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Abstract: Agriculture is essential to the growth of every country. Cotton and other major crops fall into
the cash crops. Cotton is affected by most of the diseases that cause significant crop damage. Many
diseases affect yield through the leaf. Detecting disease early saves crop from further damage. Cotton
is susceptible to several diseases, including leaf spot, target spot, bacterial blight, nutrient deficiency,
powdery mildew, leaf curl, etc. Accurate disease identification is important for taking effective
measures. Deep learning in the identification of plant disease plays an important role. The proposed
model based on meta Deep Learning is used to identify several cotton leaf diseases accurately. We
gathered cotton leaf images from the field for this study. The dataset contains 2385 images of healthy
and diseased leaves. The size of the dataset was increased with the help of the data augmentation
approach. The dataset was trained on Custom CNN, VGG16 Transfer Learning, ResNet50, and our
proposed model: the meta deep learn leaf disease identification model. A meta learning technique
has been proposed and implemented to provide a good accuracy and generalization. The proposed
model has outperformed the Cotton Dataset with an accuracy of 98.53%.

Keywords: cotton leaf disease; meta deep learn; Deep Learning; crop disease identification;
transfer learning

1. Introduction

The agriculture industry plays an important role in generating revenue and meeting
the food demand of the people [1]. Agriculture is under severe strain because of rising food
demand. A country with good agricultural land has a significant advantage in meeting its
food requirement and in contributing to the economy by exporting agricultural products
to other countries. As the world’s population grows, so does the demand for food. Crop
disease is an essential issue in agriculture, as it causes significant crop damage. Crop
disease [2] is the most serious hazard to agriculture, resulting in low yields and lowering
food quality and quantity. Cotton [3] is an essential cash crop that helps produce natural
fiber. The significant contribution of the cotton crop is making cloths. It enables the textile
industry to grow. Besides other factors, plant protection [4] is essential in cotton production.
Often a country is unable to supply enough food to meet demand due to disease in the
agriculture sector. The traditional method of identifying crop diseases is challenging for
reliable crop evaluation. The traditional approach to identifying crop diseases begins
with the employment of a domain specialist who visits the site and observes the crop
using optical inspection. This is a time-consuming and labor-intensive technique. It also
necessitates constant crop monitoring. Farmers in some areas do not have access to experts,
which is another major issue. Optical tracking is not always reliable for detecting crop
diseases. Using traditional methods to diagnose the disease in the crop will not provide an
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accurate assessment. Plant diseases [4] produce both qualitative and quantitative losses.
Researchers have recently focused their attention on the agriculture industry to discover
crop diseases using automated methods. Deep Learning [5] and Computer Vision are two
examples of current technologies that assist in the autonomous detection of agricultural
diseases without human interaction. A computerized approach for identifying plant
disease [6] would be more accurate, less costly, and faster. Plant diseases cost the agriculture
industry a lot of money worldwide [7]. Crop disease management is essential for ensuring
food quality and quantity. To reduce disease spread and improve efficient treatment
measures, plant diseases [8] must be diagnosed early. Evaluating plant disease health,
which includes forecasting approaches and treatment implementation models, is critical
to effective crop management. The computational method for detecting and diagnosing
plant diseases aids the agronomist. Old techniques allow for a subjective approach to
determining the disease. On the other hand, new technologies provide an objective method
for identifying plant diseases. Automated solutions, such as Deep Learning [9], aid in the
accurate and reliable identification of crop diseases, saving time and money. Because of the
disease and the dynamic environment, early and accurate identification of diseased plant
leaves is a critical problem in Computer Vision. The leaf image with a busy background,
angle, and extremely minute symptoms contribute to the complexity. Visual symptoms [10]
aid in the diagnosis of the condition. The image with a complicated background, on the
other hand, is a challenging assignment. The main goal of this study is to propose and
develop a generalized model for identifying leaf disease accurately. This study aims to
provide a model based on meta Deep Learning that can provide generalizations. Some of
the diseases we focus on are leafspot, bacterial blight, target spot, powdery mildew, leaf
curl, nutrient deficit, and verticillium wilt.

