in Endnote has been recently
proposed (Bramer et al., 2016). The selection of articles should
be sufficiently broad not to be dominated by a single lab or
author. In basic research articles, it is common to find data
sets that are reused by the same group in multiple studies.
Therefore, additional precautions should be taken when deciding
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FIGURE 3 | Example of the rapid review literature search. (A) Development of the search parameters to find literature on the intracellular ATP content in osteoblasts.

(B) PRISMA diagram for the information flow.

to include multiple studies published by a single group. At the
end of the search, screening and selection process, the reviewer
obtains a complete list of eligible full-text manuscripts. The entire
screening and selection process should be reported in a PRISMA
diagram, which maps the flow of information throughout the
review according to prescribed guidelines published elsewhere
(Moher et al., 2009). Figure 3 provides a summary of the
workflow of search and selection strategies using the OB [ATP]ic
rapid review and meta-analysis as an example.

Data Extraction, Initial Appraisal,
and Preparation
Identification of Parameters to be Extracted
It is advised to predefine analytic strategies before data extraction
and analysis. However, the availability of reported effect
measures and study designs will often influence this decision.
When reviewers aim to estimate the absolute mean difference
(absolute effect), normalized mean difference, response ratio
or standardized mean difference (ex. Hedges’ g), they need
to extract study-level means (θi), standard deviations

(

sd (θi)
)

,
and sample sizes (ni), for control (denoted θ ci , sd

(

θ ci

)

, and
nci ) and intervention (denoted θ ri , sd

(

θ ri

)

, and nri ) groups,
for studies i. To estimate absolute mean effect, only the
mean (θ ri ), standard deviation

(

sd
(

θ ri

))

, and sample size (nri )
are required. In basic research, it is common for a single
study to present variations of the same observation (ex.
measurements of the same entity using different techniques).
In such cases, each point may be treated as an individual
observation, or common outcomes within a study can be
pooled by taking the mean weighted by the sample size.
Another consideration is inconsistency between effect size
units reported on the absolute scale, for example, protein
concentrations can be reported as g/cell, mol/cell, g/g wet
tissue or g/g dry tissue. In such cases, conversion to a
common representation is required for comparison across
studies, for which appropriate experimental parameters and
calibrations need to be extracted from the studies. While
some parameters can be approximated by reviewers, such as
cell-related parameters found in BioNumbers database (Milo

et al., 2010) and equipment-related parameters presumed
from manufacturer manuals, reviewers should exercise caution
when making such approximations as they can introduce
systematic errors that manifest throughout the analysis. When
data conversion is judged to be difficult but negative/basal
controls are available, scale-free measures (i.e., normalized,
standardized, or ratio effects) can still be used in the meta-
analysis without the need to convert effects to common units on
the absolute scale. In many cases, reviewers may only be able
to decide on a suitable effect size measure after data extraction
is complete.

It is regrettably common to encounter unclear or incomplete
reporting, especially for the sample sizes and uncertainties.
Reviewers may choose to reject studies with such problems
due to quality concerns or to employ conservative assumptions
to estimate missing data. For example, if it is unclear if
a study reports the standard deviation or standard error
of the mean, it can be assumed to be a standard error,
which provides a more conservative estimate. If a study
does not report uncertainties but is deemed important
because it focuses on a rare phenomenon, imputation
methods have been proposed to estimate uncertainty terms
(Chowdhry et al., 2016). If a study reports a range of
sample sizes, reviewers should extract the lowest value.
Strategies to handle missing data should be pre-defined and
thoroughly documented.

In addition to identifying relevant primary parameters,
a priori defined study-level characteristics that have a
potential to influence the outcome, such as species, cell
type, specific methodology, should be identified and
collected in parallel to data extraction. This information
is valuable in subsequent exploratory analyses and can
provide insight into influential factors through between-
study comparison.

Quality Assessment
Formal quality assessment allows the reviewer to appraise
the quality of identified studies and to make informed and
methodical decision regarding exclusion of poorly conducted
studies. In general, based on initial evaluation of full texts, each
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study is scored to reflect the study’s overall quality and scientific
rigor. Several quality-related characteristics have been described
(Sena et al., 2007), such as: (i) published in peer-reviewed
journal, (ii) complete statistical reporting, (iii) randomization
of treatment or control, (iv) blinded analysis, (v) sample size
calculation prior to the experiment, (vi) investigation of a dose-
response relationship, and (vii) statement of compliance with
regulatory requirements. We also suggest that the reviewers of
basic research studies assess (viii) objective alignment between
the study in question and the meta-analytic project. This involves
noting if the outcome of interest was the primary study objective
or was reported as a supporting or secondary outcome, which
may not receive the same experimental rigor and is subject to
expectation bias (Sheldrake, 1997). Additional quality criteria
specific to experimental design may be included at the discretion
of the reviewer. Once study scores have been assembled, study-
level aggregate quality scores are determined by summing the
number of satisfied criteria, and then evaluating how outcome
estimates and heterogeneity vary with study quality. Significant
variation arising from poorer quality studies may justify study
omission in subsequent analysis.

Extraction of Tabular and Graphical Data
The next step is to compile the meta-analytic data set, which
reviewers will use in subsequent analysis. For each study, the
complete dataset which includes parameters required to estimate
the target outcome, study characteristics, as well as data necessary
for unit conversion needs to be extracted. Data reporting in
basic research are commonly tabular or graphical. Reviewers
can accurately extract tabular data from the text or tables.
However, graphical data often must be extracted from the graph
directly using time consuming and error prone methods. The
Data Extraction Module in MetaLab was developed to facilitate
systematic and unbiased data extraction; Reviewers provide study
figures as inputs, then specify the reference points that are used
to calibrate the axes and extract the data (Figures 4A,B).

To validate the performance of the MetaLab Data Extraction
Module, we generated figures using 319 synthetic data points
plotted with varying markers sizes (Figure 4C). Extracted and
actual values were correlated (R2 = 0.99) with the relationship
slope estimated as 1.00 (95% CI: 0.99 to 1.01) (Figure 4D).
Bias was absent, with a mean percent error of 0.00% (95% CI:
−0.02 to 0.02%) (Figure 4E). The narrow range of errors between
−2.00 and 1.37%, and consistency between the median and
mean error indicated no skewness. Data marker size did not
contribute to the extraction error, as 0.00% of the variation in
absolute error was explained by marker size, and the slope of the
relationship between marker size and extraction error was 0.000
(95% CI: −0.001, 0.002) (Figure 4F). There data demonstrate
that graphical data can be reliably extracted usingMetaLab.

Extracting Data From Complex Relationships
Basic science often focuses on natural processes and phenomena
characterized by complex relationships between a series of inputs
(e.g., exposures) and outputs (e.g., response). The results are
commonly explained by an accepted model of the relationship,
such as Michaelis-Menten model of enzyme kinetics which

TABLE 1 | Commonly used models of complex relationships in basic sciences.

