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Abstract

Large-scale genome-wide association results are typically obtained from a fixed-effects

meta-analysis of GWAS summary statistics from multiple studies spanning different regions

and/or time periods. This approach averages the estimated effects of genetic variants

across studies. In case genetic effects are heterogeneous across studies, the statistical

power of a GWAS and the predictive accuracy of polygenic scores are attenuated, contribut-

ing to the so-called ‘missing heritability’. Here, we describe the online Meta-GWAS Accuracy

and Power (MetaGAP) calculator (available at www.devlaming.eu) which quantifies this

attenuation based on a novel multi-study framework. By means of simulation studies, we

show that under a wide range of genetic architectures, the statistical power and predictive

accuracy provided by this calculator are accurate. We compare the predictions from the

MetaGAP calculator with actual results obtained in the GWAS literature. Specifically, we

use genomic-relatedness-matrix restricted maximum likelihood to estimate the SNP herita-

bility and cross-study genetic correlation of height, BMI, years of education, and self-rated

health in three large samples. These estimates are used as input parameters for the Meta-

GAP calculator. Results from the calculator suggest that cross-study heterogeneity has led

to attenuation of statistical power and predictive accuracy in recent large-scale GWAS

efforts on these traits (e.g., for years of education, we estimate a relative loss of 51–62% in

the number of genome-wide significant loci and a relative loss in polygenic score R2 of

36–38%). Hence, cross-study heterogeneity contributes to the missing heritability.
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Author Summary

Large-scale genome-wide association studies are uncovering the genetic architecture of

traits which are affected by many genetic variants. In such efforts, one typically meta-

analyzes association results from multiple studies spanning different regions and/or time

periods. Results from such efforts do not yet capture a large share of the heritability. The

origins of this so-called ‘missing heritability’ have been strongly debated. One factor exac-

erbating the missing heritability is heterogeneity in the effects of genetic variants across

studies. The effect of this type of heterogeneity on statistical power to detect associated

genetic variants and the accuracy of polygenic predictions is poorly understood. In the

current study, we derive the precise effects of heterogeneity in genetic effects across stud-

ies on both the statistical power to detect associated genetic variants as well as the accuracy

of polygenic predictions. We present an online calculator, available at www.devlaming.eu,

which accounts for these effects. By means of this calculator, we show that imperfect

genetic correlations between studies substantially decrease statistical power and predictive

accuracy and, thereby, contribute to the missing heritability. The MetaGAP calculator

helps researchers to gauge how sensitive their results will be to heterogeneity in genetic

effects across studies. If strong heterogeneity is expected, random-effects meta-analysis

methods should be used instead of fixed-effects methods.

Introduction

Large-scale GWAS efforts are rapidly elucidating the genetic architecture of polygenic traits,

including anthropometrics [1, 2] and diseases [3–5], as well as behavioral and psychological

outcomes [6–8]. These efforts have led to new biological insights, therapeutic targets, and poly-

genic scores (PGS), and help to understand the complex interplay between genes and environ-

ments in shaping individual outcomes [7, 9, 10]. However, GWAS results do not yet account

for a large part of the estimated heritability [1, 2, 7, 8]. This dissonance, which is referred to as

the ‘missing heritability’, has received broad attention [11–17].

Differences across strata (e.g., studies and populations), in genetic effects, phenotype mea-

surement, and phenotype accuracy, lead to loss of signal [18–20]. Hence, such forms of hetero-

geneity attenuate the statistical power of a GWAS [17, 18, 21, 22] and the predictive accuracy

of a PGS in a hold-out sample [23], and, thereby, contribute to the missing heritability. Since

large-scale GWAS results are typically obtained from a meta-analysis of GWAS results from

many different studies, we focus on the attenuation resulting from heterogeneity at the level of

studies included in such a meta-analysis. Given the importance of discovering trait-affecting

variants and obtaining accurate polygenic predictions, it is vital to understand to which extent

cross-study heterogeneity attenuates the statistical power and predictive accuracy of GWAS

efforts. By considering cross-study differences in genetic effects and heritability, we can quan-

tify this attenuation.