1.1. Crop Health Assessment Using Deep Learning Techniques

Deep learning (DL) is a highly specialized field. It is a machine learning subfield that
has become increasingly popular in recent years due to its capacity to handle large datasets
like images, texts, and audio [11]. DL has been successfully applied in plant science to
evaluate the diagnosis of plant diseases [12] based on leaf images [13]. One of the many
benefits of Deep Learning is feature extraction learning. The automated feature extraction
procedure aids in the extraction of useful information. DL can handle complicated problems
more quickly and efficiently because it uses sophisticated models. The complex models
utilized in DL may help to enhance accuracy and reduce error in traditional methods. The
conventional neural network architecture for disease classification is shown in Figure 1.
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1.2. Convolution Neural Network

Convolutional Neural Networks (CNNs) [14,15] are among the most effective learning
algorithms for comprehending visual content, with excellent image classification, object
detection, segmentation, and retrieval results. A typical CNN architecture for recognizing
Foliar Leaf Spot is shown in Figure 2.
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1.3. Transfer Learning

Transfer Learning [16] is a technique for reusing a model that has already been trained
on a huge dataset. It assists in the accurate detection of numerous diseases in plant leaves.
Figure 3 shows the transfer learning approach. The already pre-trained model is reused for
further classification.
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2. Related Work