Model Equation Parameter meaning Applications

Linear model y = β1x + β2 β1: slope, magnitude of

relationship

β2: intercept,

response at x = 0

Reaction

rates

Quadratic

model

(vertex form)

y =
β1
(

x − β2
)2 + β3

β1: curvature factor

β2: x at global max/min

β3:

global maxima/minimal

Trajectory

modeling

Exponential

model

y = β1e
β2x β1: intercept, response

at x = 0

β2:

decay/growth constant

Population

decay/growth

Michaelis-

Menten,

hyperbolic

curve

y = β1x
β2+x β1: max response

β2: x at half

max response

Enzyme

kinetics,

reaction rates,

infection

rates, drug

clearance

Sigmoidal

Emax Model,

Hill Function

y = β1x
β3

(β2 )
β3+xβ3

β1: max response

β2: x at half max

response

β3: slope-related term

Dose-

response

relationships,

pharmaco

dynamics

involves two parameters–Vmax for the maximum rate and
Km for the substrate concentration half of Vmax. For meta-
analysis, model parameters characterizing complex relationships
are of interest as they allow direct comparison of different
multi-observational datasets. However, study-level outcomes for
complex relationships often (i) lack consistency in reporting,
and (ii) lack estimates of uncertainties for model parameters.
Therefore, reviewers wishing to perform a meta-analysis of
complex relationshipsmay need to fit study-level data to a unified
model y = f (x,β) to estimate parameter set β characterizing the
relationship (Table 1), and assess the uncertainty in β .

The study-level data can be fitted to a model using
conventional fitting methods, in which the model parameter
error terms depend on the goodness of fit and number of available
observations. Alternatively, a Monte Carlo simulation approach
(Cox et al., 2003) allows for the propagation of study-level
variances (uncertainty in the model inputs) to the uncertainty in
the model parameter estimates (Figure 5). Suppose that study i
reported a set of k predictor variables x = {xj|1 ≤ j ≤ k} for a set
of outcomes θ = {θj|1 ≤ j ≤ k}, and that there is a corresponding
set of standard deviations sd(θ) = {sd(θj)|1 ≤ j ≤ k} and
sample sizes n = {nj|1 ≤ j ≤ k} (Figure 5A). The Monte Carlo
error propagation method assumes that outcomes are normally
distributed, enabling pseudo random observations to be sampled
from a distribution approximated by N(θj, sd(θj)

2). The pseudo
random observations are then averaged to obtain a Monte-Carlo
estimate θ∗j for each observation such that

θ∗j = 1

nj

nj
∑

m=1

(θ∗j,m) (1)
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FIGURE 4 | MetaLab data extraction procedure is accurate, unbiased and robust to quality of data presentation. (A,B) Example of graphical data extraction using

MetaLab. (A) Original figure (Bodin et al., 1992) with axes, data points and corresponding errors marked by reviewer. (B) Extracted data with error terms. (C–F)

Validation of MetaLab data-extraction module. (C) Synthetic datasets were constructed using randomly generated data coordinates and marker sizes. (D) Extracted

values were consistent with true values evaluated by linear regression with the slope βslope, red line: line of equality. (E) Data extraction was unbiased, evaluated with

distribution of percent errors between true and extracted values. Emean, Emedian, Emin, and Emax are mean, median, minimum, and maximum % error respectively.

(F) The absolute errors of extracted data were independent of data marker size, red line: line regression with the slope βslope.

where θ(j,m)∗ represents a pseudo-random variable sampled nj
times from N(θj, sd(θj)

2). The relationship between x and θ∗ =
{θ∗j |1 ≤ j ≤ k} is then fitted with the model of interest using the

least-squares method to obtain an estimate of model parameters
β (Figure 5B). After many iterations of resampling and fitting,

a distribution of parameter estimates N(β , sd
(

β
)2
) is obtained,

from which the parameter means β and variances sd
(

β
)2

can be
estimated (Figures 5C,D). As the number of iterations M tend
to infinity, the parameter estimate converges to the expected
value E(β).

lim
M→∞

1

M
(β1 + β2 + . . . + βM) = E(β) (2)

It is critical for reviewers to ensure the data is consistent with
the model such that the estimated parameters sufficiently capture
the information conveyed in the underlying study-level data.
In general, reliable model fittings are characterized by normal
parameter distributions (Figure 5D) and have a high goodness
of fit as quantified by R2. The advantage of using the Monte-
Carlo approach is that it works as a black box procedure that does
not require complex error propagation formulas, thus allowing
handling of correlated and independent parameters without
additional consideration.

Study-Level Effect Sizes
Depending on the purpose of the review product, study-
level outcomes θi can be expressed as one of several effect

size measures. The absolute effect size, computed as a mean
outcome or absolute difference from baseline, is the simplest,
is independent of variance, and retains information about the

context of the data (Baguley, 2009). However, the use of absolute

effect size requires authors to report on a common scale or
provide conversion parameters. In cases where a common

scale is difficult to establish, a scale-free measure, such as
standardized, normalized or relative measures can be used.

Standardized mean differences, such Hedges’ g or Cohen d,
report the outcome as the size of the effect (difference between

the means of experimental and control groups) relative to the

overall variance (pooled and weighted standard deviation of
combined experimental and control groups). The standardized

mean difference, in addition to odds or risk ratios, is widely
used in meta-analysis of clinical studies (Vesterinen et al.,

2014), since it allows to summarize metrics that do not have

unified meaning (e.g., a pain score), and takes into account the
variability in the samples. However, the standardized measure is
rarely used in basic science since study outcomes are commonly
a defined measure, sample sizes are small, and variances
are highly influenced by experimental and biological factors.
Other measures that are more suited for basic science are
the normalized mean difference, which expresses the difference
between the outcome and baseline as a proportion of the
baseline (alternatively called the percentage difference), and
response ratio, which reports the outcome as a proportion of
the baseline. All discussed measures have been included in
MetaLab (Table 2).
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FIGURE 5 | Model parameter estimation with Monte-Carlo error propagation method. (A) Study-level data taken from ATP release meta-analysis. (B) Assuming

sigmoidal model, parameters were estimated using Fit Model MetaLab module by randomly sampling data from distributions defined by study level data. Model

parameters were estimated for each set of sampled data. (C) Final model using parameters estimated from 400 simulations. (D) Distributions of parameters estimated

for given dataset are unimodal and symmetrical.

Data Synthesis
The goal of any meta-analysis is to provide an outcome
estimate that is representative of all study-level findings. One
important feature of the meta-analysis is its ability to incorporate
information about the quality and reliability of the primary
studies by weighing larger, better reported studies more heavily.
The two quantities of interest are the overall estimate and the
measure of the variability in this estimate. Study-level outcomes
θi are synthesized as a weighted mean θ̂ according to the study-
level weights wi:

θ̂ =
∑N

i (θi · wi)
∑

i (wi)
(3)

where N is number of studies or datasets. The choice of a
weighting scheme dictates how study-level variances are pooled
to estimate the variance of the weighted mean. The weighting
scheme thus significantly influences the outcome of meta-
analysis, and if poorly chosen, potentially risks over-weighing
less precise studies and generating a less valid, non-generalizable
outcome. Thus, the notion of defining an a priori analysis
protocol has to be balanced with the need to assure that
the dataset is compatible with the chosen analytic strategy,
which may be uncertain prior to data extraction. We provide
strategies to compute and compare different study-level and
global outcomes and their variances.

Weighting Schemes
To generate valid estimates of cumulative knowledge, studies
are weighed according to their reliability. This conceptual
framework, however, deteriorates if reported measures of
precision are themselves flawed. The most commonly used
measure of precision is the inverse variance which is a composite
measure of total variance and sample size, such that studies
with larger sample sizes and lower experimental errors are more
reliable and more heavily weighed. Inverse variance weighting
schemes are valid when (i) sampling error is random, (ii) the
reported effects are homoscedastic, i.e., have equal variance
and (iii) the sample size reflects the number of independent

experimental observations. When assumptions (i) or (ii) are
violated, sample size weighing can be used as an alternative.
Despite sample size and sample variance being such critical
parameters in the estimation of the global outcome, they are often
prone to deficient reporting practices.

