
Meta-F�: Proof Automation with SMT,
Tactics, and Metaprograms

Guido Mart́ınez1,2(B), Danel Ahman3, Victor Dumitrescu4, Nick Giannarakis5,
Chris Hawblitzel6, Cătălin Hriţcu2, Monal Narasimhamurthy8,

Zoe Paraskevopoulou5, Clément Pit-Claudel9, Jonathan Protzenko6,
Tahina Ramananandro6, Aseem Rastogi7, and Nikhil Swamy6

1 CIFASIS-CONICET, Rosario, Argentina
martinez@cifasis-conicet.gov.ar

2 Inria, Paris, France
3 University of Ljubljana, Ljubljana, Slovenia

4 MSR-Inria Joint Centre, Paris, France
5 Princeton University, Princeton, USA
6 Microsoft Research, Redmond, USA
7 Microsoft Research, Bangalore, India

8 University of Colorado Boulder, Boulder, USA
9 MIT CSAIL, Cambridge, USA

Abstract. We introduce Meta-F�, a tactics and metaprogramming
framework for the F� program verifier. The main novelty of Meta-F� is
allowing the use of tactics and metaprogramming to discharge assertions
not solvable by SMT, or to just simplify them into well-behaved SMT frag-
ments. Plus, Meta-F� can be used to generate verified code automatically.

Meta-F� is implemented as an F� effect, which, given the powerful effect
system of F�, heavily increases code reuse and even enables the lightweight
verification of metaprograms. Metaprograms can be either interpreted, or
compiled to efficient native code that can be dynamically loaded into the
F� type-checker and can interoperate with interpreted code. Evaluation
on realistic case studies shows that Meta-F� provides substantial gains in
proof development, efficiency, and robustness.

Keywords: Tactics · Metaprogramming · Program verification ·
Verification conditions · SMT solvers · Proof assistants

1 Introduction

Scripting proofs using tactics and metaprogramming has a long tradition in inter-
active theorem provers (ITPs), starting with Milner’s Edinburgh LCF [37]. In
this lineage, properties of pure programs are specified in expressive higher-order
(and often dependently typed) logics, and proofs are conducted using various
imperative programming languages, starting originally with ML.

Along a different axis, program verifiers like Dafny [47], VCC [23], Why3 [33],
and Liquid Haskell [59] target both pure and effectful programs, with side-effects
c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 30–59, 2019.
https://doi.org/10.1007/978-3-030-17184-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_2

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 31

ranging from divergence to concurrency, but provide relatively weak logics for
specification (e.g., first-order logic with a few selected theories like linear arith-
metic). They work primarily by computing verification conditions (VCs) from
programs, usually relying on annotations such as pre- and postconditions, and
encoding them to automated theorem provers (ATPs) such as satisfiability mod-
ulo theories (SMT) solvers, often providing excellent automation.

These two sub-fields have influenced one another, though the situation is
somewhat asymmetric. On the one hand, most interactive provers have gained
support for exploiting SMT solvers or other ATPs, providing push-button
automation for certain kinds of assertions [26,31,43,44,54]. On the other hand,
recognizing the importance of interactive proofs, Why3 [33] interfaces with ITPs
like Coq. However, working over proof obligations translated from Why3 requires
users to be familiar not only with both these systems, but also with the specifics
of the translation. And beyond Why3 and the tools based on it [25], no other
SMT-based program verifiers have full-fledged support for interactive proving,
leading to several downsides:

Limits to expressiveness. The expressiveness of program verifiers can be lim-
ited by the ATP used. When dealing with theories that are undecidable and
difficult to automate (e.g., non-linear arithmetic or separation logic), proofs in
ATP-based systems may become impossible or, at best, extremely tedious.

Boilerplate. To work around this lack of automation, programmers have to
construct detailed proofs by hand, often repeating many tedious yet error-prone
steps, so as to provide hints to the underlying solver to discover the proof.
In contrast, ITPs with metaprogramming facilities excel at expressing domain-
specific automation to complete such tedious proofs.

Implicit proof context. In most program verifiers, the logical context of a
proof is implicit in the program text and depends on the control flow and the pre-
and postconditions of preceding computations. Unlike in interactive proof assis-
tants, programmers have no explicit access, neither visual nor programmatic, to
this context, making proof structuring and exploration extremely difficult.

In direct response to these drawbacks, we seek a system that successfully
combines the convenience of an automated program verifier for the common case,
while seamlessly transitioning to an interactive proving experience for those parts
of a proof that are hard to automate. Towards this end, we propose Meta-F�, a
tactics and metaprogramming framework for the F� [1,58] program verifier.

Highlights and Contributions of Meta-F�

F� has historically been more deeply rooted as an SMT-based program verifier.
Until now, F� discharged VCs exclusively by calling an SMT solver (usually
Z3 [28]), providing good automation for many common program verification
tasks, but also exhibiting the drawbacks discussed above.

Meta-F� is a framework that allows F� users to manipulate VCs using tactics.
More generally, it supports metaprogramming, allowing programmers to script

32 G. Mart́ınez et al.

the construction of programs, by manipulating their syntax and customizing the
way they are type-checked. This allows programmers to (1) implement custom
procedures for manipulating VCs; (2) eliminate boilerplate in proofs and pro-
grams; and (3) to inspect the proof state visually and to manipulate it program-
matically, addressing the drawbacks discussed above. SMT still plays a central
role in Meta-F�: a typical usage involves implementing tactics to transform VCs,
so as to bring them into theories well-supported by SMT, without needing to
(re)implement full decision procedures. Further, the generality of Meta-F� allows
implementing non-trivial language extensions (e.g., typeclass resolution) entirely
as metaprogramming libraries, without changes to the F� type-checker.

The technical contributions of our work include the following:

“Meta-” is just an effect (Sect. 3.1). Meta-F� is implemented using F�’s
extensible effect system, which keeps programs and metaprograms properly iso-
lated. Being first-class F� programs, metaprograms are typed, call-by-value,
direct-style, higher-order functional programs, much like the original ML. Fur-
ther, metaprograms can be themselves verified (to a degree, see Sect. 3.4) and
metaprogrammed.

Reconciling tactics with VC generation (Sect. 4.2). In program verifiers
the programmer often guides the solver towards the proof by supplying inter-
mediate assertions. Meta-F� retains this style, but additionally allows assertions
to be solved by tactics. To this end, a contribution of our work is extracting,
from a VC, a proof state encompassing all relevant hypotheses, including those
implicit in the program text.

Executing metaprograms efficiently (Sect. 5). Metaprograms are executed
during type-checking. As a baseline, they can be interpreted using F�’s exist-
ing (but slow) abstract machine for term normalization, or a faster normalizer
based on normalization by evaluation (NbE) [10,16]. For much faster execution
speed, metaprograms can also be run natively. This is achieved by combining
the existing extraction mechanism of F� to OCaml with a new framework for
safely extending the F� type-checker with such native code.

Examples (Sect. 2) and evaluation (Sect. 6). We evaluate Meta-F� on sev-
eral case studies. First, we present a functional correctness proof for the Poly1305
message authentication code (MAC) [11], using a novel combination of proofs
by reflection for dealing with non-linear arithmetic and SMT solving for lin-
ear arithmetic. We measure a clear gain in proof robustness: SMT-only proofs
succeed only rarely (for reasonable timeouts), whereas our tactic+SMT proof
is concise, never fails, and is faster. Next, we demonstrate an improvement in
expressiveness, by developing a small library for proofs of heap-manipulating
programs in separation logic, which was previously out-of-scope for F�. Finally,
we illustrate the ability to automatically construct verified effectful programs, by
introducing a library for metaprogramming verified low-level parsers and serial-
izers with applications to network programming, where verification is accelerated
by processing the VC with tactics, and by programmatically tweaking the SMT
context.

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 33

We conclude that tactics and metaprogramming can be prosperously com-
bined with VC generation and SMT solving to build verified programs with
better, more scalable, and more robust automation.

The full version of this paper, including appendices, can be found online in
https://www.fstar-lang.org/papers/metafstar.

2 Meta-F� by Example

F� is a general-purpose programming language aimed at program verification. It
puts together the automation of an SMT-backed deductive verification tool with
the expressive power of a language with full-spectrum dependent types. Briefly, it
is a functional, higher-order, effectful, dependently typed language, with syntax
loosely based on OCaml. F� supports refinement types and Hoare-style specifi-
cations, computing VCs of computations via a type-level weakest precondition
(WP) calculus packed within Dijkstra monads [57]. F�’s effect system is also
user-extensible [1]. Using it, one can model or embed imperative programming
in styles ranging from ML to C [55] and assembly [35]. After verification, F� pro-
grams can be extracted to efficient OCaml or F# code. A first-order fragment
of F�, called Low�, can also be extracted to C via the KreMLin compiler [55].

This paper introduces Meta-F�, a metaprogramming framework for F� that
allows users to safely customize and extend F� in many ways. For instance, Meta-
F� can be used to preprocess or solve proof obligations; synthesize F� expressions;
generate top-level definitions; and resolve implicit arguments in user-defined
ways, enabling non-trivial extensions. This paper primarily discusses the first
two features. Technically, none of these features deeply increase the expressive
power of F�, since one could manually program in F� terms that can now be
metaprogrammed. However, as we will see shortly, manually programming terms
and their proofs can be so prohibitively costly as to be practically infeasible.

Meta-F� is similar to other tactic frameworks, such as Coq’s [29] or
Lean’s [30], in presenting a set of goals to the programmer, providing commands
to break them down, allowing to inspect and build abstract syntax, etc. In this
paper, we mostly detail the characteristics where Meta-F� differs from other
engines.

This section presents Meta-F� informally, displaying its usage through case
studies. We present any necessary F� background as needed.

2.1 Tactics for Individual Assertions and Partial Canonicalization

Non-linear arithmetic reasoning is crucially needed for the verification of opti-
mized, low-level cryptographic primitives [18,64], an important use case for F�

[13] and other verification frameworks, including those that rely on SMT solv-
ing alone (e.g., Dafny [47]) as well as those that rely exclusively on tactic-based
proofs (e.g., FiatCrypto [32]). While both styles have demonstrated significant
successes, we make a case for a middle ground, leveraging the SMT solver for
the parts of a VC where it is effective, and using tactics only where it is not.

https://www.fstar-lang.org/papers/metafstar

34 G. Mart́ınez et al.

We focus on Poly1305 [11], a widely-used cryptographic MAC that computes
a series of integer multiplications and additions modulo a large prime number
p = 2130−5. Implementations of the Poly1305 multiplication and mod operations
are carefully hand-optimized to represent 130-bit numbers in terms of smaller
32-bit or 64-bit registers, using clever tricks; proving their correctness requires
reasoning about long sequences of additions and multiplications.

