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Meta Distribution of Downlink Non-Orthogonal

Multiple Access (NOMA) in Poisson Networks

Konpal Shaukat Ali∗, Hesham ElSawy†, and Mohamed-Slim Alouini∗

Abstract—We study the meta distribution (MD) of the cover-
age probability (CP) in downlink non-orthogonal-multiple-access
(NOMA) networks. Two schemes are assessed based on the
location of the NOMA users: 1) anywhere in the network, 2)
cell-center users only. The moments of the MD for both schemes
are derived and the MD is approximated via the beta distribution.
Closed-form moments are derived for the first scheme; for the
second scheme exact and approximate moments, to simplify the
integral calculation, are derived. We show that restricting NOMA
to cell-center users provides significantly higher mean, lower
variance and better percentile performance for the CP.

I. INTRODUCTION

Conventionally, orthogonal multiple access (OMA) is used

for transmissions to different users (UEs) served by the same

base station (BS). OMA assigns different time-frequency re-

source blocks (TF-RBs) to each UE to avoid intracell interfer-

ence. However, spectrum scarcity and the increasing capacity

demand call for more efficient spectrum utilization. In this

regard, non-orthogonal multiple access (NOMA) is a technique

that improves spectral efficiency by superposing the messages

of multiple UEs on one TF-RB. Successive interference can-

cellation (SIC) is used for NOMA decoding. The superiority of

NOMA over OMA schemes in a noise-limited regime is well

established from an information theoretic perspective [1].

Using stochastic geometry, the superiority of NOMA has

also been established for large-scale interference prone net-

works [2]–[5]. Such studies usually focus on the spatially

averaged coverage probability (SCP), which averages the

coverage probability (CP) over all fading, activity, and network

realizations. However, network operators are usually more

interested in the percentile performance of UEs, where the

fading and activity change while the network realization is kept

constant. The CP given a fixed network realization is defined

as the conditional CP (CCP) [6]. The complementary cdf of

the CCP, denoted as the meta distribution (MD), reveals the

percentile performance across an arbitrary network realization.

[7] studies the MD for uplink and downlink NOMA with

NOMA UEs located everywhere in the network; however, the

joint decoding associated with SIC is not taken into account.

This letter characterizes the MD in downlink cellular net-

works for two NOMA schemes, namely, everywhere NOMA
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(E-NOMA) and cell-center NOMA (C-NOMA). E-NOMA

utilizes NOMA for UEs located everywhere in the network [5],

[7], while C-NOMA restricts NOMA to cell-center UEs only

[2], [3]. We derive closed-form expressions for the moments

of the MD in E-NOMA. Integral expressions are obtained for

the moments in C-NOMA; consequently, we propose accurate

approximate moments to simplify the integral calculation. The

MD is then approximated using the beta distribution via mo-

ment matching to characterize the UEs percentile performance.

Different from [7] we derive and compare the statistics of the

MD for two NOMA schemes, and consider joint decoding for

all SIC phases. To the best of our knowledge, NOMA works in

the literature employ one scheme and do not compare different

schemes. Our results show that C-NOMA not only provides

higher SCP, but also reduces the variance of the CP across the

UEs in the network when compared to the E-NOMA.

II. SYSTEM MODEL

We consider a downlink cellular network where BSs are

distributed according to a homogeneous PPP Φ with intensity

λ. Each BS serves N UEs in one TF-RB by multiplexing

the signals for each UE with different power levels using a

total power budget P = 1. A Rayleigh fading environment is

assumed such that the fading coefficients are i.i.d. with a unit

mean exponential distribution. A power-law path-loss model

is considered where the signal decays at the rate r−η with

distance r , η > 2 denotes the path-loss exponent and δ = 2
η

.

SIC requires ordering the UEs according to some measure

of link strength [2]. For i ∈ {1, . . . ,N}, the ith strongest UE is

referred to as UEi . In this work, we order the UEs based on the

link distance R. The ordered link distance of UEi is denoted

by Ri; consequently, UEi is nearer to the BS and therefore

stronger than UEj for i < j (i.e., Ri < Rj). Exploiting SIC,

UEi decodes and cancels messages intended for all weaker

UEs before decoding its own message. On the other hand,

messages for stronger UEs are treated as noise and contribute

to the intracell interference. We incorporate imperfect SIC into

our analysis by considering a fraction β of residual intracell

interference from the canceled messages of weaker UEs. Let

Pi and log(1 + θi) denote the power allocated and target rate

for UEi; the corresponding signal-to-interference ratio (SIR)

threshold for the message of UEi is θi . Note that due to the

power budget,
∑N

i=1 Pi = 1. For feasible SIC, proper resource

allocation (RA), i.e., power allocation and rate adaptation (e.g.,

Pi ≤ Pj and/or θi ≥ θ j for i < j), for all UEs is required.