Potential problems with sample variance and sample size
The standard error se(θi) is required to compute inverse variance
weights, however, primary literature as well as meta-analysis
reviewers often confuse standard errors with standard deviations
sd (θi) (Altman and Bland, 2005). Additionally, many assays
used in basic research often have uneven error distributions,
such that the variance component arising from experimental
error depends on the magnitude of the effect (Bittker and
Ross, 2016). Such uneven error distributions will lead to biased
weighing that does not reflect true precision in measurement.
Fortunately, the standard error and standard deviation have
characteristic properties that can be assessed by the reviewer to
determine whether inverse variance weights are appropriate for a
given dataset. The study-level standard error se(θ i) is a measure
of precision and is estimated as the product of the sample
standard deviation sd(θ i) and margin of error 1√

ni
for study i.

Therefore, the standard error is expected to be approximately
inversely proportionate to the root of the study-level sample
size ni

se(θ i) ∼
1

√
ni

(4)

Unlike the standard error, the standard deviation–a measure
of the variance of a random variable sd (θ)2-is assumed to
be independent of the sample size because it is a descriptive
statistic rather than a precision statistic. Since the total observed
study-level sample variance is the sum of natural variability
(assumed to be constant for a phenomenon) and random error,
no relationship is expected between reported standard deviations
and sample sizes. These assumptions can be tested by correlation
analysis and can be used to inform the reviewer about the
reliability of the study-level uncertainty measures. For example,
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TABLE 2 | Types of effect sizes.

Measure Mean Standard error

Absolute θi =







θ r
i
− θc

i
, if θc

i
reported

θ r
i
, else

se
(

θi
)

=















√

nc
i
+nr

i
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i
nr
i

sd(θ i )
2, if θc

i
reported

sd
(

θ r
i

)

√

nr
i

, else

Where sd(θ i ) =
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(
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i
−1
)
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(

θc
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)

+(nr
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−1)sd

(
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)
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·
(
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)

Where sd(θ i ) =
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(
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i
−1
)
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(

θc
i

)

+(nr
i
−1)sd

(
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i

)
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i
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i
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se
(

θi
)

=
√
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i
+nr

i
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i
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i
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i

2
((
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i
+nr

i

)

−3.94
)

Normalized θi =
θ r
i
−θc

i

θc
i

se
(

θi
)
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√

√

√

√

√

(
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(
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i

)
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i

)2
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i

+

(

sd
(
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i

)
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i

)2
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i

Ratio θi =
θ r
i

θc
i

se
(

θi
)

=

√

√

√

√

(

θ r
i

)2

(
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i

)2

(

sd
(
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)2

nr
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(

θ r
i

)2 + sd
(

θc
i

)2

nc
i

(

θc
i

)2

)

Provided are formulas to calculate the mean and standard error for the specified effect sizes.

a relationship between sample size and sample variance was
observed for the OB [ATP]ic dataset (Figure 6A), but not for the
ATP release data (Figure 6B). Therefore, in the case of the OB
[ATP]ic data set, lower variances are not associated with higher
precision and inverse variance weighting is not appropriate.
Sample sizes are also frequently misrepresented in the basic
sciences, as experimental replicates and repeated experiments
are often reported interchangeably (incorrectly) as sample
sizes (Vaux et al., 2012). Repeated (independent) experiments
refer to number of randomly sampled observations, while
replicates refer to the repeated measurement of a sample from
one experiment to improve measurement precision. Statistical
inference theory assumes random sampling, which is satisfied
by independent experiments but not by replicate measurements.
Misrepresentative reporting of replicates as the sample size may
artificially inflate the reliability of results. While this is difficult
to identify, poor reporting may be reflected in the overall quality
score of a study.

Inverse variance weighting
The inverse variance is the most common measure of precision,
representing a composite measure of total variance and sample
size. Widely used weighting schemes based on the inverse
variance are fixed effect or random effects meta-analytic models.
The fixed effect model assumes that all the studies sample one
true effect γ . The observed outcome θi for study i is then a
function of a within-study error εi, θi = γ + εi, where εi

is normally distributed εi ∼N
(

0, se(θ i)
2
)

. The standard error

se(θ i) is calculated from the sample standard deviation sd(θ i) and
sample size ni as:

se(θ i) =
sd(θ i)√

ni
(5)

Alternatively, the random effects model supposes that each study
samples a different true outcome µi, such that the combined

effect µ is the mean of a population of true effects. The observed
effect θi for study i is then influenced by the intrastudy error
εi and interstudy error ξi, θi = µi + εi + ξi, where ξi is
also assumed to be normally distributed ξi ∼ N

(

0, τ 2
)

, with
τ 2 representing the extent of heterogeneity, or between-study
(interstudy) variance.

Study-level estimates for a fixed effect or random effects model
are weighted using the inverse variance:

wi =
{ 1

se(θ i)
2 , fixed effect

1

se(θ i)
2+τ 2

, random effects
(6)

These weights are used to calculate the global outcome θ̂

(Equation 3) and the corresponding standard error se(θ̂):

se(θ̂) = 1
√

∑N
i wi

(7)

where N = number of datasets/studies. In practice, random
effects models are favored over the fixed effect model, due
to the prevalence of heterogeneity in experimental methods
and biological outcomes. However, when there is no between-
study variability (τ 2 = 0), the random effects model reduces
to a fixed effect model. In contrast, when τ 2 is exceedingly
large and interstudy variance dominates the weighting
term [τ 2 ≫ se(θ i)

2], random effects estimates will tend to
an unweighted mean.

Interstudy variance τ 2 estimators. Under the assumptions of
a random effects model, the total variance is the sum of the
intrastudy variance (experimental sampling error) and interstudy
variance τ 2 (variability of true effects). Since the distribution of
true effects is unknown, we must estimate the value of τ 2 based
on study-level outcomes (Borenstein, 2009). The DerSimonian
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FIGURE 6 | Assessment of study-level outcomes. (A,B) Reliability of study-level error measures. Relationship between study-level squared standard deviation sd
(

θi
)2

and sample sizes ni are assumed to be independent when reliably reported. Association between sd
(

θi
)2

and ni was present in OB [ATP]ic data set (A) and absent in

ATP release data set (B), red line: linear regression. (C,D) Distributions of study-level outcomes. Assessment of unweighted (UW–black) and weighted (fixed effect;

FE–blue, random effects; RE–red, sample-size weighting; N–green) study-level distributions of data from OB [ATP]ic (C) and ATP release (D) data sets, before (left) and

after log10 transformation (right). Heterogeneity was quantified by Q, I2, and H2 heterogeneity statistics. (E,F) After log10 transformation, H2 heterogeneity statistics

increased for OB [ATP]ic data set (E) and decreased for ATP release (F) data set.

and Laird (DL) method is the most commonly used in meta-
analyses (DerSimonian and Laird, 1986). Other estimators such
as the Hunter and Schmidt (Hunter and Schmidt, 2004), Hedges
(Hedges and Olkin, 1985), Hartung-Makambi (Hartung and
Makambi, 2002), Sidik-Jonkman (Sidik and Jonkman, 2005), and
Paule-Mandel (Paule and Mandel, 1982) estimators have been
proposed as either alternatives or improvements over the DL
estimator (Sanchez-Meca and Marin-Martinez, 2008) and have
been implemented in MetaLab (Table 3). Negative values of τ 2

are truncated at zero. An overview of the various τ 2 estimators
along with recommendations on their use can be found
elsewhere (Veroniki et al., 2016).