Previously: Guiding SMT Solvers by Manually Applying Lemmas.
Prior proofs of correctness of Poly1305 and other cryptographic primitives using
SMT-based program verifiers, including F� [64] and Dafny [18], use a combi-
nation of SMT automation and manual application of lemmas. On the plus
side, SMT solvers are excellent at linear arithmetic, so these proofs delegate all
associativity-commutativity (AC) reasoning about addition to SMT. Non-linear
arithmetic in SMT solvers, even just AC-rewriting and distributivity, are, how-
ever, inefficient and unreliable—so much so that the prior efforts above (and
other works too [40,41]) simply turn off support for non-linear arithmetic in the
solver, in order not to degrade verification performance across the board due to
poor interaction of theories. Instead, users need to explicitly invoke lemmas.1

For instance, here is a statement and proof of a lemma about Poly1305 in F�.
The property and its proof do not really matter; the lines marked “(∗argh! ∗)”
do. In this particular proof, working around the solver’s inability to effectively
reason about non-linear arithmetic, the programmer has spelled out basic facts
about distributivity of multiplication and addition, by calling the library lemma
distributivity add right, in order to guide the solver towards the proof. (Below, p44

and p88 represent 244 and 288 respectively)

let lemma carry limb unrolled (a0 a1 a2 : nat) : Lemma (ensures (

a0 % p44 + p44 * ((a1 + a0 / p44) % p44) + p88 * (a2 + ((a1 + a0 / p44) / p44))
== a0 + p44 * a1 + p88 * a2)) =

let z = a0 % p44 + p44 * ((a1 + a0 / p44) % p44)
+ p88 * (a2 + ((a1 + a0 / p44) / p44)) in

distributivity add right p88 a2 ((a1 + a0 / p44) / p44); (* argh! *)

pow2 plus 44 44;

lemma div mod (a1 + a0 / p44) p44;
distributivity add right p44 ((a1 + a0 / p44) % p44)

(p44 * ((a1 + a0 / p44) / p44)); (* argh! *)

assert (p44 * ((a1 + a0 / p44) % p44) + p88 * ((a1 + a0 / p44) / p44)
== p44 * (a1 + a0 / p44));

distributivity add right p44 a1 (a0 / p44); (* argh! *)

lemma div mod a0 p44

Even at this relatively small scale, needing to explicitly instantiate the distribu-
tivity lemma is verbose and error prone. Even worse, the user is blind while
doing so: the program text does not display the current set of available facts nor

1 Lemma (requires pre) (ensures post) is F� notation for the type of a computation
proving pre =⇒ post—we omit pre when it is trivial. In F�’s standard library, math
lemmas are proved using SMT with little or no interactions between problematic
theory combinations. These lemmas can then be explicitly invoked in larger contexts,
and are deleted during extraction.

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 35

the final goal. Proofs at this level of abstraction are painfully detailed in some
aspects, yet also heavily reliant on the SMT solver to fill in the aspects of the
proof that are missing.

Given enough time, the solver can sometimes find a proof without the addi-
tional hints, but this is usually rare and dependent on context, and almost never
robust. In this particular example we find by varying Z3’s random seed that, in
an isolated setting, the lemma is proven automatically about 32% of the time.
The numbers are much worse for more complex proofs, and where the context
contains many facts, making this style quickly spiral out of control. For example,
a proof of one of the main lemmas in Poly1305, poly multiply, requires 41 steps of
rewriting for associativity-commutativity of multiplication, and distributivity of
addition and multiplication—making the proof much too long to show here.

SMT and Tactics in Meta-F�. The listing below shows the statement and
proof of poly multiply in Meta-F�, of which the lemma above was previously only
a small part. Again, the specific property proven is not particularly relevant to
our discussion. But, this time, the proof contains just two steps.
let poly multiply (n p r h r0 r1 h0 h1 h2 s1 d0 d1 d2 h1 h2 hh : int) : Lemma
(requires p > 0 ∧ r1 ≥ 0 ∧ n > 0 ∧ 4 * (n * n) == p + 5 ∧ r == r1 * n + r0 ∧

h == h2 * (n * n) + h1 * n + h0 ∧ s1 == r1 + (r1 / 4) ∧ r1 % 4 == 0 ∧
d0 == h0 * r0 + h1 * s1 ∧ d1 == h0 * r1 + h1 * r0 + h2 * s1 ∧
d2 == h2 * r0 ∧ hh == d2 * (n * n) + d1 * n + d0)

(ensures (h * r) % p == hh % p) =

let r14 = r1 / 4 in
let h r expand = (h2 * (n * n) + h1 * n + h0) * ((r14 * 4) * n + r0) in
let hh expand = (h2 * r0) * (n * n) + (h0 * (r14 * 4) + h1 * r0

+ h2 * (5 * r14)) * n + (h0 * r0 + h1 * (5 * r14)) in
let b = (h2 * n + h1) * r14 in
modulo addition lemma hh expand p b;
assert (h r expand == hh expand + b * (n * n * 4 + (−5)))

by (canon semiring int csr) (* Proof of this step by Meta-F* tactic *)

First, we call a single lemma about modular addition from F�’s standard
library. Then, we assert an equality annotated with a tactic (assert..by). Instead
of encoding the assertion as-is to the SMT solver, it is preprocessed by the
canon semiring tactic. The tactic is presented with the asserted equality as its
goal, in an environment containing not only all variables in scope but also
hypotheses for the precondition of poly multiply and the postcondition of the
modulo addition lemma call (otherwise, the assertion could not be proven). The
tactic will then canonicalize the sides of the equality, but notably only “up to”
linear arithmetic conversions. Rather than fully canonicalizing the terms, the
tactic just rewrites them into a sum-of-products canonical form, leaving all the
remaining work to the SMT solver, which can then easily and robustly discharge
the goal using linear arithmetic only.

This tactic works over terms in the commutative semiring of integers (int csr)
using proof-by-reflection [12,20,36,38]. Internally, it is composed of a simpler,
also proof-by-reflection based tactic canon monoid that works over monoids, which
is then “stacked” on itself to build canon semiring. The basic idea of proof-by-
reflection is to reduce most of the proof burden to mechanical computation,

36 G. Mart́ınez et al.

obtaining much more efficient proofs compared to repeatedly applying lemmas.
For canon monoid, we begin with a type for monoids, a small AST representing
monoid values, and a denotation for expressions back into the monoid type.

type monoid (a:Type) = { unit : a; mult : (a → a → a); (∗ + monoid laws ... ∗) }
type exp (a:Type) = | Unit : exp a | Var : a → exp a | Mult : exp a → exp a → exp a
(∗ Note on syntax: #a below denotes that a is an implicit argument ∗)
let rec denote (#a:Type) (m:monoid a) (e:exp a) : a =

match e with
| Unit → m.unit | Var x → x | Mult x y → m.mult (denote m x) (denote m y)

To canonicalize an exp, it is first converted to a list of operands (flatten) and then
reflected back to the monoid (mldenote). The process is proven correct, in the
particular case of equalities, by the monoid reflect lemma.

val flatten : #a:Type → exp a → list a
val mldenote : #a:Type → monoid a → list a → a
let monoid reflect (#a:Type) (m:monoid a) (e1 e2 : exp a)

: Lemma (requires (mldenote m (flatten e1) == mldenote m (flatten e2)))
(ensures (denote m e1 == denote m e2)) = ...

At this stage, if the goal is t1== t2, we require two monoidal expressions e1
and e2 such that t1== denote m e1 and t2== denote m e2. They are constructed
by the tactic canon monoid by inspecting the syntax of the goal, using Meta-F�’s
reflection capabilities (detailed ahead in Sect. 3.3). We have no way to prove once
and for all that the expressions built by canon monoid correctly denote the terms,
but this fact can be proven automatically at each application of the tactic, by
simple unification. The tactic then applies the lemma monoid reflect m e1e2, and
the goal is changed to mldenote m (flatten e1) == mldenote m (flatten e2). Finally,
by normalization, each side will be canonicalized by running flatten and mldenote.

The canon semiring tactic follows a similar approach, and is similar to existing
reflective tactics for other proof assistants [9,38], except that it only canonicalizes
up to linear arithmetic, as explained above. The full VC for poly multiply contains
many other facts, e.g., that p is non-zero so the division is well-defined and that
the postcondition does indeed hold. These obligations remain in a “skeleton” VC
that is also easily proven by Z3. This proof is much easier for the programmer
to write and much more robust, as detailed ahead in Sect. 6.1. The proof of
Poly1305’s other main lemma, poly reduce, is also similarly well automated.

Tactic Proofs Without SMT. Of course, one can verify poly multiply in Coq,
following the same conceptual proof used in Meta-F�, but relying on tactics only.
Our proof (included in the appendix) is 27 lines long, two of which involve the
use of Coq’s ring tactic (similar to our canon semiring tactic) and omega tactic for
solving formulas in Presburger arithmetic. The remaining 25 lines include steps
to destruct the propositional structure of terms, rewrite by equalities, enriching
the context to enable automatic modulo rewriting (Coq does not fully automat-
ically recognize equality modulo p as an equivalence relation compatible with
arithmetic operators). While a mature proof assistant like Coq has libraries and
tools to ease this kind of manipulation, it can still be verbose.

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 37

In contrast, in Meta-F� all of these mundane parts of a proof are simply
dispatched to the SMT solver, which decides linear arithmetic efficiently, beyond
the quantifier-free Presburger fragment supported by tactics like omega, handles
congruence closure natively, etc.

2.2 Tactics for Entire VCs and Separation Logic

A different way to invoke Meta-F� is over an entire VC. While the exact shape
of VCs is hard to predict, users with some experience can write tactics that find
and solve particular sub-assertions within a VC, or simply massage them into
shapes better suited for the SMT solver. We illustrate the idea on proofs for
heap-manipulating programs.

One verification method that has eluded F� until now is separation logic,
the main reason being that the pervasive “frame rule” requires instantiating
existentially quantified heap variables, which is a challenge for SMT solvers, and
simply too tedious for users. With Meta-F�, one can do better. We have written
a (proof-of-concept) embedding of separation logic and a tactic (sl auto) that
performs heap frame inference automatically.

The approach we follow consists of designing the WP specifications for prim-
itive stateful actions so as to make their footprint syntactically evident. The
tactic then descends through VCs until it finds an existential for heaps arising
from the frame rule. Then, by solving an equality between heap expressions
(which requires canonicalization, for which we use a variant of canon monoid

targeting commutative monoids) the tactic finds the frames and instantiates
the existentials. Notably, as opposed to other tactic frameworks for separation
logic [4,45,49,51], this is all our tactic does before dispatching to the SMT solver,
which can now be effective over the instantiated VC.