Lemma 1: For any ascending ordered statistic like Ri , based

on the statistics of the unordered counterpart R, the pdf is

fRi
(r) =

(
N − 1

i − 1

)
N fR(r) (FR(r))

i−1(1−FR(r))
N−i . (1)
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In terms of components larger than i, (1) can be rewritten as

fRi
(r) = f

R̂i
(r) +

N∑

m=i+1

(
m − 1

i − 1

)
(−1)m−i f

R̂m
(r), (2)

where f
R̂ j
(r) =

(N−1
j−1

)
N fR(r)(FR)

j−1 for i ≤ j ≤ N . In terms

of components smaller than i, (1) can be rewritten as

fRi
(r) = fR̃i

(r) +

i−1∑

m=1

(N − m)!(−1)i−m

(m − 1)!(i − m)!
fR̃m

(r), (3)

where fR̃ j
(r) =

(N−1
j−1

)
N fR(r)(1 − FR)

N−j for 1 ≤ j ≤ i.

We denote the distance between a BS and its nearest

neighboring BS by ρ. Since Φ is a PPP, the pdf of ρ is

fρ(x) = 2πλxe−πλx
2

, x ≥ 0. Consider a disk around each

BS located at x with radius ρ/2, i.e., b(x, ρ/2); we refer to

this as the in-disk. The in-disk is the largest disk centered at

a BS that fits inside its Voronoi cell. We study and compare

NOMA for the following two schemes.

1) Everywhere NOMA (E-NOMA): N UEs are distributed

uniformly and independently in each Voronoi cell. Conse-

quently, the distribution of the unordered link distance R

follows fR(r) = 2πλre−πλr
2

, r ≥ 0. Using this pdf and its

cdf FR(r), the ordered distance distribution fRi
(r), r ≥ 0, in

the E-NOMA scheme follows (1).

2) Cell-Center NOMA(C-NOMA): N UEs are distributed

uniformly and independently in the in-disk b(x, ρ/2) of each

BS at x [3]. Consequently, the link distance R, conditioned on

ρ, follows fR |ρ(r | ρ) = 8r
ρ2 , 0 ≤ r ≤

ρ

2
. Using (1) the pdf of

Ri , conditioned on ρ, in the C-NOMA scheme follows

fRi |ρ(r | ρ)=

(
N−1

i−1

)
8rN

ρ2

(
4r2

ρ2

)i−1(
1−

4r2

ρ2

)N−i

,0≤ r ≤
ρ

2
. (4)

Remark: C-NOMA restricts the link distance to ρ/2; the

notion is that NOMA is better suited for UEs that are closer

to the serving BS. UEs with relatively larger link distances are

better served in their own resource block without sharing [2].

III. SIR ANALYSIS

SIC requires a UE to successfully decode all of the messages

intended for weaker UEs. Consider a randomly selected BS

located at x0 and its associated UEs; the SIR at UEi of the

message intended for UEj for i ≤ j ≤ N is

SIRi
j =

hiR
−η

i
Pj

hiR
−η

i

(
j−1∑
m=1

Pm+ β
N∑

k=j+1

Pk

)
+

∑
x∈Φ\x0

gyi ‖yi ‖
−η

,

where yi = x− ui , ui is the location of UEi , ‖ · ‖ denotes the

Euclidean norm, and hi (gyi ) is the fading power gain from

the serving (interfering) BS to UEi .

Accordingly, due to SIC decoding, coverage at UEi is

defined via the following joint event

Ci=

N⋂

j=i

{
SIRi

j >θ j

}
=

N⋂

j=i



hi >R

η

i

θ j

P̃j

∑

x∈Φ\x0

gyi ‖yi ‖
−η



, (5)

where P̃j = Pj −θ j

(
j−1∑
m=1

Pm+β
N∑

k=j+1

Pk

)
. We rewrite (5) as Ci =

{
hi > R

η

i
Mi

∑
x∈Φ

gyi ‖yi ‖
−η

}
using Mi= max

i≤ j≤N

θ j

P̃j
.