Plant disease identification using Deep Learning helps identify diseases accurately.
However, identifying leaf diseases with background information is challenging. In [1], the
author proposeda Plain CNN called PCNN and Deep Residual Neural Network called
DRNN to find various disease of cassava plant. The obtained a dataset from a Kaggle.
Author achieved an accuracy of 96.75% with DRNN. On a publicly available dataset for
plant disease classification, [17] the author used CNN on plant leaf images to identify
healthy and unhealthy leaf images. The findings included image segmentation, LBP, and
grab cut approaches, among other image processing techniques. To segregate the affected
part, the approaches used to real-world images. On the other hand, the proposed research
does not offer a remedy for infected plants, such as leaf curl virus, shaded images, or
semi-shaded images. Only vine leaves were used in the test. A generic solution should be
provided to validate the accuracy of the model. The author used three learning algorithms
and several state-of-the-art CNN architectures to reach 99.76% accuracy [18]. The author
suggests using saliency maps as a visualization technique to better comprehend and
interpret the CNN classification. This aids in boosting the transparency of Deep Learning,
according to the author. The author in [19] proposed a genetic algorithm to detect and
classify leaf disease. The author applied various image processing techniques on the
leaf collected using a camera in the study. The image processing techniques include
removing undesired distortion by using a smoothing filter, thresholding for green pixels,
and removing masked cells. The population applies to the samples, and the best samples
are selected in each round. Furthermore, the clustering technique is used, and after that,
various features are extracted from the image, including color and texture. On the feature
dataset, the SVM classifier is applied. The accuracy of the proposed scheme reached 97.6%.
The author of [20] used the EVI time series to create deep neural networks with different
architectures to classify summer crops. In [21], the author has used thermal imaging
technology to identify crop disease. According to the author, thermal imaging technology
has several advantages, including fast dynamic reaction, intuitive visuals, a wide detection
range, and excellent precision. The author has explored and proposed methods for the
detection of crop disease. In [22] the author has proposed an algorithm named LTSRG,
which used the seed region growing method and local threshold method to identify diseases
in the corn. In [23], agriculture, plants, and pest infestation directly affected the income of
the smallholder farmers. The author proposed a CNN used for image classification as a
system for identifying plant diseases. The author in [24] has proposed an image processing
algorithm to detect healthy and unhealthy leaves of wheat crops. Image segmentation,
feature extraction, texture features, shape features, and color features are among the image
processing techniques employed by the author. The author has used two algorithms to
classify healthy and unhealthy leaves: Neural Networks and the SVM. The author says the
SVM has produced more accurate results than CNN. In [25], the author has applied image
recognition based on an SVM based on an RBF kernel to identify disease in cucumbers. The
leaf spots were taken as a sample instead of a leaf as a sample to increase experimental
samples. In [26] the author has used a deep residual network that uses a residual map to
identify the pest, including improved computational frameworks, specifically Graphical
Processing Units (GPU) embedded processors. The author used Deep Learning to identify
plant diseases. A deep convolutional neural network was used in this research. CNN, RNN,
and GAN are the most common Deep Learning algorithms. Subcategory DL algorithms
include VGGNet, ConvNets, LSTM, and DCGAN [27]. In [28], Deep Learning was used by
the author to identify plant diseases based on vein patterns. The author has not considered
the shape and color of the image. The author said that the standard CNN performed better
with an expected machine vision pipeline. The standard visualization model helped find
the plant disease patterns from the leaf veins. In [29], to detect paddy pests and diseases, the
author used Deep Learning. The author gathered diverse crop photos from sources other
than the public datasets on the internet, such as plant village and the ImageNet dataset. The
author employed the CaffeNet architecture and attained an accuracy of 80%. The author
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proposed a CNN-based classifier for cucumber diseases in [30]. For training and validation,
they used two datasets. In addition to the safety class, these datasets include seven distinct
types of diseases. In [31] the author extracted color features of veins and disease spots
using YCbCr, HSI, and CIELAB. The author used SVM, which is used to define boundaries
helping in separating data, and the K-Nearest Neighbor (KNN) for classifying objects and
Neural Networks (NN). The author [32] claims the work is a generalized approach for
detecting every disease while no evidence is provided. The author [33] has used two-stage
segmentation to extract lesions from leafspot. Two-stage segmentation was implemented
using GrabCut with the SVM method. Various features were extracted, such as Color,
Texture, and border. Data Augmentation was done using AR-GAN to generate more
images. The suggested study has a 96.11% average accuracy. The limitation of the work is
that the experiment was performed on 600 images, and the model was not tested on other
plants to judge the accuracy of the model for generalization. In [34], the author presented a
GAN-based data augmentation technique to increase the size of the dataset. The dataset
was trained on a variety of CNN architectures, including (AlexNet, VGG16, DenseNet,
Xception, RestNet, ResNext, SEResNet, and EfficientNet). The proposed model was 98.70%
accurate. The author has not tested the model outside of the Grape dataset to generalize
the model. Only leaf images with no background are included in the Grape Dataset.
The model’s performance on real-world images will suffer due to this method. To detect
different diseases in cucumber, the author [35] presented a Deep CNN. The proposed work
was carried out on 1184 original pictures. The initial dataset was increased to 14,208 rows
using data augmentation. The author claims an accuracy of 93.4%. The proposed model
has lower accuracy, and it was not trained on other benchmark datasets, which is the
limitation of the proposed work. The author [36] in the study proposed Mask R-CNN to
detect various Grape varieties by using instance segmentation. The limitation of the work is
the proposed method will only work with Grape because of the annotated Dataset of Grape
to detect instances. Deep learning-based plant disease identification aids in the accurate
identification of illnesses. Identifying leaf diseases using only background knowledge,
on the other hand, is difficult. The author of [1] proposed a genetic approach to disease
detection. The proposed approach is based on population. The same remedy was offered to
a fresh population as the prior one. The study’s author employed an image segmentation
method based on a clustering algorithm. Before masking the green region, the study’s
author removed unwanted noise from the photos. The recovered features were recorded in
a feature dataset, and an SVM classifier was used to classify the infected region. The study
supplied a dataset with roughly 15 photos for training and 10 images for testing for each
class. The proposed model was tested on a small dataset of fewer than 100 photos. The
author [17] used EfficientB0 and DenseNet121 to find out the disease in corn. The author
combined the features of EfficientB0 and DenseNet121 to find out the complex feature of
the infected corn leaf images. Author compared the results with CNN and different pre-
trained models which include ResNet152 and Inception V3. The proposed model showed
an accuracy of 98.56% on 15408 images of corn. To achieve a 99.76% accuracy, the author
used three learning algorithms and several state-of-the-art Convolutional Neural Network
(CNN) architectures [18]. To better understand and interpret the CNN classification, the
author advises employing saliency maps as a visualization tool. According to the author,
it helps to increase the transparency of Deep Learning. In his paper [19], the author
proposed a genetic algorithm for detecting and classifying leaf illness. The author used
various image processing algorithms on the leaf acquired using a camera in the study. The
image processing techniques include employing a smoothing filter to remove unwanted
distortion, thresholding for green pixels, and eliminating masked cells. The population is
applied to the samples, and in each round, the best samples are chosen. Following that,
the clustering technique is utilized to extract numerous features from the image, such
as color and texture. The SVM classifier is used on the feature dataset. The proposed
strategy had a 97.6 percent accuracy rate. To categorize summer crops, the author of [20]
used the EVI time data to develop deep neural networks with various architectures. The
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author used thermal imaging technology to detect crop disease in [21]. The author argued
that thermal imaging technology offered various advantages, including quick dynamic
response, intuitive graphics, a large detection range, and high precision. The author has
investigated and developed approaches for agricultural disease detection. The author
of [22] introduced the LTSRG algorithm, which employed the seed region growing method
and the local threshold method to identify disease in maize. Agriculture, plants, and
insect infestation all directly affect the revenue of smallholder farmers, according to [23].
The author presented CNN for image classification as a strategy for identifying plant
diseases. In [24], the author suggested an image processing technique for detecting good
and diseased wheat crop leaves. The author uses image processing techniques such as
picture segmentation, feature extraction, texture features, shape features, and color features.
The author employed two methods to classify healthy and ill leaves: neural networks and
SVM. According to the author, the SVM produces more accurate results than CNN. To
diagnose the disease in cucumbers, the author used image recognition based on SVM based
on RBF kernel in [25]. To enhance the number of experimental samples, leaf spots were
used instead of leaves. The author has employed a variety of approaches, including image
processing and computer learning, to detect agricultural diseases. To identify the pest, the
author employed a deep residual network with a residual map in [26]. This included the
use of embedded processors with better computational frameworks, particularly graphical
processing units (GPUs). To identify plant diseases, the author employed Deep Learning.
In this study, a deep convolutional neural network was deployed. The most prevalent
Deep Learning algorithms are CNN, RNN, and GAN. VGGNet, ConvNets, LSTM, and
DCGAN are examples of subcategories of DL algorithms. The author of [28] employed
Deep Learning to identify plant diseases based on vein patterns. The author had not
examined the image’s form or color. According to the author, the typical CNN fared
better, with an expected machine vision pipeline. The conventional visualization model
assisted in detecting plant disease patterns in the veins of the leaves. The author of [29]
employed Deep Learning to detect paddy pests and diseases. The author gathered varied
crop photographs from sources other than public datasets on the internet, such as plant
village and the ImageNet dataset. The author used the CaffeNet architecture and achieved
an accuracy of 80%. The author suggested a CNN-based classifier to classify cucumber
illnesses. They used two datasets for training and validation. These datasets comprised
seven different types of disorders and the safety class. Using YCbCr, HSI, and CIELAB,
the author of [31] retrieved color features of veins and illness spots. The author [30]
employed SVM to construct boundaries for data separation, K-Nearest Neighbor (KNN)
for object classification, and neural networks for object classification (NN). While no data
is offered, the author [32] asserts that the work is a generalized strategy for detecting all
diseases. The author employed a two-stage segmentation method to extract lesions from
the leafspot. GrabCut was used in conjunction with the SVM approach to accomplish a
two-stage segmentation. Color, texture, and border were among the features extracted.
To produce new images, AR-GAN was used to augment the data. The accuracy of the
proposed study is 96.11% on average. The disadvantage of the study is that the experiment
was limited to 600 images, and the model was not tested on additional plants to determine
its generalization accuracy. The author of [34] presented a GAN-based data augmentation
strategy for increasing the dataset size. A variety of CNN architectures were used to train
the dataset, including (AlexNet, VGG16, DenseNet, Xception, RestNet, ResNext, SEResNet,
and EfficientNet). The proposed model had a precision of 98.70%. The model was not
tested outside of the Grape dataset to generalize it. The Grape Dataset only contains leaf
images with no background. Because of this strategy, the performance of the model on
real field images will degrade. The author [35] presented a transfer learning approach to
detect various diseases. The author used a VGG transfer learning, AlexNet, CNN RNN.
The training model achieved an accuracy of 99.80 on plantvillage dataset. Mask R-CNN
was proposed by the author [36] in the study to detect diverse grape types via instance
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segmentation. The proposed method will only operate with grape due to the annotated
Grape Dataset used to detect instances, which is a limitation of the work.