We now provide some detail on the framework. Below, ‘emp’ represents the
empty heap, ‘•’ is the separating conjunction and ‘r �→ v’ is the heaplet with
the single reference r set to value v.2 Our development distinguishes between
a “heap” and its “memory” for technical reasons, but we will treat the two as
equivalent here. Further, defined is a predicate discriminating valid heaps (as
in [52]), i.e., those built from separating conjunctions of actually disjoint heaps.

We first define the type of WPs and present the WP for the frame rule:

let pre = memory → prop (∗ predicate on initial heaps ∗)
let post a = a → memory → prop (∗ predicate on result values and final heaps ∗)
let wp a = post a → pre (∗ transformer from postconditions to preconditions ∗)

let frame post (#a:Type) (p:post a) (m0:memory) : post a =
λx m1 → defined (m0 • m1) ∧ p x (m0 • m1)

let frame wp (#a:Type) (wp:wp a) (post:post a) (m:memory) =
∃m0 m1. defined (m0 • m1) ∧ m == (m0 • m1) ∧ wp (frame post post m1) m0

2 This differs from the usual presentation where these three operators are heap predi-
cates instead of heaps.

38 G. Mart́ınez et al.

Intuitively, frame post p m0 behaves as the postcondition p “framed” by m0, i.e.,
frame post p m0 x m1 holds when the two heaps m0 and m1 are disjoint and p

holds over the result value x and the conjoined heaps. Then, frame wp wp takes a
postcondition p and initial heap m, and requires that m can be split into disjoint
subheaps m0 (the footprint) and m1 (the frame), such that the postcondition p,
when properly framed, holds over the footprint.

In order to provide specifications for primitive actions we start in small-
footprint style. For instance, below is the WP for reading a reference:

let read wp (#a:Type) (r:ref a) = λpost m0 → ∃x. m0 == r �→ x ∧ post x m0

We then insert framing wrappers around such small-footprint WPs when expos-
ing the corresponding stateful actions to the programmer, e.g.,

val (!) : #a:Type → r:ref a → STATE a (λ p m → frame wp (read wp r) p m)

To verify code written in such style, we annotate the corresponding programs to
have their VCs processed by sl auto. For instance, for the swap function below, the
tactic successfully finds the frames for the four occurrences of the frame rule and
greatly reduces the solver’s work. Even in this simple example, not performing
such instantiation would cause the solver to fail.

let swap wp (r1 r2 : ref int) =
λp m → ∃x y. m == (r1 �→ x • r2 �→ y) ∧ p () (r1 �→ y • r2 �→ x)

let swap (r1 r2 : ref int) : ST unit (swap wp r1 r2) by (sl auto ()) =
let x = !r1 in let y = !r2 in r1 := y; r2 := x

The sl auto tactic: (1) uses syntax inspection to unfold and traverse the goal
until it reaches a frame wp—say, the one for !r2; (2) inspects frame wp’s first
explicit argument (here read wp r2) to compute the references the current com-
mand requires (here r2); (3) uses unification variables to build a memory expres-
sion describing the required framing of input memory (here r2 �→ ?u1 • ?u2) and
instantiates the existentials of frame wp with these unification variables; (4) builds
a goal that equates this memory expression with frame wp’s third argument (here
r1 �→ x • r2 �→ y); and (5) uses a commutative monoids tactic (similar to Sect. 2.1)
with the heap algebra (emp, •) to canonicalize the equality and sort the heaplets.
Next, it can solve for the unification variables component-wise, instantiating ?u1

to y and ?u2 to r1 �→ x, and then proceed to the next frame wp.
In general, after frames are instantiated, the SMT solver can efficiently prove

the remaining assertions, such as the obligations about heap definedness. Thus,
with relatively little effort, Meta-F� brings an (albeit simple version of a) widely
used yet previously out-of-scope program logic (i.e., separation logic) into F�.
To the best of our knowledge, the ability to script separation logic into an SMT-
based program verifier, without any primitive support, is unique.

2.3 Metaprogramming Verified Low-Level Parsers and Serializers

Above, we used Meta-F� to manipulate VCs for user-written code. Here, we focus
instead on generating verified code automatically. We loosely refer to the previ-
ous setting as using “tactics”, and to the current one as “metaprogramming”.

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 39

In most ITPs, tactics and metaprogramming are not distinguished; however in a
program verifier like F�, where some proofs are not materialized at all (Sect. 4.1),
proving VCs of existing terms is distinct from generating new terms.

Metaprogramming in F� involves programmatically generating a (potentially
effectful) term (e.g., by constructing its syntax and instructing F� how to type-
check it) and processing any VCs that arise via tactics. When applicable (e.g.,
when working in a domain-specific language), metaprogramming verified code
can substantially reduce, or even eliminate, the burden of manual proofs.

We illustrate this by automating the generation of parsers and serializers
from a type definition. Of course, this is a routine task in many mainstream
metaprogramming frameworks (e.g., Template Haskell, camlp4, etc). The novelty
here is that we produce imperative parsers and serializers extracted to C, with
proofs that they are memory safe, functionally correct, and mutually inverse.
This section is slightly simplified, more detail can be found the appendix.

We proceed in several stages. First, we program a library of pure, high-level
parser and serializer combinators, proven to be (partial) mutual inverses of each
other. A parser for a type t is represented as a function possibly returning a t

along with the amount of input bytes consumed. The type of a serializer for a
given p:parser t contains a refinement3 stating that p is an inverse of the serializer.
A package is a dependent record of a parser and an associated serializer.

let parser t = seq byte → option (t ∗ nat)
let serializer #t (p:parser t) = f:(t → seq byte){∀ x. p (f x) == Some (x, length (f x))}
type package t = { p : parser t ; s : serializer p }
Basic combinators in the library include constructs for parsing and serializing
base values and pairs, such as the following:

val p u8 : parse u8
val s u8 : serializer p u8
val p pair : parser t1 → parser t2 → parser (t1 ∗ t2)
val s pair : serializer p1 → serializer p2 → serializer (p pair p1 p2)

Next, we define low-level versions of these combinators, which work over muta-
ble arrays instead of byte sequences. These combinators are coded in the Low�

subset of F� (and so can be extracted to C) and are proven to both be
memory-safe and respect their high-level variants. The type for low-level parsers,
parser impl (p:parser t), denotes an imperative function that reads from an array
of bytes and returns a t, behaving as the specificational parser p. Conversely, a
serializer impl (s:serializer p) writes into an array of bytes, behaving as s.

Given such a library, we would like to build verified, mutually inverse, low-
level parsers and serializers for specific data formats. The task is mechanical,
yet overwhelmingly tedious by hand, with many auxiliary proof obligations of a
predictable structure: a perfect candidate for metaprogramming.

Deriving Specifications from a Type Definition. Consider the following F� type,
representing lists of exactly 18 pairs of bytes.
3 F� syntax for refinements is x:t {φ}, denoting the type of all x of type t satisfying φ .

40 G. Mart́ınez et al.

type sample = nlist 18 (u8 ∗ u8)

The first component of our metaprogram is gen specs, which generates parser
and serializer specifications from a type definition.

let ps sample : package sample = by (gen specs (`sample))

The syntax by τ is the way to call Meta-F� for code generation. Meta-F� will
run the metaprogram τ and, if successful, replace the underscore by the result. In
this case, the gen specs (`sample) inspects the syntax of the sample type (Sect. 3.3)
and produces the package below (seq p and seq s are sequencing combinators):

let ps sample = { p = p nlist 18 (p u8 `seq p` p u8)
; s = s nlist 18 (s u8 `seq s` s u8) }

Deriving Low-Level Implementations that Match Specifications. From this pair
of specifications, we can automatically generate Low� implementations for them:

let p low : parser impl ps sample.p = by gen parser impl
let s low : serializer impl ps sample.s = by gen serializer impl

which will produce the following low-level implementations:

let p low = parse nlist impl 18ul (parse u8 impl `seq pi` parse u8 impl)
let s low = serialize nlist impl 18ul (serialize u8 impl `seq si` serialize u8 impl)

For simple types like the one above, the generated code is fairly simple. However,
for more complex types, using the combinator library comes with non-trivial
proof obligations. For example, even for a simple enumeration, type color = Red

| Green, the parser specification is as follows:

parse synth (parse bounded u8 2)
(λ x2 → mk if t (x2 = 0uy) (λ → Red) (λ → Green))
(λ x → match x with | Green → 1uy | Red → 0uy)

We represent Red with 0uy and Green with 1uy. The parser first parses a
“bounded” byte, with only two values. The parse synth combinator then expects
functions between the bounded byte and the datatype being parsed (color), which
must be proven to be mutual inverses. This proof is conceptually easy, but for
large enumerations nested deep within the structure of other types, it is notori-
ously hard for SMT solvers. Since the proof is inherently computational, a proof
that destructs the inductive type into its cases and then normalizes is much more
natural. With our metaprogram, we can produce the term and then discharge
these proof obligations with a tactic on the spot, eliminating them from the final
VC. We also explore simply tweaking the SMT context, again via a tactic, with
good results. A quantitative evaluation is provided in Sect. 6.2.

3 The Design of Meta-F�

Having caught a glimpse of the use cases for Meta-F�, we now turn to its design.
As usual in proof assistants (such as Coq, Lean and Idris), Meta-F� tactics work

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 41

over a set of goals and apply primitive actions to transform them, possibly solving
some goals and generating new goals in the process. Since this is standard, we
will focus the most on describing the aspects where Meta-F� differs from other
engines. We first describe how metaprograms are modelled as an effect (Sect. 3.1)
and their runtime model (Sect. 3.2). We then detail some of Meta-F�’s syntax
inspection and building capabilities (Sect. 3.3). Finally, we show how to perform
some (lightweight) verification of metaprograms (Sect. 3.4) within F�.

3.1 An Effect for Metaprogramming

Meta-F� tactics are, at their core, programs that transform the “proof state”,
i.e. a set of goals needing to be solved. As in Lean [30] and Idris [22], we define a
monad combining exceptions and stateful computations over a proof state, along
with actions that can access internal components such as the type-checker. For
this we first introduce abstract types for the proof state, goals, terms, environ-
ments, etc., together with functions to access them, some of them shown below.

type proofstate
type goal
type term
type env

val goals of : proofstate → list goal
val goal env : goal → env
val goal type : goal → term
val goal solution : goal → term

We can now define our metaprogramming monad: tac. It combines F�’s existing
effect for potential divergence (Div), with exceptions and stateful computations
over a proofstate. The definition of tac, shown below, is straightforward and given
in F�’s standard library. Then, we use F�’s effect extension capabilities [1] in
order to elevate the tac monad and its actions to an effect, dubbed TAC.

type error = exn ∗ proofstate (∗ error and proofstate at the time of failure ∗)
type result a = | Success : a → proofstate → result a | Failed : error → result a
let tac a = proofstate → Div (result a)
let t return #a (x:a) = λps → Success x ps
let t bind #a #b (m:tac a) (f:a → tac b) : tac b = λps → ... (∗ omitted, yet simple ∗)
let get () : tac proofstate = λps → Success ps ps
let raise #a (e:exn) : tac a = λps → Failed (e, ps)
new effect { TAC with repr = tac ; return = t return ; bind = t bind

; get = get ; raise = raise }
The new effect declaration introduces computation types of the form TAC t wp,
where t is the return type and wp a specification. However, until Sect. 3.4 we shall
only use the derived form Tac t, where the specification is trivial. These com-
putation types are distinct from their underlying monadic representation type
tac t—users cannot directly access the proof state except via the actions. The
simplest actions stem from the tac monad definition: get : unit → Tac proofstate

returns the current proof state and raise: exn → Tac α fails with the given excep-
tion4. Failures can be handled using catch : (unit → Tac α) → Tac (either exn α),
which resets the state on failure, including that of unification metavariables.