For a fixed, yet arbitrary, realization of the network, the

CCP of UEi in a randomly selected cell, PCi
, is

PCi
=P(Ci |Φ)

(a)
= Egyi

[
exp

(
− R

η

i
Mi

∑

x∈Φ\x0

gyi ‖yi ‖
−η

)
| Φ

]

(b)
=

∏

x∈Φ\x0

1

1 + R
η

i
Mi ‖yi ‖

−η , (6)

where (a) follows using the cdf of hi ∼ exp(1) and (b) follows

from the MGF of the independent RVs gyi ∼ exp(1).

Denote the bth moment of the CCP of UEi across all links

in an arbitrary fixed realization of the network by Mi,b . Then,

Mi,b = E

[ ∏

x∈Φ\x0

(
1 + R

η

i
Mi ‖yi ‖

−η
)−b

]
. (7)

Remark: If P̃j < 0, the CCP is zero. Henceforth we assume

RA such that P̃j ≥ 0.

Note: If b = 1 in (7), we obtain the SCP of UEi .

Through moment matching, the MD of UEi is approximated

using the beta distribution [6] as follows

F̄PCi
(α)= P

(
PCi
> α

)
≈ 1 − Iα

(
βiMi,1

1 −Mi,1

, βi

)
, (8)

where βi=
(Mi ,1−Mi ,2)(1−Mi ,1)

Mi ,2−M
2
i ,1

and Iα(a, b) =
∫ α

0
la−1(1 −

l)b−1dl. The variance of the MD of UEi is defined as

σ2
i =Mi,2 −M2

i,1. (9)

The ordered relative distance process (RDP) for UEi , which

is the RDP in [8] using ordered link distance, is

Ri = {x ∈ Φ\{x0} : Ri/‖yi ‖}. (10)

Using the PGFL of the PPP in (a), the PGFL of Ri is

GRi
[ f ]

△
= E

[ ∏

x∈Ri

f (x)

]
= E

[ ∏

x∈Φ\{x0 }

f

(
Ri

‖yi ‖

) ]

(a)
= ERi

[
exp

(
−2πλ

∫ ∞

Ri

(
1 − f

(
Ri

a

))
a da

)]
. (11)

Using the ordered RDP for UEi , the expectation in (7) can

also be evaluated as

Mi,b = E

[ ∏

y∈Ri

(1 + Miy
η)−b

]
. (12)

1) E-NOMA Scheme: We characterize the PGFL of the

ordered RDPs and obtain closed for expressions for Mi,b .

Lemma 2: The PGFL of Ri for 1 ≤ i ≤ N in E-NOMA is

GRi
[ f ] = G

R̃i
[ f ] +

i−1∑

m=1

(N − m)!(−1)i−m

(m − 1)!(i − m)!
GR̃m

[ f ], (13)

where for 1 ≤ j ≤ i

G
R̃ j
[ f ] =

(N−1
j−1

)
N

(N − j + 1) + 2
∫ ∞

1

(
1 − f

(
y−1

) )
y dy
. (14)
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Proof: We obtain (13) using (3) in (11). Also using (11),

G
R̃ j
[ f ] =

∫ ∞

0

fR̃ j
(x) exp

(
−2πλ

∫ ∞

Ri

(
1 − f

( x

a

))
a da

)
dx

(a)
=

(
N−1

j−1

)
πλN

∫ ∞

0

e
−2πλm

∞∫

1

(1−f (y−1))y dy

e−πλ(N−j+1)mdm

where (a) is obtained by changing variables and (14) is

obtained using the MGF of m ∼ exp(πλ(N − j + 1)). �

Corollary 1: Mi,b for 1 ≤ i ≤ N in E-NOMA is

Mi,b = M̃i,b +

i−1∑

m=1

(N − m)!(−1)i−m

(m − 1)!(i − m)!
M̃m,b, (15)

where for 1 ≤ j ≤ i

M̃ j ,b =

(
N − 1

j − 1

)
N

N − j + 2F1 (b,−δ,1 − δ,−Mi)
. (16)

Proof: (15) is obtained using (13), where we define using (12)

M̃ j ,b=GR̃ j

[
1

(1+Miy
η)b

]
(a)
=

(N−1
j−1

)
N

N− j+1+2
∞∫

1

(
1−(1+Miy

−η)−b
)
ydy

.

We obtain (a) using (14), and (16) follows by y → g
−1. �

2) C-NOMA Scheme: We obtain integral expressions for

Mi,b . We also propose approximate PGFLs of the ordered

RDP and use these to evaluate Mi,b in a simpler form.