3. Materials & Methods

Our suggested method minimizes the parameters and achieves good accuracy. The
Custom CNN, VGG16, ResNet50, and the meta learning algorithm were used to train the
cotton dataset. The CNN model comprises five convolutional layers, a dropout layer, and a
max-pooling layer. To diagnose leaf disease, the SoftMax layer has 7 classes. It took 1 h
34 min and 56 s to train the model on CNN. In CNN, the total number of parameters was
9,185,606, resulting in an accuracy of 95.37%. VGG 16 is a well-known pre-trained model.
It was initially used on the ILSVRC in 2014. It was the winner of an ILSVRC challenge.
VGG16 is an easy-to-implement pre-trained network. It has a total of 16 layers. By freezing
the top layers of the VGG16 pre-trained model, we were able to conduct our research. On
a cotton dataset, the model took 54 min and 3 s to run with 14,878,982 parameters and
obtained an accuracy of 98.10%. The model was trained on fewer parameters with consider-
ably higher accuracy than custom CNN. ResNet50 is a pre-trained machine learning model.
Initially, the model was trained on the ImageNet dataset. The top layers of ResNet50 were
frozen to implement it. The accuracy of the model was 98.32%. The proposed model, based
on a meta Deep Learning algorithm, significantly improved the results, and achieved an
accuracy of 98.53%. We trained multiple models on our dataset. First the CNN model was
trained, and pre-trained models such as VGG16, ResNet50 and Inception V3 were trained.
At the end, multiple models were combined together using the ensemble approach. The
final model was again trained on the cotton dataset. The workflow of the model is shown
in Figure 4. The data was collected first, and then the undesired noise was eliminated
from the photos. The annotating procedure is shown in the next step. Agriculture experts
completed the annotating procedure. After annotation, the data augmentation procedure
was employed to enhance the dataset’s size.
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Figure 5 shows the methodology of our proposed work. The proposed model learns
from multiple models, including custom CNN, VGG16, and ResNet50. The meta deep
model learns from different models using the ensemble method to combine all models and
produce a final model. The proposed model was implemented through training multiple
models like custom CNN, VGG16, and ResNet50 on our cotton dataset. After training
different models, the models were combined together using stacked ensemble learning and
a final model was implemented. The stacked model improved the classification accuracy.
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Dataset