4 We use greek letters α, β, ... to abbreviate universally quantified type variables.

42 G. Mart́ınez et al.

We emphasize two points here. First, there is no “set” action. This is to for-
bid metaprograms from arbitrarily replacing their proof state, which would be
unsound. Second, the argument to catch must be thunked, since in F� impure
un-suspended computations are evaluated before they are passed into functions.

The only aspect differentiating Tac from other user-defined effects is the exis-
tence of effect-specific primitive actions, which give access to the metaprogram-
ming engine proper. We list here but a few:

val trivial : unit → Tac unit val tc : term → Tac term val dump : string → Tac unit

All of these are given an interpretation internally by Meta-F�. For instance, trivial

calls into F�’s logical simplifier to check whether the current goal is a trivial
proposition and discharges it if so, failing otherwise. The tc primitive queries the
type-checker to infer the type of a given term in the current environment (F�

types are a kind of terms, hence the codomain of tc is also term). This does not
change the proof state; its only purpose is to return useful information to the
calling metaprograms. Finally, dump outputs the current proof state to the user
in a pretty-printed format, in support of user interaction.

Having introduced the Tac effect and some basic actions, writing metapro-
grams is as straightforward as writing any other F� code. For instance, here are
two metaprogram combinators. The first one repeatedly calls its argument until
it fails, returning a list of all the successfully-returned values. The second one
behaves similarly, but folds the results with some provided folding function.

let rec repeat (τ : unit → Tac α) : Tac (list α) =
match catch τ with | Inl → [] | Inr x → x :: repeat τ

let repeat fold f e τ = fold left f e (repeat τ)

These two small combinators illustrate a few key points of Meta-F�. As for all
other F� effects, metaprograms are written in applicative style, without explicit
return, bind, or lift of computations (which are inserted under the hood). This
also works across different effects: repeat fold can seamlessly combine the pure
fold left from F�’s list library with a metaprogram like repeat. Metaprograms are
also type- and effect-inferred: while repeat fold was not at all annotated, F� infers
the polymorphic type (β→ α→ β) → β→ (unit → Tac α) → Tac α for it.

It should be noted that, if lacking an effect extension feature, one could
embed metaprograms simply via the (properly abstracted) tac monad instead of
the Tac effect. It is just more convenient to use an effect, given we are working
within an effectful program verifier already. In what follows, with the exception
of Sect. 3.4 where we describe specifications for metaprograms, there is little
reliance on using an effect; so, the same ideas could be applied in other settings.

3.2 Executing Meta-F� Metaprograms

Running metaprograms involves three steps. First, they are reified [1] into their
underlying tac representation, i.e. as state-passing functions. User code cannot
reify metaprograms: only F� can do so when about to process a goal.

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 43

Second, the reified term is applied to an initial proof state, and then simply
evaluated according to F�’s dynamic semantics, for instance using F�’s existing
normalizer. For intensive applications, such as proofs by reflection, we provide
faster alternatives (Sect. 5). In order to perform this second step, the proof state,
which up until this moments exists only internally to F�, must be embedded as
a term, i.e., as abstract syntax. Here is where its abstraction pays off: since
metaprograms cannot interact with a proof state except through a limited inter-
face, it need not be deeply embedded as syntax. By simply wrapping the internal
proofstate into a new kind of “alien” term, and making the primitives aware of
this wrapping, we can readily run the metaprogram that safely carries its alien
proof state around. This wrapping of proof states is a constant-time operation.

The third step is interpreting the primitives. They are realized by functions
of similar types implemented within the F� type-checker, but over an internal
tac monad and the concrete definitions for term, proofstate, etc. Hence, there is
a translation involved on every call and return, switching between embedded
representations and their concrete variants. Take dump, for example, with type
string → Tac unit. Its internal implementation, implemented within the F� type-
checker, has type string → proofstate → Div (result unit). When interpreting a call
to it, the interpreter must unembed the arguments (which are representations of
F� terms) into a concrete string and a concrete proofstate to pass to the internal
implementation of dump. The situation is symmetric for the return value of the
call, which must be embedded as a term.

3.3 Syntax Inspection, Generation, and Quotation

If metaprograms are to be reusable over different kinds of goals, they must be
able to reflect on the goals they are invoked to solve. Like any metaprogramming
system, Meta-F� offers a way to inspect and construct the syntax of F� terms.
Our representation of terms as an inductive type, and the variants of quotations,
are inspired by the ones in Idris [22] and Lean [30].

Inspecting Syntax. Internally, F� uses a locally-nameless representation [21]
with explicit, delayed substitutions. To shield metaprograms from some of this
internal bureaucracy, we expose a simplified view [61] of terms. Below we present
a few constructors from the term view type:
val inspect : term → Tac term view
val pack : term view → term

type term view =
| Tv BVar : v:dbvar → term view
| Tv Var : v:name → term view
| Tv FVar : v:qname → term view
| Tv Abs : bv:binder → body:term → term view
| Tv App : hd:term → arg:term → term view
...

The term view type provides the “one-level-deep” structure of a term: metapro-
grams must call inspect to reveal the structure of the term, one constructor at a
time. The view exposes three kinds of variables: bound variables, Tv BVar; named

44 G. Mart́ınez et al.

local variables Tv Var; and top-level fully qualified names, Tv FVar. Bound vari-
ables and local variables are distinguished since the internal abstract syntax
is locally nameless. For metaprogramming, it is usually simpler to use a fully-
named representation, so we provide inspect and pack functions that open and
close binders appropriately to maintain this invariant. Since opening binders
requires freshness, inspect has effect Tac.5 As generating large pieces of syntax
via the view easily becomes tedious, we also provide some ways of quoting terms:

Static Quotations. A static quotation `e is just a shorthand for statically
calling the F� parser to convert e into the abstract syntax of F� terms above.
For instance, `(f 1 2) is equivalent to the following,

pack (Tv App (pack (Tv App (pack (Tv FVar "f"))
(pack (Tv Const (C Int 1)))))

(pack (Tv Const (C Int 2))))

Dynamic Quotations. A second form of quotation is dquote: #a:Type → a →
Tac term, an effectful operation that is interpreted by F�’s normalizer during
metaprogram evaluation. It returns the syntax of its argument at the time
dquote e is evaluated. Evaluating dquote e substitutes all the free variables in
e with their current values in the execution environment, suspends further eval-
uation, and returns the abstract syntax of the resulting term. For instance,
evaluating (λx → dquote (x + 1)) 16 produces the abstract syntax of 16 + 1.

Anti-quotations. Static quotations are useful for building big chunks of syntax
concisely, but they are of limited use if we cannot combine them with existing bits
of syntax. Subterms of a quotation are allowed to “escape” and be substituted by
arbitrary expressions. We use the syntax `#t to denote an antiquoted t, where t

must be an expression of type term in order for the quotation to be well-typed.
For example, `(1 +`#e) creates syntax for an addition where one operand is the
integer constant 1 and the other is the term represented by e.

Unquotation. Finally, we provide an effectful operation, unquote: #a:Type →
t:term → Tac a, which takes a term representation t and an expected type for it a

(usually inferred from the context), and calls the F� type-checker to check and
elaborate the term representation into a well-typed term.

3.4 Specifying and Verifying Metaprograms

Since we model metaprograms as a particular kind of effectful program within
F�, which is a program verifier, a natural question to ask is whether F� can
specify and verify metaprograms. The answer is “yes, to a degree”.

To do so, we must use the WP calculus for the TAC effect: TAC-computations
are given computation types of the form TAC a wp, where a is the computa-
tion’s result type and wp is a weakest-precondition transformer of type tacwp a

= proofstate → (result a → prop) → prop. However, since WPs tend to not be very

5 We also provide functions inspect ln, pack ln which stay in a locally-nameless repre-
sentation and are thus pure, total functions.

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 45

intuitive, we first define two variants of the TAC effect: TacH in “Hoare-style” with
pre- and postconditions and Tac (which we have seen before), which only spec-
ifies the return type, but uses trivial pre- and postconditions. The requires and
ensures keywords below simply aid readability of pre- and postconditions—they
are identity functions.

effect TacH (a:Type) (pre : proofstate → prop) (post : proofstate → result a → prop) =
TAC a (λ ps post’ → pre ps ∧ (∀ r. post ps r =⇒ post’ r))

effect Tac (a:Type) = TacH a (requires (λ →)) (ensures (λ →))

Previously, we only showed the simple type for the raise primitive, namely exn →
Tac α. In fact, in full detail and Hoare style, its type/specification is:

val raise : e:exn→ TacH α (requires (λ →))
(ensures (λ ps r → r == Failed (e, ps)))

expressing that the primitive has no precondition, always fails with the provided
exception, and does not modify the proof state. From the specifications of the
primitives, and the automatically obtained Dijkstra monad, F� can already prove
interesting properties about metaprograms. We show a few simple examples.

The following metaprogram is accepted by F� as it can conclude, from the
type of raise, that the assertion is unreachable, and hence raise flow can have a
trivial precondition (as Tac unit implies).

let raise flow () : Tac unit = raise SomeExn; assert ⊥
For cur goal safe below, F� verifies that (given the precondition) the pattern
match is exhaustive. The postcondition is also asserting that the metaprogram
always succeeds without affecting the proof state, returning some unspecified
goal. Calls to cur goal safe must statically ensure that the goal list is not empty.

let cur goal safe () : TacH goal (requires (λ ps → ¬(goals of ps == [])))
(ensures (λ ps r → ∃g. r == Success g ps)) =

match goals of (get ()) with | g :: → g

Finally, the divide combinator below “splits” the goals of a proof state in two at a
given index n, and focuses a different metaprogram on each. It includes a runtime
check that the given n is non-negative, and raises an exception in the TAC effect
otherwise. Afterwards, the call to the (pure) List.splitAt function requires that
n be statically known to be non-negative, a fact which can be proven from the
specification for raise and the effect definition, which defines the control flow.

let divide (n:int) (tl : unit → Tac α) (tr : unit → Tac β) : Tac (α ∗ β) =
if n < 0 then raise NegativeN;
let gsl, gsr = List.splitAt n (goals ()) in ...