Lemma 3: The bth moment of the CCP for UEi in the

C-NOMA scheme is

Mi,b≈Eρ,Ri

[
e
−2πλ

∞∫

ρ−Ri

(
1−

(
1+

Mi R
η

i
rη

)−b)
rdr

(
1+

MiR
η

i

ρη

)−b]
. (17)

Proof: In the C-NOMA model each UE is conditioned to have

an interferer ρ away from the serving BS. Hence, using (7)

Mi,b=E

[ ∏

x∈Φ\x0

‖x−x0‖>ρ

(
1 + Mi

R
η

i

‖yi ‖
η

)−b∏

x∈Φ\x0

‖x−x0‖=ρ

(
1 + Mi

R
η

i

‖yi ‖
η

)−b]
.

We obtain the first term in (17) using the PGFL of the PPP

and the guard zone b(ui, ρ−Ri) in the C-NOMA scheme. The

average location of a UE distributed uniformly in the in-disk

is the center of the disk, i.e, x0. Accordingly, we approximate

the average distance between a UE and the BS ρ away from

x0 as ρ; hence, the second term in (17) is obtained. This

approximation has been validated to be tight in [2], [3]. �

Consider the following two approximations:

• A1: UEi is guaranteed to have no interfering BS in b(ui,Ri),

which is not the largest guard zone around the UE.

• A2: Deconditioning on the BS ρ away from the serving BS.

Remark: The two approximations have opposing effects; A1

overestimates intercell interference while A2 underestimates it.

Calculating Mi,b using Lemma 3 requires a triple integral.

However, exploiting A1 and A2, we provide an approximation

to calculate Mi,b that requires a single integration.

Lemma 4: Using A1 and A2, the PGFL of Ri conditioned

on ρ for 1 ≤ i ≤ N in the C-NOMA scheme is

GRi |ρ[ f ] = G
R̂i |ρ

[ f ]+

N∑

m=i+1

(
m−1

i−1

)
(−1)m−iG

R̂m |ρ
[ f ], (18)

where for i ≤ j ≤ N

G
R̂ j |ρ

[ f ]=

(N−1
j−1

) (
Γ( j)−Γ

(
j,
πλρ2

2

∫ ∞

1

(
1− f

(
1
y

))
ydy

))

1
N

(
ρ2

2
πλ

∫ ∞

1

(
1− f

(
1
y

))
ydy

) j . (19)

Proof: We obtain (18) using (2) in (11). Also using (11),

G
R̂ j |ρ

[ f ] =

∫ ∞

0

f
R̂ j
(x) exp

(
−2πλ

∫ ∞

Ri

(
1 − f

( x

a

))
a da

)
dx

(a)
=

(
N−1

j−1

)
N

4j

ρ2j

∫ ρ
2

4

0

e
−2πλm

∞∫

1

(1−f (y−1))y dy

m j−1dm

(a) follows by changing variables, and (19) by integration. �

We approximate Mi,b by substituting the approximate PGFL

of Ri , conditioned on ρ, into (12) and averaging over ρ.

Corollary 2: Using A1 and A2, Mi,b for 1 ≤ i ≤ N in

C-NOMA is

Mi,b = M̂i,b +

N∑

m=i+1

(
m − 1

i − 1

)
(−1)m−iM̂m,b, (20)

where for i ≤ j ≤ N

M̂ j ,b=Eρ



Γ( j)−Γ
(
j,
πλρ2

4
(2F1(b,−δ,1−δ,−Mi)−1)

)

(πλ) j

(N−1
j−1 )N

ρ2 j

4 j (2F1 (b,−δ,1−δ,−Mi)−1)j


. (21)

Proof: (20) is obtained using (18) where we define using (12)

M̂ j ,b = Eρ

[
G
R̂ j |ρ

[(1 + Miy
η)−b]

]

(a)
= Eρ



(N−1
j−1

) (
Γ( j)−Γ

(
j,
πλρ2

2

∫ ∞

1

(
1− (1 + Miy

−η)−b
)
ydy

))

1
N

(
ρ2

2
πλ

∫ ∞

1

(
1− (1 + Miy

−η)−b
)
ydy

) j


.