Sample-size weighting
Sample-size weighting is preferred in cases where variance
estimates are unavailable or unreliable. Under this weighting
scheme, study-level sample sizes are used in place of inverse
variances as weights. The sampling error is then unaccounted for;
however, since sampling error is random, larger sample sizes will
effectively average out the error and produce more dependable
results. This is contingent on reliable reporting of sample sizes
which is difficult to assess and can be erroneous as detailed above.
For a sample size weighted estimate, study-level sample sizes ni

replace weights that are used to calculate the global effect size θ̂ ,
such that

wi = ni (8)

The pooled standard error se(θ̂) for the global effect is then:

se(θ̂) =

√

√

√

√

∑N
i

(

se (θi)
2 · (ni − 1)

)

∑N
i (ni − 1)

(9)

While sample size weighting is less affected by sampling variance,
the performance of this estimator depends on the availability
of studies (Marin-Martinez and Sanchez-Meca, 2010). When
variances are reliably reported, sample-size weights should
roughly correlate to inverse variance weights under the fixed
effect model.

Meta-Analytic Data Distributions
One important consideration the reviewer should attend to is
the normality of the study-level effects distributions assumed by
most meta-analytic methods. Non-parametric methods that do
not assume normality are available but are more computationally
intensive and inaccessible to non-statisticians (Karabatsos et al.,
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TABLE 3 | Interstudy variance estimators.

Estimator τ2 estimate

DerSimonian-Laird (DL)*† τ2
DL

= Q−(N−1)
c

Hunter-Schmidt (HS)* τ2
HS

= Q−N
∑

i se(θ i )
−2

Hedges (H) τ2
H
=

∑

i

(

θi−
(∑

i
θi

N

))2

N−1 −
∑

i se(θ i )
2

N

Hartung-Makambi (HM)*† τ2
HM

= Q2

(2(N−1)+Q)·c

Sidik-Jonkman (SJ) τ2
SJ

=

∑

i υ
−1
i

(

θi−
(

∑

i
υ
−1
i

θi
∑

i
υ
−1
i

))2

N− 1 ,

Where υi =









se(θ i )
2

(

∑

i(θi−θ)2

N

) + 1









and θ = 1
N

∑

i θi

Paule-Mandel (PM)# τ2
PM

=

∑

i wi

(

θi−θ̂PM

)2
−
(

∑

i w
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i
se(θi )

2−
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∑

i
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) )

∑
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(

∑

i
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i

∑

i
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)

Where θ̂PM =
∑

i(θi ·wi)
∑

i(wi )

*Q =
∑

i

(

se(θ i )
−2
(

θi −
∑

i se(θ i )
−2θi

∑

i se(θ i )
−2

)2
)

. †c =
∑

i se(θ i )
−2 −

∑

i

(

se(θ i )
−2
)2

∑

i se(θ i )
− 2 . # iterative estimator.

N = number of datasets/studies.

2015). The performance of parametric meta-analytic methods
has been shown to be robust to non-normally distributed effects
(Kontopantelis and Reeves, 2012). However, this robustness is
achieved by deriving artificially high estimates of heterogeneity
for non-normally distributed data, resulting in conservatively
wide confidence intervals and severely underpowered results
(Jackson and Turner, 2017). Therefore, it is prudent to
characterize the underlying distribution of study-level effects and
perform transformations to normalize distributions to preserve
the inferential integrity of the meta-analysis.

Assessing data distributions
Graphical approaches, such as the histogram, are commonly used
to assess the distribution of data; however, in a meta-analysis,
they can misrepresent the true distribution of effect sizes that
may be different due to unequal weights assigned to each study.
To address this, we can use a weighted histogram to evaluate
effect size distributions (Figure 6). A weighted histogram can
be constructed by first binning studies according to their effect
sizes. Each bin is then assigned weighted frequencies, calculated
as the sum of study-level weights within the given bin. The sum of
weights in each bin are then normalized by the sum of all weights
across all bins

Pj =
∑

i wij
∑nBins

j

∑

i wij

(10)

where Pj is the weighted frequency for bin j, wij is the weight for
the effect size in bin j from study i, and nBins is the total number
of bins. If the distribution is found deviate from normality, the
most common explanations are that (i) the distribution is skewed
due to inconsistencies between studies, (ii) subpopulations exist

within the dataset giving rise to multimodal distributions or
(iii) the studied phenomenon is not normally distributed. The
source of inconsistencies and multimodality can be explored
during the analysis of heterogeneity (i.e., to determine whether
study-level characteristics can explain observed discrepancies).
Skewness may however be inherent to the data when values are
small, variances are large, and values cannot be negative (Limpert
et al., 2001) and has been credited to be characteristic of natural
processes (Grönholm and Annila, 2007). For sufficiently large
sample sizes the central limit theorem holds that the means of
a skewed data are approximately normally distributed. However,
due to common limitation in the number of studies available
for meta-analyses, meta-analytic global estimates of skewed
distributions are often sensitive to extreme values. In these cases,
data transformation can be used to achieve a normal distribution
on the logarithmic scale (i.e., lognormal distribution).

Lognormal distributions
Since meta-analytic methods typically assume normality,
the log transformation is a useful tool used to normalize
skewed distributions (Figures 6C–F). In the ATP release
dataset, we found that log transformation normalized the data
distribution. However, in the case of the OB [ATP]ic dataset,
log transformation revealed a bimodal distribution that was
otherwise not obvious on the raw scale.

Data normalization by log transformation allows meta-
analytic techniques to maintain their inferential properties.
The outcomes synthesized on the logarithmic scale can then be
transformed to the original raw scale to obtain asymmetrical
confidence intervals which further accommodate the skew in the
data. Study-level effect sizes θi can be related to the logarithmic
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mean 2i through the forward log transformation, meta-analyzed
on the logarithmic scale, and back-transformed to the original
scale using one of the back-transformation methods (Table 4).
We have implemented three different back-transformation
methods into MetaLab, including geometric approximation
(anti-log), naïve approximation (rearrangement of forward-
transformation method) and tailor series approximation
(Higgins et al., 2008). The geometric back-transformation will
yield an estimate of θ̂ that is approximately equal to the median
of the study-level effects. The naïve or tailor series approximation
differ in how the standard errors are approximated, which is
used to obtain a point estimate on the original raw scale. The
naïve and tailor series approximations were shown to maintain
adequate inferential properties in the meta-analytic context
(Higgins et al., 2008).