This enables a style of “lightweight” verification of metaprograms, where expres-
sive invariants about their state and control-flow can be encoded. The program-
mer can exploit dynamic checks (n < 0) and exceptions (raise) or static ones
(preconditions), or a mixture of them, as needed.

46 G. Mart́ınez et al.

Due to type abstraction, though, the specifications of most primitives cannot
provide complete detail about their behavior, and deeper specifications (such as
ensuring a tactic will correctly solve a goal) cannot currently be proven, nor even
stated—to do so would require, at least, an internalization of the typing judgment
of F�. While this is an exciting possibility [3], we have for now only focused on
verifying basic safety properties of metaprograms, which helps users detect errors
early, and whose proofs the SMT can handle well. Although in principle, one can
also write tactics to discharge the proof obligations of metaprograms.

4 Meta-F�, Formally

We now describe the trust assumptions for Meta-F� (Sect. 4.1) and then how we
reconcile tactics within a program verifier, where the exact shape of VCs is not
given, nor known a priori by the user (Sect. 4.2).

4.1 Correctness and Trusted Computing Base (TCB)

As in any proof assistant, tactics and metaprogramming would be rather useless
if they allowed to “prove” invalid judgments—care must be taken to ensure
soundness. We begin with a taste of the specifics of F�’s static semantics, which
influence the trust model for Meta-F�, and then provide more detail on the TCB.

Proof Irrelevance in F�. The following two rules for introducing and eliminat-
ing refinement types are key in F�, as they form the basis of its proof irrelevance.

T-Refine
Γ � e : t Γ |= φ[e/x]

Γ � e : x : t{φ}

V-Refine
Γ � e : x : t{φ}

Γ |= φ[e/x]

The � symbol represents F�’s validity judgment [1] which, at a high-level,
defines a proof-irrelevant, classical, higher-order logic. These validity hypotheses
are usually collected by the type-checker, and then encoded to the SMT solver
in bulk. Crucially, the irrelevance of validity is what permits efficient interaction
with SMT solvers, since reconstructing F� terms from SMT proofs is unneeded.

As evidenced in the rules, validity and typing are mutually recursive, and
therefore Meta-F� must also construct validity derivations. In the implementa-
tion, we model these validity goals as holes with a “squash” type [5,53], where
squash φ = :unit{φ }, i.e., a refinement of unit. Concretely, we model Γ � φ as
Γ � ?u : squash φ using a unification variable. Meta-F� does not construct deep
solutions to squashed goals: if they are proven valid, the variable ?u is simply
solved by the unit value ‘()’. At any point, any such irrelevant goal can be sent
to the SMT solver. Relevant goals, on the other hand, cannot be sent to SMT.

Scripting the Typing Judgment. A consequence of validity proofs not being
materialized is that type-checking is undecidable in F�. For instance: does the
unit value () solve the hole Γ � ?u : squash φ ? Well, only if φ holds—a condi-
tion which no type-checker can effectively decide. This implies that the type-
checker cannot, in general, rely on proof terms to reconstruct a proof. Hence, the

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 47

primitives are designed to provide access to the typing judgment of F� directly,
instead of building syntax for proof terms. One can think of F�’s type-checker
as implementing one particular algorithmic heuristic of the typing and validity
judgments—a heuristic which happens to work well in practice. For convenience,
this default type-checking heuristic is also available to metaprograms: this is in
fact precisely what the exact primitive does. Having programmatic access to
the typing judgment also provides the flexibility to tweak VC generation as
needed, instead of leaving it to the default behavior of F�. For instance, the
refine intro primitive implements T-Refine. When applied, it produces two new
goals, including that the refinement actually holds. At that point, a metapro-
gram can run any arbitrary tactic on it, instead of letting the F� type-checker
collect the obligation and send it to the SMT solver in bulk with others.

Trust. There are two common approaches for the correctness of tactic engines:
(1) the de Bruijn criterion [6], which requires constructing full proofs (or proof
terms) and checking them at the end, hence reducing trust to an indepen-
dent proof-checker; and (2) the LCF style, which applies backwards reasoning
while constructing validation functions at every step, reducing trust to primitive,
forward-style implementations of the system’s inference rules.

As we wish to make use of SMT solvers within F�, the first approach is
not easy. Reconstructing the proofs SMT solvers produce, if any, back into a
proper derivation remains a significant challenge (even despite recent progress,
e.g. [17,31]). Further, the logical encoding from F� to SMT, along with the
solver itself, are already part of F�’s TCB: shielding Meta-F� from them would
not significantly increase safety of the combined system.

Instead, we roughly follow the LCF approach and implement F�’s typing
rules as the basic user-facing metaprogramming actions. However, instead of
implementing the rules in forward-style and using them to validate (untrusted)
backwards-style tactics, we implement them directly in backwards-style. That is,
they run by breaking down goals into subgoals, instead of combining proven facts
into new proven facts. Using LCF style makes the primitives part of the TCB.
However, given the primitives are sound, any combination of them also is, and
any user-provided metaprogram must be safe due to the abstraction imposed by
the Tac effect, as discussed next.

Correct Evolutions of the Proof State. For soundness, it is imperative that
tactics do not arbitrarily drop goals from the proof state, and only discharge
them when they are solved, or when they can be solved by other goals tracked
in the proof state. For a concrete example, consider the following program:

let f : int → int = by (intro (); exact (`42))

Here, Meta-F� will create an initial proof state with a single goal of the form
[∅ � ?u1 : int → int] and begin executing the metaprogram. When applying the
intro primitive, the proof state transitions as shown below.

[∅ � ?u1 : int → int] � [x:int � ?u2 : int]

48 G. Mart́ınez et al.

Here, a solution to the original goal has not yet been built, since it depends on
the solution to the goal on the right hand side. When it is solved with, say, 42,
we can solve our original goal with λx → 42. To formalize these dependencies, we
say that a proof state φ correctly evolves (via f) to ψ, denoted φ �f ψ, when
there is a generic transformation f , called a validation, from solutions to all of
ψ’s goals into correct solutions for φ’s goals. When φ has n goals and ψ has m
goals, the validation f is a function from termm into termn. Validations may be
composed, providing the transitivity of correct evolution, and if a proof state φ
correctly evolves (in any amount of steps) into a state with no more goals, then
we have fully defined solutions to all of φ’s goals. We emphasize that validations
are not constructed explicitly during the execution of metaprograms. Instead we
exploit unification metavariables to instantiate the solutions automatically.

Note that validations may construct solutions for more than one goal, i.e.,
their codomain is not a single term. This is required in Meta-F�, where primitive
steps may not only decompose goals into subgoals, but actually combine goals
as well. Currently, the only primitive providing this behavior is join, which finds
a maximal common prefix of the environment of two irrelevant goals, reverts
the “extra” binders in both goals and builds their conjunction. Combining goals
using join is especially useful for sending multiple goals to the SMT solver in a
single call. When there are common obligations within two goals, joining them
before calling the SMT solver can result in a significantly faster proof.

We check that every primitive action respects the � preorder. This relies on
them modeling F�’s typing rules. For example, and unsurprisingly, the following
rule for typing abstractions is what justifies the intro primitive:

T-Fun
Γ, x : t � e : t′

Γ � λ(x : t).e : (x : t) → t′

Then, for the proof state evolution above, the validation function f is the (math-
ematical, meta-level) function taking a term of type int (the solution for ?u2) and
building syntax for its abstraction over x. Further, the intro primitive respects
the correct-evolution preorder, by the very typing rule (T-Fun) from which it is
defined. In this manner, every typing rule induces a syntax-building metapro-
gramming step. Our primitives come from this dual interpretation of typing
rules, which ensures that logical consistency is preserved.

Since the � relation is a preorder, and every metaprogramming primitive we
provide the user evolves the proof state according �, it is trivially the case that
the final proof state returned by a (successful) computation is a correct evolution
of the initial one. That means that when the metaprogram terminates, one has
indeed broken down the proof obligation correctly, and is left with a (hopefully)
simpler set of obligations to fulfill. Note that since � is a preorder, Tac provides
an interesting example of monotonic state [2].

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 49

4.2 Extracting Individual Assertions

As discussed, the logical context of a goal processed by a tactic is not always
syntactically evident in the program. And, as shown in the List.splitAt call in
divide from Sect. 3.4, some obligations crucially depend on the control-flow of
the program. Hence, the proof state must crucially include these assumptions if
proving the assertion is to succeed. Below, we describe how Meta-F� finds proper
contexts in which to prove the assertions, including control-flow information.
Notably, this process is defined over logical formulae and does not depend at all
on F�’s WP calculus or VC generator: we believe it should be applicable to any
VC generator.

As seen in Sect. 2.1, the basic mechanism by which Meta-F� attaches a tactic
to a specific sub-goal is assert φ by τ . Our encoding of this expression is built sim-
ilarly to F�’s existing assert construct, which is simply sugar for a pure function
assert of type φ :prop → Lemma (requires φ) (ensures φ), which essentially intro-

duces a cut in the generated VC. That is, the term (assert φ ; e) roughly produces
the verification condition φ ∧ (φ =⇒ VCe), requiring a proof of φ at this point,
and assuming φ in the continuation. For Meta-F�, we aim to keep this style
while allowing asserted formulae to be decorated with user-provided tactics that
are tasked with proving or pre-processing them. We do this in three steps.

First, we define the following “phantom” predicate:

let with tactic (φ : prop) (τ : unit → Tac unit) = φ

Here φ `with tactic`τ simply associates the tactic τ with φ , and is equivalent to
φ by its definition. Next, we implement the assert by tactic lemma, and desugar
assert φ by τ into assert by tactic φ τ . This lemma is trivially provable by F�.

let assert by tactic (φ : prop) (τ : unit → Tac unit)
: Lemma (requires (φ `with tactic` τ)) (ensures φ) = ()

Given this specification, the term (assert φ by τ ; e) roughly produces the verifica-
tion condition φ `with tactic`τ ∧ (φ =⇒ VCe), with a tagged left sub-goal, and φ

as an hypothesis in the right one. Importantly, F� keeps the with tactic marker
uninterpreted until the VC needs to be discharged. At that point, it may con-
tain several annotated subformulae. For example, suppose the VC is VC0 below,
where we distinguish an ambient context of variables and hypotheses Δ:

(VC0) Δ |= X =⇒ (∀ (x:t). R `with tactic` τ 1 ∧ (R =⇒ S))

In order to run the τ 1 tactic on R, it must first be “split out”. To do so, all logical
information “visible” for τ 1 (i.e. the set of premises of the implications traversed
and the binders introduced by quantifiers) must be included. As for any program
verifier, these hypotheses include the control flow information, postconditions,
and any other logical fact that is known to be valid at the program point where
the corresponding assert R by τ 1 was called. All of them are collected into Δ as
the term is traversed. In this case, the VC for R is:

(VC1) Δ, :X, x:t |= R

50 G. Mart́ınez et al.

Afterwards, this obligation is removed from the original VC. This is done by
replacing it with 	, leaving a “skeleton” VC with all remaining facts.