Our dataset contains 2384 images of cotton leaves separated into seven classes (Healthy,
Leafspot, Nutrient Deficiency, Powdery mildew, Target spot, Verticillium Wilt, and Leaf
curl). The images were taken in the Pakistani city of Matiari, located in Sindh Province.
The images were captured at different timings i-e. morning, noon, and evening. To create
a dataset, background noise was added to images of cotton leaves taken with a mobile
camera at a resolution of 3120 × 4160 pixels. For capturing leaf images, a vivo V21 mobile
was used. The original size of the images was 3120 × 4160. The real field contained
multiple leaves along with some background noise such as weeds. The image was cropped
manually to extract a leaf. The images were rotated at 30◦, and horizontal and vertical flip
was used. After gathering the images, the following step was to remove any unwanted
noise. To finish the dataset, this operation was done manually. To generate a final dataset,
image pre-processing techniques were used, which include rescaling, image enhancement,
and contrast enhancement. The dataset was annotated by agriculture professionals, who
labeled each image according to the disease it contains. Finally, the dataset was divided
into training and test sets for model training. We only used 20% of the data for the test
set. Different classes of diseases are shown in Figure 6, which include Healthy, Leafspot,
Nutrient Deficiency, Powdery mildew, Target spot, Verticillium Wilt, and Leaf curl. Figure 6
shows various leaf diseases. In Figure 6a shows Healthy image, Figure 6b shows Leaf spot,
Figure 6c shows Nutrient Deficiency, Figure 6d shows Powdery Mildew, Figure 6e shows
Target spot, Figure 6f shows Verticillium Wilt, Figure 6g shows Leaf curl.
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Table 1 describes the different models, number of parameters for training, total training
time and the floating point operations (FLOPs) of each model. The proposed model uses a
smaller number of parameters as compared to other models.
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Table 1. Summary of the Literature.

Author Methodology Crop
Type of the

Disease/Health
Assessment

Limitation

[16] VGGNET Transfer
Learning Rice, Maize

Gray leaf spot,
Common rust,

Northern leaf blight

The author of the study worked on VGGNET Transfer
Learning to find the disease in the rice leaves. The proposed
method achieved an accuracy of 92%. The limitation of the

work is very small, as the dataset consists of 500 images
selected for rice and 466 images selected for maize. The model

was not tested on other benchmark datasets.

[32] Image Processing Cotton Leaf Spot The author claims the work as a generalized approach for
detecting every disease, while no evidence is provided.

[33] GrabCut, SVM,
Deep CNN, GAN Cucumber

anthracnose, downy
mildew, and

powdery mildew

The author has used two-stage segmentation to extract lesions
from leafspot. Two-stage segmentation was implemented

using GrabCut with the SVM method. Various features were
extracted such as Color, Texture and border. Data

Augmentation was done using AR-GAN to generate more
images. The proposed study achieved an accuracy of 96.11%.

The limitation of the work is that the experiment was
performed on 600 images and the model was not tested on

other plants to judge the accuracy of the model
for generalization.

[34]

AlexNet, VGG,
ResNet, GAN,

DenseNet, Xception,
ResNext, SEResNet,

EfficientNet

Grape
Esca measles,

Leaf spot,
Black rot

The study’s author presented a GAN-based data
augmentation strategy to expand the size of the Grape

dataset’s original Dataset. The author tested the Dataset on
various CNN architectures, including (AlexNet, VGG, ResNet,

DenseNet, Xception, ResNext, SEResNet, and EfficientNet).
The accuracy of the proposed model was 98.70 percent. To
generalize the model, the author has not tested it outside of
the Grape dataset. Only leaf images with no background are
included in the Grape Dataset. The model’s performance on

real-world images will suffer due to this method.