Confidence Intervals
Once the meta-analysis global estimate and standard error
has been computed, reviewers may proceed to construct the
confidence intervals (CI). The CI represents the range of values
within which the true mean outcome is contained with the
probability of 1-α. In meta-analyses, the CI conveys information
about the significance, magnitude and direction of an effect,
and is used for inference and generalization of an outcome.
Values that do not fall in the range of the CI may be interpreted
as significantly different. In general, the CI is computed as
the product of the standard error se(θ̂) and the critical
value v1−α/2:

± CI = ±v1−α/2 · se(θ̂) (11)

CI estimators
The critical value v1−α/2 is derived from a theoretical
distribution and represents the significance threshold for level
α. A theoretical distribution describes the probability of any
given possible outcome occurrence for a phenomenon. Extreme
outcomes that lie furthest from the mean are known as the
tails. The most commonly used theoretical distributions are the
z-distribution and t-distribution, which are both symmetrical
and bell-shaped, but differ in how far reaching or “heavy” the
tails are. Heavier tails will result in larger critical values which
translate to wider confidence intervals, and vice versa. Critical
values drawn from a z-distribution, known as z-scores (z), are
used when data are normal, and a sufficiently large number
of studies are available (>30). The tails of a z-distribution are
independent of the sample size and reflect those expected for a
normal distribution. Critical values drawn from a t-distribution,
known as t-scores (t), also assume data are normally-distributed,
however, are used when there are fewer available studies (<30)
because the t-distribution tails are heavier. This produces more

conservative (wider) CIs, which help ensure that the data are not
misleading or misrepresentative when there is limited evidence
available. The heaviness of the t-distribution tails is dictated

by the degree of freedom df, which is related to the number
of available studies N (df = N−1) such that fewer studies will

result in heavier t-distribution tails and therefore larger critical

values. Importantly, the t-distribution is asymptotically normal

and will thus converge to a z-distribution for a sufficiently
large number of studies, resulting in similar critical values. For

example, for a significance level α = 0.05 (5% false positive rate),
the z-distribution will always yield a critical value v = 1.96,

TABLE 4 | Logarithmic Transformation Methods.

Forward-Transformation (raw to log10)

Mean Standard error
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(

θi
)

−
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se(2i)
2
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)
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)

=
√
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2

θi
2 + 1

)

Back-Transformation (log10 to raw)

Method Mean Standard error

Geometric θ̂ = 102̂ ±CI1−α/2

(

θ̂
)
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se
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)

=
(
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(
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(
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(
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√

√

√
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(
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Forward-transformation of study-level estimates θi to corresponding log-transformed estimates 2i , and back-transformation of meta-analysis outcome 2̂ to the corresponding outcome

θ̂ on the raw scale (Higgins et al., 2008). v1−α/2: confidence interval critical value at significance level α.
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regardless of how many studies are available. The t-distribution

will however yield v = 2.78 for 5 studies, v = 2.26 for 10 studies,
v = 2.05 for 30 studies and v = 1.98 for 100 studies, gradually
converging to 1.96 as the number of studies increases. We have
implemented the z-distribution and t-distribution CI estimators
into MetaLab.

Evaluating Meta-Analysis Performance
In general, 95% of study-level outcomes are expected to fall
within the range of the 95% global CI. To determine whether
the global 95% CI is consistent with the underlying study-
level outcomes, the coverage of the CI can be computed as the
proportion of study-level 95% CIs that overlap with the global
95% CI:

∣

∣

∣
θ̂ − θi

∣

∣

∣
≤ v1− α

2
· se

(

θ̂
)

+ v1− α
2
· se (θi) , covered

∣

∣

∣
θ̂ − θi

∣

∣

∣
> v1−α/2 · se(θ̂)+ v1− α

2
· se (θi) , not covered (12)

The coverage is a performance measure used to determine
whether inference made on the study-level is consistent with
inference made on the meta-analytic level. Coverage that is
less than expected for a specified significance level (i.e., <95%
coverage for α= 0.05) may be indicative of inaccurate estimators,
excessive heterogeneity or inadequate choice of meta-analytic
model, while coverage exceeding 95% may indicate an inefficient
estimator that results in insufficient statistical power.

Overall, the performance of a meta-analysis is heavily
influenced by the choice of weighting scheme and data
transformation (Figure 7). This is especially evident in the
smaller datasets, such as our OB [ATP]i example, where both the
global estimates and the confidence intervals are dramatically
different under different weighting schemes (Figure 7A).
Working with larger datasets, such as ATP release kinetics,
allows to somewhat reduce the influence of the assumed model
(Figure 7B). However, normalizing data distribution (by log
transformation) produces much more consistent outcomes
under different weighting schemes for both datasets, regardless
of the number of available studies (Figures 7A,B, log10 synthesis).

Analysis of Heterogeneity
Heterogeneity refers to inconsistency between studies. A large
part of conducting a meta-analysis involves quantifying and
accounting for sources of heterogeneity thatmay compromise the
validity of meta-analysis. Basic research meta-analytic datasets
are expected to be heterogeneous because (i) basic research
literature searches tend to retrieve more studies than clinical
literature searches and (ii) experimental methodologies used in
basic research are more diverse and less standardized compared
to clinical research. The presence of heterogeneity may limit
the generalizability of an outcome due to the lack of study-level
consensus. Nonetheless, exploration of heterogeneity sources can
be insightful for the field in general, as it can identify biological
or methodological factors that influence the outcome.

Quantifying of Heterogeneity
Higgins and Thompson emphasized that a heterogeneity metric
should be (i) dependent on magnitude of heterogeneity, (ii)

FIGURE 7 | Comparison of global effect estimates using different weighting

schemes. (A,B) Global effect estimates for OB [ATP]ic (A) and ATP release

(B) following synthesis of original data (raw, black) or of log10-transformed

data followed by back-transformation to original scale (log10, gray). Global

effects ± 95% CI were obtained with unweighted data (UW), or using fixed

effect (FE), random effects (RE), and sample-size (n) weighting schemes.

independent of measurement scale, (iii) independent of sample
size and (iv) easily interpretable (Higgins and Thompson, 2002).
Regrettably, the most commonly used test of heterogeneity is the
Cochrane’s Q test (Borenstein, 2009), which has been repeatedly
shown to have undesirable statistical properties (Higgins et al.,
2003). Nonetheless, we will introduce it here, not because of its
widespread use, but because it is an intermediary statistic used
to obtain more useful measures of heterogeneity, H2 and I2.
The measure of total variation Qtotal statistic is calculated as the
sum of the weighted squared differences between the study-level
means θi and the fixed effect estimate θ̂FE:

Qtotal =
N
∑

i=1

(

wi ·
(

θi − θ̂FE

)2
)

where θ̂FE =
∑

i se(θi)
−2θi

∑

i se(θi)
−2

and wi = se(θi)
−2 (13)

The Qtotal statistic is compared to a chi-square (χ2) distribution
(df = N-1) to obtain a p-value, which, if significant, supports the
presence of heterogeneity. However, the Q-test has been shown
to be inadequately powered when the number of studies is too
low (N < 10) and excessively powered when study number is
too high (N > 50) (Gavaghan et al., 2000; Higgins et al., 2003).
Additionally, theQtotal statistic is not a measure of the magnitude
of heterogeneity due to its inherent dependence on the number
of studies. To address this limitation, H2 heterogeneity statistics
was developed as the relative excess in Qtotal over degrees of
freedom df :

H2 = Qtotal

df
(14)

H2 is independent of the number of studies in the meta-analysis
and is indicative of the magnitude of heterogeneity (Higgins and
Thompson, 2002). For values <1, H2 is truncated at 1, therefore
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values of H2 can range from one to infinity, where H2 = 1
indicates homogeneity. The corresponding confidence intervals
for H2 are

H2 ± 95% CI =






e
ln(H)±1.96·

√

1
2(df−1)

(

1− 1

3(df )2

)







2

(15)

Intervals that do not overlap with 1 indicate significant
heterogeneity. A more easily interpretable measure of
heterogeneity is the I2 statistic, which is a transformation
of H2:

I2 = H2 − 1

H2
· 100% (16)