(VC2) Δ |= X =⇒ (∀ (x:t). 	 ∧ (R =⇒ S))

The validity of VC1 and VC2 implies that of VC0. F� also recursively descends
into R and S, in case there are more with tactic markers in them. Then, tactics
are run on the the split VCs (e.g., τ 1 on VC1) to break them down (or solve
them). All remaining goals, including the skeleton, are sent to the SMT solver.

Note that while the obligation to prove R, in VC1, is preprocessed by the
tactic τ 1, the assumption R for the continuation of the code, in VC2, is left as-is.
This is crucial for tactics such as the canonicalizer from Sect. 2.1: if the skeleton
VC2 contained an assumption for the canonicalized equality it would not help
the SMT solver show the uncanonicalized postcondition.

However, not all nodes marked with with tactic are proof obligations. Suppose
X in the previous VC was given as (Y `with tactic`τ 2). In this case, one certainly
does not want to attempt to prove Y, since it is an hypothesis. While it would be
sound to prove it and replace it by 	, it is useless at best, and usually irreparably
affects the system. Consider asserting the tautology (⊥`with tactic`τ) =⇒ ⊥.

Hence, F� splits such obligations only in strictly-positive positions. On all
others, F� simply drops the with tactic marker, e.g., by just unfolding the def-
inition of with tactic. For regular uses of the assert..by construct, however, all
occurrences are strictly-positive. It is only when (expert) users use the with tactic

marker directly that the above discussion might become relevant.
Formally, the soundness of this whole approach is given by the following

metatheorem, which justifies the splitting out of sub-assertions, and by the cor-
rectness of evolution detailed in Sect. 4.1. The proof of Theorem 1 is straightfor-
ward, and included in the appendix. We expect an analogous property to hold
in other verifiers as well (in particular, it holds for first-order logic).

Theorem 1. Let E be a context with Γ � E : prop ⇒ prop, and φ a squashed
proposition such that Γ � φ : prop. Then the following holds:

Γ � E[�] Γ, γ(E) � φ

Γ � E[φ]

where γ(E) is the set of binders E introduces. If E is strictly-positive, then the
reverse implication holds as well.

5 Executing Metaprograms Efficiently

F� provides three complementary mechanisms for running metaprograms. The
first two, F�’s call-by-name (CBN) interpreter and a (newly implemented) call-
by-value (CBV) NbE-based evaluator, support strong reduction—henceforth we
refer to these as “normalizers”. In addition, we design and implement a new
native plugin mechanism that allows both normalizers to interface with Meta-
F� programs extracted to OCaml, reusing F�’s existing extraction pipeline for
this purpose. Below we provide a brief overview of the three mechanisms.

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 51

5.1 CBN and CBV Strong Reductions

As described in Sect. 3.1, metaprograms, once reified, are simply F� terms of
type proofstate → Div (result a). As such, they can be reduced using F�’s existing
computation machinery, a CBN interpreter for strong reductions based on the
Krivine abstract machine (KAM) [24,46]. Although complete and highly con-
figurable, F�’s KAM interpreter is slow, designed primarily for converting types
during dependent type-checking and higher-order unification.

Shifting focus to long-running metaprograms, such as tactics for proofs by
reflection, we implemented an NbE-based strong-reduction evaluator for F� com-
putations. The evaluator is implemented in F� and extracted to OCaml (as is
the rest of F�), thereby inheriting CBV from OCaml. It is similar to Boespflug
et al.’s [16] NbE-based strong-reduction for Coq, although we do not implement
their low-level, OCaml-specific tag-elimination optimizations—nevertheless, it is
already vastly more efficient than the KAM-based interpreter.

5.2 Native Plugins and Multi-language Interoperability

Since Meta-F� programs are just F� programs, they can also be extracted to
OCaml and natively compiled. Further, they can be dynamically linked into
F� as “plugins”. Plugins can be directly called from the type-checker, as is
done for the primitives, which is much more efficient than interpreting them.
However, compilation has a cost, and it is not convenient to compile every sin-
gle invocation. Instead, Meta-F� enables users to choose which metaprograms
are to be plugins (presumably those expected to be computation-intensive, e.g.
canon semiring). Users can choose their native plugins, while still quickly scripting
their higher-level logic in the interpreter.

This requires (for higher-order metaprograms) a form of multi-language inter-
operability, converting between representations of terms used in the normalizers
and in native code. We designed a small multi-language calculus, with ML-style
polymorphism, to model the interaction between normalizers and plugins and
conversions between terms. See the appendix for details.

Beyond the notable efficiency gains of running compiled code vs. interpreting
it, native metaprograms also require fewer embeddings. Once compiled, metapro-
grams work over the internal, concrete types for proofstate, term, etc., instead
of over their F� representations (though still treating them abstractly). Hence,
compiled metaprograms can call primitives without needing to embed their argu-
ments or unembed their results. Further, they can call each other directly as well.
Indeed, operationally there is little operational difference between a primitive
and a compiled metaprogram used as a plugin.

Native plugins, however, are not a replacement for the normalizers, for sev-
eral reasons. First, the overhead in compilation might not be justified by the
execution speed-up. Second, extraction to OCaml erases types and proofs. As
a result, the F� interface of the native plugins can only contain types that can
also be expressed in OCaml, thereby excluding full-dependent types—internally,
however, they can be dependently typed. Third, being OCaml programs, native

52 G. Mart́ınez et al.

plugins do not support reducing open terms, which is often required. However,
when the programs treat their open arguments parametrically, relying on para-
metric polymorphism, the normalizers can pass such arguments as-is, thereby
recovering open reductions in some cases. This allows us to use native datastruc-
ture implementations (e.g. List), which is much faster than using the normalizers,
even for open terms. See the appendix for details.

6 Experimental Evaluation

We now present an experimental evaluation of Meta-F�. First, we provide bench-
marks comparing our reflective canonicalizer from Sect. 2.1 to calling the SMT
solver directly without any canonicalization. Then, we return to the parsers and
serializers from Sect. 2.3 and show how, for VCs that arise, a domain-specific
tactic is much more tractable than a SMT-only proof.

6.1 A Reflective Tactic for Partial Canonicalization

In Sect. 2.1, we have described the canon semiring tactic that rewrites semir-
ing expressions into sums of products. We find that this tactic significantly
improves proof robustness. The table below compares the success rates and
times for the poly multiply lemma from Sect. 2.1. To test the robustness of each
alternative, we run the tests 200 times while varying the SMT solver’s ran-
dom seed. The smtix rows represent asking the solver to prove the lemma
without any help from tactics, where i represents the resource limit (rlimit)
multiplier given to the solver. This rlimit is memory-allocation based and
independent of the particular system or current load. For the interp and
native rows, the canon semiring tactic is used, running it using F�’s KAM
normalizer and as a native plugin respectively—both with an rlimit of 1.

Rate Queries Tactic Total

smt1x 0.5% 0.216 ± 0.001 – 2.937
smt2x 2% 0.265 ± 0.003 – 2.958
smt3x 4% 0.304 ± 0.004 – 3.022
smt6x 10% 0.401 ± 0.008 – 3.155
smt12x 12.5% 0.596 ± 0.031 – 3.321
smt25x 16.5% 1.063 ± 0.079 – 3.790
smt50x 22% 2.319 ± 0.230 – 5.030
smt100x 24% 5.831 ± 0.776 – 8.550
interp 100% 0.141 ± 0.001 1.156 4.003
native 100% 0.139 ± 0.001 0.212 3.071

For each setup, we display
the success rate of verifica-
tion, the average (CPU) time
taken for the SMT queries
(not counting the time for
parsing/processing the the-
ory) with its standard devi-
ation, and the average total
time (its standard deviation
coincides with that of the
queries). When applicable,
the time for tactic execution
(which is independent of the
seed) is displayed. The smt
rows show very poor success
rates: even when upping the rlimit to a whopping 100x, over three quarters of
the attempts fail. Note how the (relative) standard deviation increases with the

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 53

rlimit: this is due to successful runs taking rather random times, and failing
ones exhausting their resources in similar times. The setups using the tactic show
a clear increase in robustness: canonicalizing the assertion causes this proof to
always succeed, even at the default rlimit. We recall that the tactic variants
still leave goals for SMT solving, namely, the skeleton for the original VC and
the canonicalized equality left by the tactic, easily dischargeable by the SMT
solver through much more well-behaved linear reasoning. The last column shows
that native compilation speeds up this tactic’s execution by about 5x.

6.2 Combining SMT and Tactics for the Parser Generator

In Sect. 2.3, we presented a library of combinators and a metaprogramming
approach to automate the construction of verified, mutually inverse, low-level
parsers and serializers from type descriptions. Beyond generating the code, tac-
tics are used to process and discharge proof obligations that arise when using the
combinators.

We present three strategies for discharging these obligations, including those
of bijectivity that arise when constructing parsers and serializers for enumer-
ated types. First, we used F�’s default strategy to present all of these proofs
directly to the SMT solver. Second, we programmed a ∼100 line tactic to dis-
charge these proofs without relying on the SMT solver at all. Finally, we used
a hybrid approach where a simple, 5-line tactic is used to prune the context of
the proof removing redundant facts before presenting the resulting goals to the
SMT solver.

Size SMT only Tactic only Hybrid

4 178 17.3 6.6
7 468 38.3 9.8

10 690 63.0 19.4

The table alongside shows the total
time in seconds for verifying metapro-
grammed low-level parsers and serializ-
ers for enumerations of different sizes.
In short, the hybrid approach scales the
best; the tactic-only approach is some-
what slower; while the SMT-only approach scales poorly and is an order of
magnitude slower. Our hybrid approach is very simple. With some more work,
a more sophisticated hybrid strategy could be more performant still, relying on
tactic-based normalization proofs for fragments of the VC best handled compu-
tationally (where the SMT solver spends most of its time), while using SMT only
for integer arithmetic, congruence closure etc. However, with Meta-F�’s ability to
manipulate proof contexts programmatically, our simple context-pruning tactic
provides a big payoff at a small cost.