[36] Mask R-CNN Grape Grape Varieties

The author of the study proposed Mask R-CNN to detect
various Grape varieties by using instance segmentation. The
limitation of the work is the proposed method will only work

with Grape because of the annotated Dataset of Grape to
detect instances.

[37] Decision Tree
Classifier Cotton Cotton Disease

The author in the proposed work has used various parameters
such as temperature, soil moisture etc. to predict the disease
of cotton. For classification, the author has used a decision

tree classifier. The only parameters such as soil, moisture and
temperature cannot help with detecting diseases of crop.

[38]

Image
Segmentation,
Gaussian filter,

Graph cut

Cotton Leaf Spot
The author has used manual image processing methods to
identify disease in cotton. The method is based on image

processing and requires time.

[39] CNN Cotton Flower species The author has worked on cotton flower species using
unmanned aerial images.

[40] DCNN, AlexNet Cucumber
target leaf spots, mildew,

powdery mildew,
anthracnose, downy

The study’s author proposed a deep Convolutional Neural
Network (DCNN) to recognize several diseases in cucumber.

On 1184 original photos, the proposed work was
implemented. Data Augmentation was used to increase the
original dataset to 14,208 rows. The proposed model had a

93.4 percent accuracy rate. The suggested model achieves less
accuracy, and the model was not trained on other benchmark

datasets, which is a limitation of the study.

Proposed
work

CNN,
VGG16 Transfer

Learning, ResNet50,
GoogLeNet

Cotton

Healthy, Leaf Spot, Target
Leaf Spot, Powdery

Mildew Nutrient
Deficiency, Verticillium

wilt, Leaf curl

The dataset consisted of a total of 2385 images, of which 1910 were used for training
and 475 were used for testing. The dataset contained seven disease classes, which included,
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for example, (nutrient deficiency, healthy, leafspot, powdery mildew, target spot, verticil-
lium, and leaf curl). Table 2 shows the total number of classes, the number of images for
training, and the number of images for the test.

Table 2. Model Parameters.

Model CNN VGG16 ResNet50 Proposed Model

No. of Parameters 9,185,606 14,878,982 25,638,918 2,629,639
FLOPs 5.4 G 30.9 G 0.00421 G 38.5 G

Training Time 1 h 34 min 56 s 54 min 3 s 53 min 15 s 1 h 17 min 52 s

Figure 7 shows the number of parameters of each model. Our proposed model contains
very a smaller number of parameters.
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Figure 8 shows the detailed illustration of dataset. It shows the images for train and
test of each diseased class.
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Table 3 shows the disease classes and the total training images and the test images.
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Table 3. Total Training and Test Leaf Images.

S. No Disease Class Training Test

1. healthy 204 50
2. leaf curl 334 84
3. leafspot 479 116
4. Nutrient Deficiency 257 64
5. Powdery mildew 182 46
6. Target spot 225 57
7. Veticillium Wilt 229 58

There are 11 convolution layers in the CNN model. A total of 9,185,606 parameters
were used to train the model. The entire training time was 1 h 34 min 56 s on the GPU. The
hyperparameters utilized for training models are listed in Table 4. A total of 100 epochs
were used for training a CNN with the Adam optimizer and a learning rate of 0.0001, a
batch size of 32, and an input shape of 224*224. VGG16 was trained over 100 epochs using
the Adam optimizer, with the learning rate set to 0.001, dropout set to 0.5, batch size set to
32, and input shape set to 224*224. The proposed model was trained on 100 epochs with
fewer parameters and resulted in good accuracy. Figure 9 depicts a variety of leaf images
with various diseases.
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Table 4. Hyper Parameters.

Model Name Parameter

CNN

Optimizer Adam
Learning rate 0.0001
No. of Epochs 100

Dropout 0.5
Batch Size 32

Input Shape 224*224

VGG16

Optimizer Adam
Learning rate 0.001
No. of Epochs 100

Dropout 0.5
Batch Size 32

Input Shape 224*224

ResNet50

Optimizer SGD
Learning rate 0.01
Weight Decay 0.0002
Momentum 0.9

No. of Epochs 100
Dropout 0.4

Batch Size 32
Input Shape 224*224

Proposed Model

Optimizer Adam
Learning rate 0.001
No. of Epochs 100

Dropout 0.25
Batch Size 32

4. Performance Matrix

To measure the performance of each model, various parameters were considered such
as accuracy, sensitivity, specificity, precision and F1 score. Equation (1) is used to calculate
the accuracy of the model.