Despite empirical evidence of transethnic genetic heterogeneity in diseases [24] and the fact

that cross-study heterogeneity has been found to decrease the chances of a study to yield mean-

ingful results [22, 25], a theoretical multi-study framework that quantifies the effect of cross-

study heterogeneity on statistical power and predictive accuracy is still absent. We bridge this

gap by developing a Meta-GWAS Accuracy and Power (MetaGAP) calculator (available at

www.devlaming.eu) that accounts for the cross-study genetic correlation (CGR). This calcula-

tor infers the statistical power to detect associated SNPs and the predictive accuracy of the
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PGS in a meta-analysis of GWAS results from genetically and phenotypically heterogeneous

studies, and quantifies the loss in power and predictive accuracy incurred by this cross-

study heterogeneity. Using simulations, we show that the MetaGAP calculator is accurate

under a wide range of genetic architectures, even when the assumptions of the calculator are

violated.

Although meta-analysis methods accounting for heterogeneity exist [26–31], large-scale

GWAS results are typically still obtained from fixed-effects meta-analysis methods [32, 33]

such as implemented in METAL [34]. Therefore, the MetaGAP calculator assumes the use of a

fixed-effects meta-analysis method. Thus, the calculator will help researchers to assess the mer-

its of an intended fixed-effects meta-analysis of GWAS results and to gauge whether it is more

appropriate to apply a meta-analysis method that accounts for heterogeneity.

In an empirical application, we use genomic-relatedness-matrix restricted maximum likeli-

hood (GREML) to estimate the SNP-based heritability (h2

SNP) and CGR of several polygenic

traits across three distinct studies: the Rotterdam Study (RS), the Swedish Twin Registry

(STR), and the Health and Retirement Study (HRS). For self-rated health, years of education,

BMI, and height, we obtain point-estimates of CGR between 0.47 and 0.97. Based on these esti-

mates of h2

SNP and CGR, we use the MetaGAP calculator to quantify the expected number of

hits and predictive accuracy of the PGS in recent GWAS efforts for these traits. Our theoretical

predictions align with empirical observations.

For height, under an estimated CGR of 0.97, the expected relative loss in the number of

genome-wide significant hits is 8–9%, whereas, for years of education, under an estimated

CGR of 0.78, we expect a relative loss of 51–62% in the number of hits. Moreover, we find that

the relative loss in PGS R2 is expected to be 6–7% for height and 36–38% for years of education.

Hence, our findings show that cross-study heterogeneity attenuates the statistical power and

PGS accuracy considerably, thus, contributing substantially to the missing heritability, and,

more specifically, to the ‘hiding heritability’ [15–17]—defined as the difference between the

SNP-based heritability estimate [35] and the proportion of phenotypic variation explained by

genetic variants that reach genome-wide significance in a GWAS.

Materials and Methods

Definitions and assumptions

The MetaGAP calculator is based on theoretical expressions for statistical power and PGS

accuracy, derived in S1 Derivations and S2 Derivations. In these expressions, within-study esti-

mates of SNP heritability (e.g., inferred using GCTA [36]) are required input parameters. Esti-

mates of CGR (e.g., inferred as genetic correlations across studies using pairwise bivariate

methods as implemented in GCTA [37] and LD-score regression [38, 39], or as genetic-impact

correlation from summary statistics [24]) also play a central role in those expressions. As we

show in S1 Note, such estimates of CGR are affected by the cross-study overlap in trait-affect-

ing loci as well as the cross-study correlation in the effects of these overlapping loci. In our der-

ivations of statistical power and predictive accuracy, we assume, however, that the set of trait-

affecting loci is the same across all studies and that CGRs are, consequently, shaped solely by

cross-study correlations in the effects. Using simulation studies, discussed in S1 Simulations,

we assess how violations of this assumption affect our results.