The corresponding 95% CI for I2 is derived from the 95% CI
for H2

I2 ± 95% CI = (H2 ± 95% CI)− 1

(H2 ± 95% CI)
· 100% (17)

Values of I2 range between 0 and 100% and describe the
percentage of total variation that is attributed to heterogeneity.
LikeH2, I2 provides ameasure of themagnitude of heterogeneity.
Values of I2 at 25, 50, and 75% are generally graded as
low, moderate and high heterogeneity, respectively (Higgins
and Thompson, 2002; Pathak et al., 2017). However, several
limitations have been noted for the I2 statistic. I2 has a non-linear
dependence on τ 2, thus I2 will appear to saturate as it approaches
100% (Huedo-Medina et al., 2006). In cases of excessive
heterogeneity, if heterogeneity is partially explained through
subgroup analysis or meta-regression, residual unexplained
heterogeneity may still be sufficient to maintain I2 near
saturation. Therefore, I2 will fail to convey the decline in overall
heterogeneity, while H2 statistic that has no upper limit will
allow to track changes in heterogeneity more meaningfully. In
addition, a small number of studies (<10) will bias I2 estimates,
contributing to uncertainties inevitable associated with small
meta-analyses (von Hippel, 2015). Of the three heterogeneity
statistics Qtotal, H

2 and I2 described, we recommend that H2 is
used as it best satisfies the criteria for a heterogeneity statistic
defined by Higgins and Thompson (2002).

Identifying bias
Bias refers to distortions in the data that may result in misleading
meta-analytic outcomes. In the presence of bias, meta-analysis
outcomes are often contradicted by higher quality large sample-
sized studies (Egger et al., 1997), thereby compromising the
validity of the meta-analytic study. Sources of observed bias
include publication bias, methodological inconsistencies and
quality, data irregularities due to poor quality design, inadequate
analysis or fraud, and availability or selection bias (Egger et al.,
1997; Ahmed et al., 2012). At the level of study identification
and inclusion for meta-analysis, systematic searches are preferred
over rapid review search strategies, as narrow search strategies
may omit relevant studies. Withholding negative results is
also a common source of publication bias, which is further

exacerbated by the small-study effect (the phenomenon by which
smaller studies produce results with larger effect sizes than
larger studies) (Schwarzer et al., 2015). By extension, smaller
studies that produce negative results are more likely to not
be published compared to larger studies that produce negative
results. Identifying all sources of bias is unfeasible, however, tools
are available to estimate the extent of bias present.

Funnel plots. Funnel plots have beenwidely used to assess the risk
of bias and examine meta-analysis validity (Light and Pillemer,
1984; Borenstein, 2009). The logic underlying the funnel plot is
that in the absence of bias, studies are symmetrically distributed
around the fixed effect size estimate, due to sampling error being
random. Moreover, precise study-level estimates are expected to
be more consistent with the global effect size than less precise
studies, where precision is inversely related to the study-level
standard error. Thus, for an unbiased set of studies, study-
level effects θi plotted in relation to the inverse standard error
1/se(θi) will produce a funnel shaped plot. Theoretical 95%
CIs for the range of plotted standard errors are included as
reference to visualize the expected distribution of studies in the
absence of bias (Sterne and Harbord, 2004).When bias is present,
study-level effects will be asymmetrically distributed around the
global fixed-effect estimate. In the past, funnel plot asymmetries
have been attributed solely to publication bias, however they
should be interpreted more broadly as a general presence of
bias or heterogeneity (Sterne et al., 2011). It should be noted
that rapid reviews (Figure 8A, left) are far more subject to bias
than systematic reviews (Figure 8A, right), due to the increased
likelihood of relevant study omission.

Heterogeneity sensitivity analyses
Inconsistencies between studies can arise for a number of
reasons, including methodological or biological heterogeneity
(Patsopoulos et al., 2008). Since accounting for heterogeneity
is an essential part of any meta-analysis, it is of interest
to identify influential studies that may contribute to the
observed heterogeneity.

Baujat plot. The Baujat Plot was proposed as a diagnostic tool
to identify the studies that contribute most to heterogeneity and
influence the global outcome (Baujat, 2002). The graph illustrates

the contributionQ
inf
i of each study to heterogeneity on the x-axis

Q
inf
i = θi − θ̂FE

se (θi)
2

(18)

and contribution θ
inf
i to global effect on the y-axis

θ
inf
i = θ̂−i − θ̂FE

se
(

θ̂−i

)2
(19)

Studies that strongly influence the global outcome and contribute
to heterogeneity are visualized in the upper right corner of
the plot (Figure 8B). This approach has been used to identify
outlying studies in the past (Anzures-Cabrera andHiggins, 2010).
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FIGURE 8 | Analysis of heterogeneity and identification of influential studies.

(A) Bias and heterogeneity in OB [ATP]ic (left) and ATP release (right) data sets

were assessed with funnel plots. Log10-transformed study-level effect sizes

(black markers) were plotted in relation to their precision assessed as inverse

of standard error (1/SE). Blue dashed line: fixed effect estimate, red dashed

line: random effects estimate, gray lines: Expected 95% confidence interval

(95% CI) in the absence of bias/heterogeneity. (B) OB [ATP]ic were evaluated

using Baujat plot and inconsistent and influential studies were identified in top

right corner of plot (arrows). (C,D) Effect of the single study exclusion (C) and

cumulative sequential exclusion of the most inconsistent studies (D). Left:

heterogeneity statistics, H2 (red line) and I2 (black line). Right: 95% CI (red

band) and Q-test p-value (black line). Arrows: influential studies contributing to

heterogeneity (same as those identified on Baujat Plot). Dashed Black line:

homogeneity threshold TH where Q-test p = 0.05.

Single-study exclusion sensitivity. Single-study exclusion analysis
assesses the sensitivity of the global outcome and heterogeneity
to exclusion of single studies. The global outcomes and
heterogeneity statistics are computed for a dataset with a
single omitted study; single study exclusion is iterated for
all studies; and influential outlying studies are identified by
observing substantial declines in observed heterogeneity, as
determined by Qtotal, H

2, or I2, and by significant differences
in the global outcome (Figure 8C). Influential studies should
not be blindly discarded, but rather carefully examined
to determine the reason for inconsistency. If a cause for
heterogeneity can be identified, such as experimental design
flaw, it is appropriate to omit the study from the analysis. All
reasons for omission must be justified and made transparent
by reviewers.

Cumulative-study exclusion sensitivity. Cumulative study
exclusion sequentially removes studies to maximize the
decrease in total variance Qtotal, such that a more homogenous
set of studies with updated heterogeneity statistics is
achieved with each iteration of exclusion (Figure 8D).

θ̂−j ± 95% CI−j

where j = argmax
i

(Q− Q−i)
2 (20)

This method was proposed by Patsopoulos et al. to achieve
desired levels of homogeneity (Patsopoulos et al., 2008), however,
Higgins argued that its application should remain limited to
(i) quantifying the extent to which heterogeneity permeates
the set of studies and (ii) identifying sources of heterogeneity
(Higgins, 2008). We propose the homogeneity threshold TH as
a measure of heterogeneity that can be derived from cumulative-
study exclusion sensitivity analysis. The homogeneity threshold
describes the percentage of studies that need to be removed (by
the maximal Q-reduction criteria) before a homogenous set of
studies is achieved. For example, in the OB [ATP]ic dataset,
the homogeneity threshold was 71%, since removal of 71% of
the most inconsistent studies resulted in a homogeneous dataset
(Figure 8D, right). After homogeneity is attained by cumulative
exclusion, the global effect generally stabilizes with respect to
subsequent study removal. This metric provides information
about the extent of inconsistency present in the set of studies that
is scale invariant (independent of the number of studies), and is
easily interpretable.