Accuracy =
TP + TN

(TP + FN) + (FP + TN)
(1)

Sensitivity =
(TP)

(TP + FN)
(2)

Speci f icity =
(TN)

(TN + FP)
(3)

Precision =
(TP)

(TP + FP)
(4)

F1 Score =
(2 ∗ TP)

(2 ∗ TP + FN + FP)
(5)

The number of correctly recognized healthy leaf images (TP) is equal to the number of
correctly recognized unhealthy leaf images (TN). The misidentified healthy and unhealthy
leaf images are referred to as false positive (FP) and false negative (FN), respectively.
The confidence interval for classification accuracy is found by the percentage of correct
predictions from total predictions. In addition to this we also use other parameters to
measure the performance of the model, which include f1 score, precision, and recall.

Figure 10 shows the correctly predicted images.
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Figure 11 shows the CNN training accuracy and loss. Figure 12 shows the VGG16 train-
ing accuracy and loss. Figure 13 shows ResNet50 training accuracy and loss. Figure 14
shows the training accuracy and loss of the proposed model.
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In Table 5 the details of the CNN score are given. The score shows the precision, recall,
and F score.
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Table 5. CNN Precision, Recall and F Score.

Disease Class Precision Recall F-Score Support

powdery mildew 1.000000 1.000000 1.000000 46.0
leaf curl 1.000000 0.976190 0.987952 84.0

target spot 1.000000 0.947368 0.972973 57.0
verticillium wilt 1.000000 0.931034 0.964286 58.0

leafspot 0.934959 0.991379 0.962343 116.0
healthy 0.884615 0.920000 0.901961 50.0

Nutrient deficiency 0.875000 0.875000 0.875000 64.0

Table 6 shows precision, recall, and F score of VGG16.

Table 6. VGG16 Precision, Recall and F Score.

Disease Class Precision Recall F-Score Support

powdery mildew 1.000000 1.000000 1.000000 46.0
leaf curl 0.988235 1.000000 0.994083 84.0

verticillium wilt 1.000000 0.982759 0.991304 58.0
target spot 0.982456 0.982456 0.982456 57.0

healthy 0.980000 0.980000 0.980000 50.0
leafspot 0.958333 0.991379 0.974576 116.0

Nutrient deficiency 0.983333 0.921875 0.951613 64.0

Table 7 shows precision, recall, and F scores of ResNet50.

Table 7. ResNet50 Precision, Recall and F Score.

Disease Class Precision Recall F-Score Support

healthy 1.000000 1.000000 1.000000 50.0
leaf curl 1.000000 1.000000 1.000000 84.0

verticillium wilt 1.000000 1.000000 1.000000 58.0
powdery mildew 0.978723 1.000000 0.989247 46.0

Nutrient deficiency 1.000000 0.968750 0.984127 64.0
leafspot 0.965517 0.965517 0.965517 116.0

target spot 0.948276 0.964912 0.956522 57.0

Table 8 shows precision, recall, and F score of Proposed model.

Table 8. Proposed Model Precision, Recall and F Score.

Disease Class Precision Recall F-Score Support

healthy 1.000000 1.000000 1.000000 50.0
leaf curl 1.000000 1.000000 1.000000 84.0

verticillium wilt 1.000000 1.000000 1.000000 58.0
powdery mildew 0.978723 1.000000 0.989247 46.0

Nutrient deficiency 1.000000 0.968750 0.984127 64.0
leafspot 0.957983 0.982759 0.970213 116.0

target spot 0.981818 0.947368 0.964286 57.0

Figure 15 visualizes the F-Score of various diseases on different models.
The Figure 16 shows the confusion matrix of the CNN model. It shows the total correct

predictions of the model from total test images. The model correctly predicted 453 images
out of 475.

Figure 17 shows the confusion matrix of the VGG16 model. The model correctly
predicted 466 images out of 475.

Figure 18 shows the confusion matrix of the ResNet50 model. The model correctly
predicted 467 images out of 475.
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Table 9 shows the accuracy of the different models. The proposed model achieves good
accuracy compared with other models. The proposed model achieves 98.53% accuracy and
also improves the f1 score of various disease classes.

Table 9. Results Summary of Different Models.