7 Related Work

Many SMT-based program verifiers [7,8,19,34,48], rely on user hints, in the
form of assertions and lemmas, to complete proofs. This is the predominant
style of proving used in tools like Dafny [47], Liquid Haskell [60], Why3 [33], and

54 G. Mart́ınez et al.

F� itself [58]. However, there is a growing trend to augment this style of semi-
automated proof with interactive proofs. For example, systems like Why3 [33]
allow VCs to be discharged using ITPs such as Coq, Isabelle/HOL, and PVS,
but this requires an additional embedding of VCs into the logic of the ITP in
question. In recent concurrent work, support for effectful reflection proofs was
added to Why3 [50], and it would be interesting to investigate if this could also
be done in Meta-F�. Grov and Tumas [39] present Tacny, a tactic framework for
Dafny, which is, however, limited in that it only transforms source code, with the
program verifier unchanged. In contrast, Meta-F� combines the benefits of an
SMT-based program verifier and those of tactic proofs within a single language.

Moving away from SMT-based verifiers, ITPs have long relied on separate
languages for proof scripting, starting with Edinburgh LCF [37] and ML, and
continuing with HOL, Isabelle and Coq, which are either extensible via ML,
or have dedicated tactic languages [3,29,56,62]. Meta-F� builds instead on a
recent idea in the space of dependently typed ITPs [22,30,42,63] of reusing the
object-language as the meta-language. This idea first appeared in Mtac, a Coq-
based tactics framework for Coq [42,63], and has many generic benefits including
reusing the standard library, IDE support, and type checker of the proof assis-
tant. Mtac can additionally check the partial correctness of tactics, which is also
sometimes possible in Meta-F� but still rather limited (Sect. 3.4). Meta-F�’s
design is instead more closely inspired by the metaprogramming frameworks of
Idris [22] and Lean [30], which provide a deep embedding of terms that metapro-
grams can inspect and construct at will without dependent types getting in the
way. However, F�’s effects, its weakest precondition calculus, and its use of SMT
solvers distinguish Meta-F� from these other frameworks, presenting both chal-
lenges and opportunities, as discussed in this paper.

Some SMT solvers also include tactic engines [27], which allow to process
queries in custom ways. However, using SMT tactics from a program verifier is
not very practical. To do so effectively, users must become familiar not only with
the solver’s language and tactic engine, but also with the translation from the
program verifier to the solver. Instead, in Meta-F�, everything happens within
a single language. Also, to our knowledge, these tactics are usually coarsely-
grained, and we do not expect them to enable developments such as Sect. 2.2.
Plus, SMT tactics do not enable metaprogramming.

Finally, ITPs are seeing increasing use of “hammers” such as Sledgeham-
mer [14,15,54] in Isabelle/HOL, and similar tools for HOL Light and HOL4 [43],
and Mizar [44], to interface with ATPs. This technique is similar to Meta-F�,
which, given its support for a dependently typed logic is especially related to
a recent hammer for Coq [26]. Unlike these hammers, Meta-F� does not aim
to reconstruct SMT proofs, gaining efficiency at the cost of trusting the SMT
solver. Further, whereas hammers run in the background, lightening the load on
a user otherwise tasked with completing the entire proof, Meta-F� relies more
heavily on the SMT solver as an end-game tactic in nearly all proofs.

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 55

8 Conclusions

A key challenge in program verification is to balance automation and expres-
siveness. Whereas tactic-based ITPs support highly expressive logics, the tactic
author is responsible for all the automation. Conversely, SMT-based program
verifiers provide good, scalable automation for comparatively weaker logics, but
offer little recourse when verification fails. A design that allows picking the right
tool, at the granularity of each verification sub-task, is a worthy area of research.
Meta-F� presents a new point in this space: by using hand-written tactics along-
side SMT-automation, we have written proofs that were previously impractical
in F�, and (to the best of our knowledge) in other SMT-based program verifiers.

Acknowledgements. We thank Leonardo de Moura and the Project Everest team
for many useful discussions. The work of Guido Mart́ınez, Nick Giannarakis, Monal
Narasimhamurthy, and Zoe Paraskevopoulou was done, in part, while interning at
Microsoft Research. Clément Pit-Claudel’s work was in part done during an internship
at Inria Paris. The work of Danel Ahman, Victor Dumitrescu, and Cătălin Hriţcu is
supported by the MSR-Inria Joint Centre and the European Research Council under
ERC Starting Grant SECOMP (1-715753).

References

1. Ahman, D., et al.: Dijkstra monads for free. In: POPL (2017). https://doi.org/10.
1145/3009837.3009878

2. Ahman, D., Fournet, C., Hriţcu, C., Maillard, K., Rastogi, A., Swamy, N.: Recalling
a witness: foundations and applications of monotonic state. PACMPL 2(POPL),
65:1–65:30 (2018). https://arxiv.org/abs/1707.02466

3. Anand, A., Boulier, S., Cohen, C., Sozeau, M., Tabareau, N.: Towards certified
meta-programming with typed Template-Coq. In: Avigad, J., Mahboubi, A.
(eds.) ITP 2018. LNCS, vol. 10895, pp. 20–39. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-94821-8 2. https://template-coq.github.io/template-coq/

4. Appel, A.W.: Tactics for separation logic. Early Draft (2006). https://www.cs.
princeton.edu/∼appel/papers/septacs.pdf

5. Awodey, S., Bauer, A.: Propositions as [Types]. J. Log. Comput. 14(4), 447–471
(2004). https://doi.org/10.1093/logcom/14.4.447

6. Barendregt, H., Geuvers, H.: Proof-assistants using dependent type systems. In:
Handbook of Automated Reasoning, pp. 1149–1238. Elsevier Science Publishers B.
V., Amsterdam (2001). http://dl.acm.org/citation.cfm?id=778522.778527

7. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

8. Barnett, M., et al.: The Spec# programming system: challenges and directions.
In: Meyer, B., Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 144–152.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69149-5 16

9. Barras, B., Grégoire, B., Mahboubi, A., Théry, L.: Chap. 25: The ring and field
tactic families. Coq reference manual. https://coq.inria.fr/refman/ring.html

https://doi.org/10.1145/3009837.3009878
https://doi.org/10.1145/3009837.3009878
https://arxiv.org/abs/1707.02466
https://doi.org/10.1007/978-3-319-94821-8_2
https://doi.org/10.1007/978-3-319-94821-8_2
https://template-coq.github.io/template-coq/
https://www.cs.princeton.edu/~appel/papers/septacs.pdf
https://www.cs.princeton.edu/~appel/papers/septacs.pdf
https://doi.org/10.1093/logcom/14.4.447
http://dl.acm.org/citation.cfm?id=778522.778527
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-540-69149-5_16
https://coq.inria.fr/refman/ring.html

56 G. Mart́ınez et al.

10. Berger, U., Schwichtenberg, H.: An inverse of the evaluation functional for typed
lambda-calculus. In: LICS (1991). https://doi.org/10.1109/LICS.1991.151645

11. Bernstein, D.J.: The Poly1305-AES message-authentication code. In:
Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp.
32–49. Springer, Heidelberg (2005). https://doi.org/10.1007/11502760 3.
https://cr.yp.to/mac/poly1305-20050329.pdf

12. Besson, F.: Fast reflexive arithmetic tactics the linear case and beyond. In:
Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 48–62.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74464-1 4

13. Bhargavan, K., et al.: Everest: towards a verified, drop-in replacement of
HTTPS. In: SNAPL (2017). http://drops.dagstuhl.de/opus/volltexte/2017/7119/
pdf/LIPIcs-SNAPL-2017-1.pdf

14. Blanchette, J.C., Popescu, A.: Mechanizing the metatheory of Sledgehammer. In:
Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI),
vol. 8152, pp. 245–260. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40885-4 17

15. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT
solvers. JAR 51(1), 109–128 (2013). https://doi.org/10.1007/s10817-013-9278-5

16. Boespflug, M., Dénès, M., Grégoire, B.: Full reduction at full throttle. In: Jouan-
naud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 362–377. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25379-9 26

17. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann,
M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179–194. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-14052-5 14

18. Bond, B., et al.: Vale: verifying high-performance cryptographic assembly code. In:
USENIX Security (2017). https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/bond

19. Burdy, L., et al.: An overview of JML tools and applications. STTT 7(3), 212–232
(2005). https://doi.org/10.1007/s10009-004-0167-4

20. Chaieb, A., Nipkow, T.: Proof synthesis and reflection for linear arithmetic. J.
Autom. Reason. 41(1), 33–59 (2008). https://doi.org/10.1007/s10817-008-9101-x

21. Charguéraud, A.: The locally nameless representation. J. Autom. Reason. 49(3),
363–408 (2012). https://doi.org/10.1007/s10817-011-9225-2

22. Christiansen, D.R., Brady, E.: Elaborator reflection: extending Idris in Idris. In:
ICFP (2016). https://doi.org/10.1145/2951913.2951932

23. Cohen, E., Moskal, M., Schulte, W., Tobies, S.: Local verification of global invari-
ants in concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 480–494. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14295-6 42

24. Crégut, P.: Strongly reducing variants of the Krivine abstract machine. HOSC
20(3), 209–230 (2007). https://doi.org/10.1007/s10990-007-9015-z

25. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C: a software analysis perspective. In: Eleftherakis, G., Hinchey, M., Hol-
combe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33826-7 16

26. Czajka, �L., Kaliszyk, C.: Hammer for Coq: automation for dependent type theory.
JAR 61(1–4), 423–453 (2018). https://doi.org/10.1007/s10817-018-9458-4

https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1007/11502760_3
https://cr.yp.to/mac/poly1305-20050329.pdf
https://doi.org/10.1007/978-3-540-74464-1_4
http://drops.dagstuhl.de/opus/volltexte/2017/7119/pdf/LIPIcs-SNAPL-2017-1.pdf
http://drops.dagstuhl.de/opus/volltexte/2017/7119/pdf/LIPIcs-SNAPL-2017-1.pdf
https://doi.org/10.1007/978-3-642-40885-4_17
https://doi.org/10.1007/978-3-642-40885-4_17
https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.1007/978-3-642-25379-9_26
https://doi.org/10.1007/978-3-642-14052-5_14
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://doi.org/10.1007/s10009-004-0167-4
https://doi.org/10.1007/s10817-008-9101-x
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1145/2951913.2951932
https://doi.org/10.1007/978-3-642-14295-6_42
https://doi.org/10.1007/978-3-642-14295-6_42
https://doi.org/10.1007/s10990-007-9015-z
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/s10817-018-9458-4

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 57

27. de Moura, L., Passmore, G.O.: The strategy challenge in SMT solving. In: Bonacina,
M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics. LNCS (LNAI),
vol. 7788, pp. 15–44. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36675-8 2. http://dl.acm.org/citation.cfm?id=2554473.2554475

28. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

29. Delahaye, D.: A tactic language for the system Coq. In: Parigot, M., Voronkov,
A. (eds.) LPAR 2000. LNAI, vol. 1955, pp. 85–95. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44404-1 7