Exploratory Analyses
The purpose of an exploratory analysis is to understand the data
in ways that may not be represented by a pooled global estimate.
This involves identifying sources of observed heterogeneity
related to biological and experimental factors. Subgroup
and meta-regression analyses are techniques used to explore
known data groupings define by study-level characteristics
(i.e., covariates). Additionally, we introduce the cluster-
covariate dependence analysis, which is an unsupervised
exploratory technique used to identify covariates that
coincide well will natural groupings within the data, and
the intrastudy regression analysis, which is used to validate
meta-regression outcomes.

Cluster-covariate dependence analysis
Natural groupings within the data can be informative and serve
as a basis to guide further analysis. Using an unsupervised
k-means clustering approach (Lloyd, 1982), we can identify
natural groupings within the study-level data and assign cluster
memberships to these data (Figure 9A). Reviewers then have
two choices: either proceed directly to subgroup analysis
(Figure 9B) or look for covariates that co-cluster with cluster
memberships (Figure 9C) In the latter case, dependencies
between cluster memberships and known data covariates can
be tested using Pearson’s Chi-Squared test for independence.
Covariates that coincide with clusters can be verified by subgroup
analysis (Figure 9D). The dependence test is limited by the
availability of studies and requires that at least 80% of covariate-
cluster pairs are represented by at least 5 studies (McHugh,
2013). Clustering results should be considered exploratory and
warrant further investigation due to several limitations. If the
subpopulations were identified through clustering, however
they do not depend on extracted covariates, reviewers risk
assigning misrepresentative meaning to these clusters. Moreover,
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FIGURE 9 | Exploratory subgroup analysis. (A) Exploratory k-means clustering

was used to partition OB [ATP]ic (left) and ATP release (right) data into potential

clusters/subpopulations of interest. (B) Subgroup analysis of OB [ATP]ic data

by differentiation status (immature – 0 to 3 day osteoblasts vs. mature – 4 to

28 day osteoblasts). Subgroup outcomes (fmol ATP/cell) estimated using

sample-size weighting-scheme; black markers: Study-level outcomes ± 95%

CI, marker sizes are proportional to sample size n. Orange and green bands:

95% CI for immature and mature osteoblast subgroups, respectively. (C)

Dependence between ATP release cluster membership and known

covariates/characteristics was assessed using Pearson’s χ2 independence

test. Black bars: χ2 test p-values for each covariate-cluster dependence test.

Red line: α = 0.05 significance threshold. Arrow: most influential covariate (ex.

recording method). (D) Subgroup analysis of ATP release by recording

method. Subgroup outcomes (thalf ) estimated using random effects weighting,

τ2 computed using DerSimonian-Laird estimator. Round markers: subgroup

estimates ± 95% CI, marker sizes are proportional to number of studies per

subgroup N. Gray band/diamond: global effect ± 95% CI.

conventional clustering methods always converge to a result,
therefore the data will still be partitioned even in the absence
of natural data groupings. Future adaptations of this method
might involve using different clustering algorithms (hierarchical
clustering) or independence tests (G-test for independence) as
well as introducing weighting terms to bias clustering to reflect
study-level precisions.

Subgroup analysis
Subgroup analyses attempt to explain heterogeneity and
explore differences in effects by partitioning studies into
characteristic groups defined by study-level categorical covariates
(Figures 9B,D; Table 5). Subgroup effects are estimated along
with corresponding heterogeneity statistics. To evaluate the
extent to which subgroup covariates contribute to observed

inconsistencies, the explained heterogeneity Qbetween and
unexplained heterogeneity Qwithin can be calculated.

Qwithin =
S
∑

j=1





Nj
∑

i=1

(

se(θ i)
−2 ·

(

θi − θ̂(FE)j

)2
)



 (21)

where S is the total number of subgroups per given covariate
and each subgroup j contains Nj studies. The explained
heterogeneity Qbetween is then the difference between total and
subgroup heterogeneity:

Qbetween = Qtotal − Qwithin (22)

If the p-value for the χ2 distributed statisticQbetween is significant,
the subgrouping can be assumed to explain a significant amount
of heterogeneity (Borenstein, 2009). Similarly,Qwithin statistic can
be used to test whether there is any residual heterogeneity present
within the subgroups.

The R2
explained

is a related statistic that can be used to describe

the percent of total heterogeneity that was explained by the
covariate and is estimated as

R2explained =
(

1−
τ 2
within

τ 2
total

)

· 100% (23)

Where pooled heterogeneity within subgroups τ 2
within

represents
the remaining unexplained variation (Borenstein, 2009):

τ 2
within

=
∑s

j=1 Q(within)j−
∑s

j=1 dfj
∑s

j=1 cj

where cj =
∑Nj

i=1 se(θ i)
−2 −

∑

i

(

se(θ i)
−2
)2

∑

i se(θ i)
−2 (24)

Subgroup analysis of the ATP release dataset revealed that
recordingmethod had amajor influence onATP release outcome,
such that method A produced significantly lower outcomes
than method B (Figure 9D; Table 5, significance determined
by non-overlapping 95% CIs). Additionally, recording method
accounted for a significant amount of heterogeneity (Qbetween,
p < 0.001), however it represented only 4% (R2

explained
) of the

total observed heterogeneity. Needless to say, the remaining 96%
of heterogeneity is significant (Qwithin, p < 0.001). To explore
the remaining heterogeneity, additional subgroup analysis can
be conducted by further stratifying method A and method B
subgroups by other covariates. However, in many meta-analyses
multi-level data stratification may be unfeasible if covariates are
unavailable or if the number of studies within subgroups are low.

Multiple comparisons. When multiple subgroups are present
for a given covariate, and the reviewer wishes to investigate
the statistical differences between the subgroups, the problem
of multiple comparisons should be addressed. Error rates are
multiplicative and increase substantially as the number of
subgroup comparisons increases. The Bonferroni correction has
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TABLE 5 | Exploratory subgroup analysis.

Subgroup summary statistics

Group (N) θ̂± 95% CI I2 (%) H2 Q

Total (74) 101 (86, 117) 94 16 1133

Method A (22) 32 (16, 66) 94 17 358

Method B (52) 136 (117, 159) 92 13 669

Accounting for heterogeneity with subgroup analysis

Q df p-value Interpretation

Total 1,133 73 <0.001 Data are heterogeneous

Method A 358 21 <0.001 Data are heterogeneous

Method B 669 51 <0.001 Data are heterogeneous

Between 106 1 <0.001 Subgrouping explained significant heterogeneity

Within 1,027 72 <0.001 Significant heterogeneity remains

Effect and heterogeneity estimates of ATP release by recording method.

been advocated to control for false positive findings in meta-
analyses (Hedges and Olkin, 1985) which involves adjusting the
significance threshold:

α∗ = α

m
(25)

α∗ is the adjusted significance threshold to attain intended error

rates α for m subgroup comparisons. Confidence intervals can

then be computed using α∗ in place of α:

± CI = ±v1−α∗/2 · se(θ̂) (26)