We obtain (a) using (19), and (21) follows by y → g
−1. �

IV. RESULTS

In this section, we select the following parameters: λ = 10,

η = 4, β = 0 and N = 2, unless stated otherwise. Simulations

are repeated 50,000 times. Since the power budget is P = 1,

P2 = 1−P1. Unless stated otherwise, Lemma 3 is used for the

moments of the CCP in the C-NOMA model.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

UE
1

UE
2

C-NOMA

Scheme
E-NOMA

Scheme

Fig. 1: MD vs. α with θ1 = 1 and θ2 = 0.5. Solid lines represent
P1 = 0.5, dashed P1 = 0.1, markers show Monte Carlo simulations.

Fig. 1 verifies the approximation of the MD in (8) using

simulations for both schemes with different values of P1. The

approximation is tighter (looser) for C-NOMA (E-NOMA)
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Fig. 2: SCP and variance of the MD vs. θ
(identical target rate for all UEs) with P1 = 1/3
for the C-NOMA scheme using the exact and
approximate moments of CP.
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For C-NOMA: TMR=0.1 (black) uses P2 =

0.18 and θ2 = −9 dB, TMR=0.4 (blue) uses
P2 = 0.54 and θ2 = −0.7 dB. For E-NOMA:
TMR=0.1 (red) uses P2=0.47 and θ2=-7 dB.

because of its larger (smaller) interference-exclusion disk with

radius ρ− Ri (Ri). The fraction of UEi that attain a given CP

is always much larger for C-NOMA when compared to E-

NOMA, which highlights the superiority of restricting NOMA

to cell-center UEs. When P1 = 0.5, 98.9% (92.1%) of UE1

(UE2) achieve a CP of at least 0.5 in C-NOMA, while only

61.5% (19.9%) of UE1 (UE2) achieve the same CP in E-

NOMA. Decreasing P1 worsens the performance of UE1 and

improves UE2; consequently, decreasing P1 in Fig. 1 increases

the fraction of UE2 that attains a certain CP at the expense of

reducing the fraction of UE1 achieving a given CP.

Fig. 2 plots the mean and variance of the MD for the NOMA

UEs in the C-NOMA scheme. We compare using the moments

obtained with and without the approximations A1 and A2.

We observe that the approximation is tight for the SCP and

overestimates the variance, particularly for UE2 near the peak.

Fig. 3 plots the mean and variance of the MD of the UEs for

both schemes using identical RA. We observe that C-NOMA

outperforms the E-NOMA scheme in terms of both SCP and

variance. Increasing β deteriorates performance of the non-

weakest UEs, decreasing SCP and increasing variance. For

a given β, the higher SCP of the C-NOMA scheme can be

attributed to the fact that the UEs are closer to the BS on

average than the E-NOMA scheme. The lower variance is also

due to the limited vicinity leading to lower disparity than the

E-NOMA model. Furthermore, σ2
i

peaks at high θ for the C-

NOMA scheme (corresponding to low SCP); which is not the

case for the E-NOMA scheme. This implies the existence of θ

with high SCP and low σ2
i

in C-NOMA, thereby highlighting

its superiority with careful RA. The C-NOMA is also a more

consistent scheme as both SCP and variance are better for UE1

than UE2; this is not the case for the E-NOMA scheme.

Fig. 4 plots the mean and variance of the MD for an

optimized power and rate adaptation for UE2 such that the

total rate is maximized subject to a threshold minimum rate

(TMR) constraint. The rate of a UE is defined as the SCP

times target rate. RA is done according to the algorithm in [3]

and results in UE2 having rate equal to the TMR. We also plot

the rate of UE1 in Fig. 4. In C-NOMA (and E-NOMA, not

shown for brevity), increasing the TMR increases σ2
2

while

the peak σ2
1

occurs at lower θ1 but does not change in value.

When the TMR is 0.1, the SCP of UE2 and σ2
2

are worse

for E-NOMA. Although the peak σ2
1

is higher for C-NOMA

than E-NOMA, at the optimum θ1 that maximizes the rate of

UE1, σ2
1

is lower for C-NOMA. Other than highlighting the

superiority of the C-NOMA scheme, this also emphasizes the

importance of optimum RA for not just the SCP, but also for

higher moments of the MD.

V. CONCLUSION

We study the meta distribution of the CCP of NOMA UEs

distributed according to two models. Closed form expressions

for the moments of the meta distribution in the E-NOMA

scheme are derived. The C-NOMA scheme requires a triple

integral so we propose approximate moments that reduce to

a single integration. Our results show that employing NOMA

for cell-center users is significantly more beneficial than using

it for all UEs in a cell, thereby motivating the works of [2],

[3]. We also emphasize the importance of RA in NOMA.
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