30. Ebner, G., Ullrich, S., Roesch, J., Avigad, J., de Moura, L.: A metaprogramming
framework for formal verification. PACMPL 1(ICFP), 34:1–34:29 (2017). https://
doi.org/10.1145/3110278

31. Ekici, B., et al.: SMTCoq: a plug-in for integrating SMT solvers into Coq. In:
Majumdar, R., Kunčak, V. (eds.) CAV 2017, Part II. LNCS, vol. 10427, pp. 126–
133. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 7

32. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level code
for cryptographic arithmetic - with proofs, without compromises. In: IEEE S&P
(2019). https://doi.org/10.1109/SP.2019.00005

33. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In:
Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–
128. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8.
https://hal.inria.fr/hal-00789533/document

34. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
PLDI 2002: extended static checking for Java. SIGPLAN Not. 48(4S), 22–33
(2013). https://doi.org/10.1145/2502508.2502520

35. Fromherz, A., Giannarakis, N., Hawblitzel, C., Parno, B., Rastogi, A.,
Swamy, N.: A verified, efficient embedding of a verifiable assembly language.
PACMPL (POPL) (2019). https://github.com/project-everest/project-everest.
github.io/raw/master/assets/vale-popl.pdf

36. Gonthier, G.: Formal proof—the four-color theorem. Not. AMS 55(11), 1382–1393
(2008). https://www.ams.org/notices/200811/tx081101382p.pdf

37. Gordon, M.J., Milner, A.J., Wadsworth, C.P.: Edinburgh LCF: A Mechanised Logic
of Computation. LNCS, vol. 78. Springer, Heidelberg (1979). https://doi.org/10.
1007/3-540-09724-4

38. Grégoire, B., Mahboubi, A.: Proving equalities in a commutative ring done right in
Coq. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 98–113.
Springer, Heidelberg (2005). https://doi.org/10.1007/11541868 7

39. Grov, G., Tumas, V.: Tactics for the Dafny program verifier. In: Chechik, M.,
Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 36–53. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49674-9 3

40. Hawblitzel, C., et al.: Ironclad apps: end-to-end security via automated full-
system verification. In: OSDI (2014). https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/hawblitzel

41. Hawblitzel, C., et al.: Ironfleet: proving safety and liveness of practical distributed
systems. CACM 60(7), 83–92 (2017). https://doi.org/10.1145/3068608

42. Kaiser, J., Ziliani, B., Krebbers, R., Régis-Gianas, Y., Dreyer, D.: Mtac2: typed tac-
tics for backward reasoning in Coq. PACMPL 2(ICFP), 78:1–78:31 (2018). https://
doi.org/10.1145/3236773

https://doi.org/10.1007/978-3-642-36675-8_2
https://doi.org/10.1007/978-3-642-36675-8_2
http://dl.acm.org/citation.cfm?id=2554473.2554475
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-44404-1_7
https://doi.org/10.1145/3110278
https://doi.org/10.1145/3110278
https://doi.org/10.1007/978-3-319-63390-9_7
https://doi.org/10.1109/SP.2019.00005
https://doi.org/10.1007/978-3-642-37036-6_8
https://hal.inria.fr/hal-00789533/document
https://doi.org/10.1145/2502508.2502520
https://github.com/project-everest/project-everest.github.io/raw/master/assets/vale-popl.pdf
https://github.com/project-everest/project-everest.github.io/raw/master/assets/vale-popl.pdf
https://www.ams.org/notices/200811/tx081101382p.pdf
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1007/11541868_7
https://doi.org/10.1007/978-3-662-49674-9_3
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel
https://doi.org/10.1145/3068608
https://doi.org/10.1145/3236773
https://doi.org/10.1145/3236773

58 G. Mart́ınez et al.

43. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck.
JAR 53(2), 173–213 (2014). https://doi.org/10.1007/s10817-014-9303-3

44. Kaliszyk, C., Urban, J.: MizAR 40 for Mizar 40. JAR 55(3), 245–256 (2015).
https://doi.org/10.1007/s10817-015-9330-8

45. Krebbers, R., Timany, A., Birkedal, L.: Interactive proofs in higher-order
concurrent separation logic. In: POPL (2017). http://dl.acm.org/citation.cfm?
id=3009855

46. Krivine, J.-L.: A call-by-name lambda-calculus machine. Higher Order Symbol.
Comput. 20(3), 199–207 (2007). https://doi.org/10.1007/s10990-007-9018-9

47. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 348–
370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-4 20.
http://dl.acm.org/citation.cfm?id=1939141.1939161

48. Rustan, K., Leino, M., Nelson, G.: An extended static checker for modula-3. In:
Koskimies, K. (ed.) CC 1998. LNCS, vol. 1383, pp. 302–305. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0026441

49. McCreight, A.: Practical tactics for separation logic. In: Berghofer, S., Nipkow,
T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 343–358.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9 24

50. Melquiond, G., Rieu-Helft, R.: A Why3 framework for reflection proofs and its
application to GMP’s algorithms. In: Galmiche, D., Schulz, S., Sebastiani, R.
(eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 178–193. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-94205-6 13

51. Nanevski, A., Morrisett, J.G., Birkedal, L.: Hoare type the-
ory, polymorphism and separation. JFP 18(5–6), 865–911 (2008).
http://ynot.cs.harvard.edu/papers/jfpsep07.pdf

52. Nanevski, A., Vafeiadis, V., Berdine, J.: Structuring the verification of heap-
manipulating programs. In: POPL (2010). https://doi.org/10.1145/1706299.
1706331

53. Nogin, A.: Quotient types: a modular approach. In: Carreño, V.A., Muñoz, C.A.,
Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410, pp. 263–280. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45685-6 18

54. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a
practical link between automatic and interactive theorem provers. In: IWIL (2010).
https://www21.in.tum.de/∼blanchet/iwil2010-sledgehammer.pdf

55. Protzenko, J., et al.: Verified low-level programming embedded in F*. PACMPL
1(ICFP), 17:1–17:29 (2017). https://doi.org/10.1145/3110261

56. Stampoulis, A., Shao, Z.: VeriML: typed computation of logical terms inside a
language with effects. In: ICFP (2010). https://doi.org/10.1145/1863543.1863591

57. Swamy, N., Weinberger, J., Schlesinger, C., Chen, J., Livshits, B.: Verifying
higher-order programs with the Dijkstra monad. In: PLDI (2013). https://www.
microsoft.com/en-us/research/publication/verifying-higher-order-programs-with-
the-dijkstra-monad/

58. Swamy, N., et al.: Dependent types and multi-monadic effects in F*. In: POPL
(2016). https://www.fstar-lang.org/papers/mumon/

59. Vazou, N., Seidel, E.L., Jhala, R., Vytiniotis, D., Peyton Jones, S.L.: Refinement
types for Haskell. In: ICFP (2014). https://goto.ucsd.edu/∼nvazou/refinement
types for haskell.pdf

60. Vazou, N., et al.: Refinement reflection: complete verification with SMT. PACMPL
2(POPL), 53:1–53:31 (2018). https://doi.org/10.1145/3158141

https://doi.org/10.1007/s10817-014-9303-3
https://doi.org/10.1007/s10817-015-9330-8
http://dl.acm.org/citation.cfm?id=3009855
http://dl.acm.org/citation.cfm?id=3009855
https://doi.org/10.1007/s10990-007-9018-9
https://doi.org/10.1007/978-3-642-17511-4_20
http://dl.acm.org/citation.cfm?id=1939141.1939161
https://doi.org/10.1007/BFb0026441
https://doi.org/10.1007/978-3-642-03359-9_24
https://doi.org/10.1007/978-3-319-94205-6_13
http://ynot.cs.harvard.edu/papers/jfpsep07.pdf
https://doi.org/10.1145/1706299.1706331
https://doi.org/10.1145/1706299.1706331
https://doi.org/10.1007/3-540-45685-6_18
https://www21.in.tum.de/~blanchet/iwil2010-sledgehammer.pdf
https://doi.org/10.1145/3110261
https://doi.org/10.1145/1863543.1863591
https://www.microsoft.com/en-us/research/publication/verifying-higher-order-programs-with-the-dijkstra-monad/
https://www.microsoft.com/en-us/research/publication/verifying-higher-order-programs-with-the-dijkstra-monad/
https://www.microsoft.com/en-us/research/publication/verifying-higher-order-programs-with-the-dijkstra-monad/
https://www.fstar-lang.org/papers/mumon/
https://goto.ucsd.edu/~nvazou/refinement_types_for_haskell.pdf
https://goto.ucsd.edu/~nvazou/refinement_types_for_haskell.pdf
https://doi.org/10.1145/3158141

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 59

61. Wadler, P.: Views: a way for pattern matching to cohabit with data abstraction.
In: POPL (1987). https://dl.acm.org/citation.cfm?doid=41625.41653

62. Wenzel, M.: The Isabelle/Isar reference manual (2017). http://isabelle.in.tum.de/
doc/isar-ref.pdf

63. Ziliani, B., Dreyer, D., Krishnaswami, N.R., Nanevski, A., Vafeiadis, V.: Mtac: a
monad for typed tactic programming in Coq. JFP 25 (2015). https://doi.org/10.
1017/S0956796815000118

64. Zinzindohoué, J.-K., Bhargavan, K., Protzenko, J., Beurdouche, B.: HACL*: a ver-
ified modern cryptographic library. In: CCS (2017). http://eprint.iacr.org/2017/
536

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://dl.acm.org/citation.cfm?doid=41625.41653
http://isabelle.in.tum.de/doc/isar-ref.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf
https://doi.org/10.1017/S0956796815000118
https://doi.org/10.1017/S0956796815000118
http://eprint.iacr.org/2017/536
http://eprint.iacr.org/2017/536
http://creativecommons.org/licenses/by/4.0/

	Meta-F: Proof Automation with SMT, Tactics, and Metaprograms
	1 Introduction
	2 Meta-F by Example
	2.1 Tactics for Individual Assertions and Partial Canonicalization
	2.2 Tactics for Entire VCs and Separation Logic
	2.3 Metaprogramming Verified Low-Level Parsers and Serializers

	3 The Design of Meta-F
	3.1 An Effect for Metaprogramming
	3.2 Executing Meta-F Metaprograms
	3.3 Syntax Inspection, Generation, and Quotation
	3.4 Specifying and Verifying Metaprograms

	4 Meta-F, Formally
	4.1 Correctness and Trusted Computing Base (TCB)
	4.2 Extracting Individual Assertions

	5 Executing Metaprograms Efficiently
	5.1 CBN and CBV Strong Reductions
	5.2 Native Plugins and Multi-language Interoperability

	6 Experimental Evaluation
	6.1 A Reflective Tactic for Partial Canonicalization
	6.2 Combining SMT and Tactics for the Parser Generator

	7 Related Work
	8 Conclusions
	References