Meta-regression
Meta-regression attempts to explain heterogeneity by examining
the relationship between study-level outcomes and continuous
covariates while incorporating the influence of categorical
covariates (Figure 10A). The main differences between
conventional linear regression and meta-regression are (i)
the incorporation of weights and (ii) covariates are at the level
of the study rather than the individual sample. The magnitude
of the relationship βn between the covariates xn,i and outcome
yi for study i and covariate n are of interest when conducting a
meta-regression analysis. It should be noted that the intercept
β0 of a meta-regression with negligible effect of covariates
is equivalent to the estimate approximated by a weighted
mean (Equation 3). The generalized meta-regression model is
specified as

yi = β0 + β1x1,i + . . . + βnxn,i + ηi + εi (27)

where intrastudy variance εi is

εi ∼ N

(

0, se(θi)
2
)

(28)

and the deviation from the distribution of effects ηi depends on
the chosen meta-analytic model:

ηi ∼
{

0, fixed effect

N(0, τ 2), random effets
(29)

FIGURE 10 | Meta-regression analysis and validation. (A) Relationship

between osteoblast differentiation day (covariate) and intracellular ATP content

(outcome) investigated by meta-regression analysis. Outcomes are on log10
scale, meta-regression markers sizes are proportional to weights. Red bands:

95% CI. Gray bands: 95% CI of intercept only model. Solid red lines:

intrastudy regression. (B) Meta-regression coefficient βinter (black) compared

to intrastudy regression coefficient βintra (red). Shown are regression

coefficients ± 95% CI.

The residual Q statistic that explains the dispersion of the studies
from the regression line is calculated as follows

Qresidual =
N
∑

i=1

(

wi ·
(

θi − yi
)2
)

(30)
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Where yi is the predicted value at xi according to the meta-
regression model. Qresidual is analogous to Qbetween computed
during subgroup analysis and is used to test the degree of
remaining unaccounted heterogeneity. Qresidual is also used to
approximate the unexplained interstudy variance τ 2

residual

τ 2
residual

= Qresidual−df
ctotal

where ctotal =
∑

i se(θ i)
−2 −

∑

i

(

se(θ i)
−2
)2

∑

i se(θ i)
−2 (31)

Which can be used to calculate R2
explained

estimated as

R2explained =
(

1−
τ 2
residual

τ 2
total

)

· 100% (32)

Qmodel quantifies the amount of heterogeneity explained by the
regression model and is analogous to Qwithin computed during
subgroup analysis.

Qmodel = Qtotal − Qresidual (33)

Intrastudy regression analysis The challenge of interpreting
results from a meta-regression is that relationships that exist
within studies may not necessarily exist across studies, and
vice versa. Such inconsistencies are known as aggregation bias
and in the context of meta-analyses can arise from excess
heterogeneity or from confounding factors at the level of the
study. This problem has been acknowledged in clinical meta-
analyses (Thompson and Higgins, 2002), however cannot be
corrected without access to individual patient data. Fortunately,
basic research studies often report outcomes at varying predictor
levels (ex. dose-response curves), permitting for intrastudy
(within-study) relationships to be evaluated by the reviewer. If
study-level regression coefficients can be computed for several
studies (Figure 10A, red lines), they can be pooled to estimate
an overall effect βintra. The meta-regression interstudy coefficient
βinter and the overall intrastudy-regression coefficient βintra can
then be compared in terms of magnitude and sign. Similarity
in the magnitude and sign validates the existence of the
relationship and characterizes its strength, while similarity in
sign but not the magnitude, still supports the presence of the
relationship, but calls for additional experiments to further
characterize it. For the Ob [ATP]i dataset, the magnitude
of the relationship between osteoblast differentiation day
and intracellular ATP concentration was inconsistent between
intrastudy and interstudy estimates, however the estimates were
of consistent sign (Figure 10B).

Limitations of exploratory analyses
When performed with knowledge and care, exploratory
analysis of meta-analytic data has an enormous potential for
hypothesis generation, cataloging current practices and trends,
and identifying gaps in the literature. Thus, we emphasize the
inherent limitations of exploratory analyses:

Data dredging. A major pitfall in meta-analyses is data dredging
(also known as p-hacking), which refers to searching for
significant outcomes only to assign meaning later. While
exploring the dataset for potential patterns can identify outcomes
of interest, reviewers must be wary of random patterns that can
arise in any dataset. Therefore, if a relationship is observed it
should be used to generate hypotheses, which can then be tested
on new datasets. Steps to avoid data dredging involve defining
an a priori analysis plan for study-level covariates, limiting
exploratory analysis of rapid reviewmeta-analyses and correcting
for multiple comparisons.

Statistical power. The statistical power reflects the probability
of rejecting the null hypothesis when the alternative is true.
Meta-analyses are believed to have higher statistical power than
the underlying primary studies, however this is not always
true (Hedges and Pigott, 2001; Jackson and Turner, 2017).
Random effects meta-analyses handle data heterogeneity by
accounting for between-study variance, however this weakens
the inference properties of the model. To maintain statistical
powers that exceed those of the contributing studies in a random
effects meta-analysis, at least five studies are required (Jackson
and Turner, 2017). This consequently limits subgroup analyses
that partition studies into smaller groups to isolate covariate-
dependent effects. Thus, reviewers should ensure that group are
not under-represented to maintain statistical power. Another
determinant of statistical power is the expected effect size, which
if small, will be much more difficult to support with existing
evidence than if it is large. Thus, if reviewers find that there is
insufficient evidence to conclude that a small effect exists, this
should not be interpreted as evidence of no effect.

Causal inference. Meta-analyses are not a tool for establishing
causal inference. However, there are several criteria for causality
that can be investigated through exploratory analyses that
include consistency, strength of association, dose-dependence
and plausibility (Weed, 2000, 2010). For example, consistency,
the strength of association, and dose-dependence can help
establish that the outcome is dependent on exposure. However,
reviewers are still posed with the challenge of accounting for
confounding factors and bias. Therefore, while meta-analyses
can explore various criteria for causality, causal claims are
inappropriate, and outcomes should remain associative.

CONCLUSIONS

Meta-analyses of basic research can offer critical insights into the
current state of knowledge. In this manuscript, we have adapted
meta-analyticmethods to basic science applications and provided
a theoretical foundation, using OB [ATP]i and ATP release
datasets, to illustrate the workflow. Since the generalizability
of any meta-analysis relies on the transparent, unbiased and
accurate methodology, the implications of deficient reporting
practices and the limitations of the meta-analytic methods were
discussed. Emphasis was placed on the analysis and exploration
of heterogeneity. Additionally, several alternative and supporting
methods have been proposed, including a method for validating
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meta-regression outcomes—intrastudy regression analysis, and
a novel measure of heterogeneity—the homogeneity threshold.
All analyses were conducted using MetaLab, a meta-analysis
toolbox that we have developed in MATLAB R2016b. MetaLab
has been provided for free to promote meta-analyses in basic
research (https://github.com/NMikolajewicz/MetaLab).

In its current state, the translational pipeline from benchtop to
bedside is an inefficient process, in one case estimated to produce
∼1 clinically favorable clinical outcome for∼1,000 basic research
studies (O’Collins et al., 2006). The methods we have described
here serve as a general framework for comprehensive data
consolidation, knowledge gap-identification, evidence-driven
hypothesis generation and informed parameter estimation in
computation modeling, which we hope will contribute to meta-
analytic outcomes that better inform translation studies, thereby
minimizing current failures in translational research.
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