S. No. Model Accuracy Dataset

1. Custom CNN 95.37% Cotton
2. VGG16 98.10% Cotton
3. ResNet50 98.32% Cotton
4. Proposed Model 98.53% Cotton

5. Discussion

Many Deep Learning schemes such as scratch models using custom CNN, pre-trained
networks such as AlexNet, VGG16, VGG19, ResNet50, ResNet101, InceptionV3, DenseNet,
Mobile Net, etc. have been proposed so far to find various leaf diseases. These different ap-
proaches include Machine Learning models, Deep Learning models and image processing
techniques. Many pre-trained models used the Transfer Learning approach, and include
VGG16, VGG19, ResNet50, ResNet101, InceptionV3, DenseNet, and MobileNet, which
have been trained on plantvillage dataset. There is significantly less work done on cotton
crops because of the unavailability of the public dataset. Our contribution is that we have
collected a cotton dataset from a real field. The performance of pre-trained models varies
because of the top-five accuracy on the imagenet dataset. Pre-trained models like VGG16,
ResNet50, and Inception V3 are helpful for the feature extraction process. However, the
performance of the different pre-trained models [41] differs in terms of the number of
layers and the accuracy. Accurate plant leaf disease identification is one of the challenging
problems when the leaf has a complex structure. In previous works, many researchers
worked on a plantvillage, which is a publicly available dataset. The plant village dataset
does not include cotton crop, and it also includes images with ideal conditions. We have
collected cotton images from a real field. Figure 7 shows various leaf images with different
diseases. Leaf disease identification on real field images is a need of modern agriculture
management. Meta deep learn leaf disease identification is novel approach that does
not depend on one model; rather, the models are trained independently and later on all
the models are combined to form a final model for a better classification accuracy. The
combination of multiple models provides an opportunity to extract more leaf features
compared to relying on a single model. Our proposed approach uses different models
like custom CNN, VGG16, ResNet50 and the Meta deep learn model that helps extract
various leaf features. In the proposed approach, we first trained different models on our
cotton dataset using custom CNN, VGG16 and ResNet50, and in the end the models were
combined to extract various leaf features from the final model. The models were combined
by stacked ensemble learning. In our proposed approach we identified various cotton leaf
diseases which include Healthy, Leafspot, Nutrient Deficiency, Powdery mildew, Target
spot, Verticillium Wilt, and Leaf curl. First, we collected cotton leaf images from a real field.
After collecting the images, the leaf images were cropped. The annotation process was
then undertaken to divide the dataset in multiple classes based on the disease they contain.
After the annotation process the augmentation technique was used to increase the size of
the dataset. In the data augmentation technique we used rotation, horizontal shift, vertical
shift, and zooming. After data augmentation we trained a dataset on custom CNN, VGG16,
and ResNet50, and proposed a scheme of Meta deep learn leaf disease identification. On
our cotton dataset we achieved an accuracy of 95.37% on CNN; on VGG16 we achieved
98.10%; on ResNet50 we achieved an accuracy of 98.32%; and on the proposed model an
accuracy of 98.53% was achieved. We used various evaluation metrics such as accuracy,
precision, recall, f1 score, heatmap and receiver operating characteristic curve (ROC) to
evaluate model performance. The proposed model in Figure 24 shows a significant im-
provement of ROC over other models. Meta deep learn leaf disease identification provides
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an opportunity to implement a reliable model that gives good accuracy across multiple
crops to identify different types of leaf diseases at an early stage. The proposed model also
provides the opportunity to identify leaf diseases at an early stage of a crop because of the
diverse leaf features extracted from multiple models. The combination of multiple models
helped to improve the overall model accuracy and f1 score. The proposed approach is a
good one to provide generalization.
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Figure 24 shows the accuracy of various models on our cotton dataset. It is shows that
our proposed model has achieved a high accuracy of 98.53.

6. Conclusions

Plant disease is a significant hazard to agriculture around the world. To prevent addi-
tional damage to crops, accurate leaf disease detection is critical. This paper offers a new
strategy for improving the Deep Learning model’s effectiveness. We have implemented our
own dataset for cotton crop. The dataset is also trained on a variety of models, including
custom CNN, VGG16, ResNet50, and our own proposed model, the Meta Deep Learning
model. In this study, we discovered a variety of cotton diseases, including healthy, leafspot,
verticillium wilt, target spot, powdery mildew, nutrient deficiency, and leaf curl. The sug-
gested model performed remarkably well on the cotton dataset, with an accuracy of 98.53%.
Distinct models improve different feature extractions in Deep Learning. The identification
of leaf diseases is a significant challenge that must be handled. The suggested model will
provide a method for identifying the diseases in all important crops using a generalization
technique. The proposed model employs a Meta Deep Learning strategy. This method
allows for disease detection across a variety of crops. For effective diagnosis, a generalized
approach is a good idea. One limitation of the proposed model is its deployment on mobile
devices. In the future, the model can be further improved with regard to processing low
resolution images and by reducing the size of the model. This will help with deploying the
model on mobile devices.
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