In addition, genetic correlations as inferred using GCTA [37] or LD-score regression [39]

effectively estimate the cross-trait and/or cross-study correlation in the effects of standardized

SNPs. This correlation has been referred to as the genetic-impact correlation [24]. The scale of

rare variants is inflated most by standardization (i.e., genotypes are scaled by 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2f ð1� f Þ
p

,

where f denotes the allele frequency of the SNP of interest). Therefore, the scale of the effects of
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these variants is decreased most by standardization of SNPs (i.e., when standardizing a SNP,

the effect is scaled by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2f ð1� f Þ
p

). Hence, the genetic-impact correlation emphasizes the con-

tribution of common variants [24]. If rare alleles tend to have larger effects than common

alleles, as assumed in GCTA [36] and LD-score regression [38], these two opposing forces may

cancel each other out; the effects of rare alleles are then bigger, but also scaled downwards

more strongly by considering standardized SNPs. Alternatively, one can also consider the cor-

relation in the effect of non-standardized SNPs, referred to as the genetic-effect correlation

[24]. This genetic-effect correlation gives rare and common variants equal weight in theory.

However, in case rare alleles have larger effects than common alleles, this genetic-effect corre-

lation, in practice, gives a disproportional weight to rare variants.

A clear definition of genetic correlation can be further complicated by the presence of allele

frequency differences across samples. Whereas GCTA assumes fixed allele frequencies across

the samples included in the analysis [36], there also exist methods which allow for differences

in allele frequencies. Ideally, estimates of cross-study genetic-impact correlation accounting

for allele frequency differences [24] should be used in the MetaGAP calculator as input for

CGR. However, provided the genetic drift is small, whether to account for allele frequency dif-

ferences across samples or not, will—in all likelihood—hardly affect the CGR estimates. There-

fore, under little genetic drift, estimates of CGR obtained by methods ignoring cross-study

differences in allele frequencies (e.g., bivariate GREML [37]), suffice as input for the MetaGAP

calculator.

In line with other work, we define the effective number of SNPs, S, as the number of haplo-

type blocks (i.e., independent chromosome segments) [40], where variation in each block is

tagged by precisely one genotyped SNP. By genotyped SNPs we also mean imputed SNPs.

Hence, in our framework, there are S SNPs contributing to the polygenic score. Due to linkage

disequilibrium (LD) this number is likely to be substantially lower than the total number of

SNPs in the genome [41], and is inferred to lie between as little as 60,000 [15] and as much as

5 million [41].

In terms of trait-affecting variants, we consider a subset ofM SNPs from the set of S SNPs.

Each SNP in this subset tags variation in a segment that bears a causal influence on the pheno-

type. We refer toM as the associated number of SNPs. We assume that theM associated SNPs

jointly capture the full SNP-based heritability for the trait of interest and, moreover, that each

associated SNP has the same theoretical R2 with respect to the phenotype. In the simulation

studies, we also assess the impact of violations of this ‘equal-R2’ assumption.

By considering only independent genotyped SNPs that are assumed to fully tag the causal

variants, we can ignore LD among genotyped variants and between the causal variant and the

genotyped variants. Thereby, we can greatly reduce the theoretical and numerical complexity

of the MetaGAP calculator. However, a genotyped tag SNP does not necessarily capture the

full variation of the causal variant present in that independent segment. Nevertheless, the

inputs for SNP heritability used in the MetaGAP calculator are within-study GREML estimates

of heritability, based on the available SNPs. Therefore, if these genotyped SNPs are in imper-

fect LD with the causal variants, this will lead to a downward bias in the SNP-based heritability

estimates [42]. Hence, the imperfect tagging of the causal variants is likely to be absorbed by a

downward bias in the SNP-based heritability estimates.

Power of a GWASmeta-analysis under heterogeneity

The theoretical distribution of the Z statistic, resulting from a meta-analysis of GWAS results

under imperfect CGRs, can be found in S1 Derivations. These expressions allow for differences

in sample size, h2

SNP, and CGR across (pairs of) studies. For intuition, we here present the

Hiding Heritability and Cross-Study Genetic Overlap
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specific case of a meta-analysis of results from two studies with CGR ρG, with equal SNP-based

heritability h2

SNP, and equal sample sizes (i.e., N in Study 1 and N in Study 2). Under this sce-

nario, we find that under high polygenicity, the Z statistic of an associated SNP k is normally

distributed with mean zero and the following variance:

Var Zkð Þ ¼ E Z2

k

� �

� 1þ
h2

SNP

M
N 1þ r

G
ð Þ: ð1Þ

We incorporate cross-study genetic heterogeneity by assuming that the data-generating pro-

cess follows a random-effects model, where cross-study correlations in SNP effects shape the

inferred CGRs. When one has random effects, under the null hypothesis a SNP effect follows a

degenerate distribution with all probability mass at zero, whereas under the alternative hypoth-

esis a SNP effect follows a distribution with mean zero and a finite non-zero variance. Bearing

in mind that we can write a meta-analysis Z statistic as a weighted average of true effects across

studies and noise terms, the null hypothesis leads to a Z statistic with a mean equal to zero and

a variance equal to one, whereas the alternative hypothesis does not lead to a non-zero mean

in the Z statistic, but rather to excess variation (i.e., a variance larger than one).

The larger the variance in the Z statistic, the higher the probability of rejecting the null. The

ratio of h2

SNP andM can be regarded as the theoretical R2 of each associated SNP with respect to

the phenotype. Eq 1 reveals that (i) when sample size increases, power increases, (ii) when h2

SNP

increases, the R2 per associated SNP increases and therefore power increases, (iii) when the

number of associated SNPs increases, the R2 per associated SNP decreases and therefore power

decreases, (iv) when the CGR is zero the power of the meta-analysis is identical to the power

obtained in each of the two studies when analyzed separately, yielding no strict advantage to

meta-analyzing, and (v) when the CGR is positive one, the additional variance in the Z

statistic—compared to the variance under the null—is twice the additional variance one would

have when analyzing the studies separately, yielding a strong advantage to meta-analyzing.

Notably, our expression for E ½Z2

k � bears a great resemblance to expressions for the expected

value of the squared Z statistic when accounting for LD, population stratification, and polyge-

nicity [38, 43, 44]. Consider the scenario where the CGR between two samples of equal size is

positive one. Based of Eq 1, we then have that E Z2

k

� �

� 1þ
h2
SNP

M
NT for a trait-affecting haplo-

type block, where NT = 2N denotes the total sample size. This expression is equivalent to the

expected squared Z statistic from the linear regression analysis for a trait-affecting variant

reported in Section 4.2 of the Supplementary Note to [44] as well as the first equation in [38]

when assuming that confounding biases and LD are absent.

In order to compute statistical power in a multi-study setting, we first use the generic

expression for the variance of the GWAS Z statistic derived in S1 Derivations to characterize

the distribution of the Z statistic under the alternative hypothesis. Given a genome-wide signif-

icance threshold (denoted by α; usually α = 5 � 10−8), we use the normal cumulative distribu-

tion function under the alternative hypothesis to quantify the probability of attaining genome-

wide significance for an associated SNP. This probability we refer to as the ‘power per associ-

ated SNP’ (denoted here by β). Given that we use SNPs tagging independent haplotype blocks,

we can calculate the probability of rejecting the null for at least one SNP and the expected

number of hits, true positives, false positives, false negatives, and positive negatives, as func-

tions of α, β, the number of truly associated SNPs (denoted byM), and the number of non-

associated SNPs (denoted by S −M). Letting ‘#’ denote the number of elements in a set, we

Hiding Heritability and Cross-Study Genetic Overlap
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have that

P ½# truepositives � 1� ¼ 1� ð1� bÞ
M
;

P ½# hits � 1� ¼ 1� ½ð1� bÞ
M
ð1� aÞ

S�M
�;

E ½# hits� ¼ bM þ aðS�MÞ;

E ½# truepositives� ¼ bM;

E ½# false positives� ¼ aðS�MÞ;

E ½# false negatives� ¼ ð1� bÞM; and

E ½# true negatives� ¼ ð1� aÞðS�MÞ:

R2 of a polygenic score under heterogeneity

In S2 Derivations we derive a generic expression for the theoretical R2 of a PGS in a hold-out

sample, with SNP weights based on a meta-analysis of GWAS results under imperfect CGRs.

We consider a PGS that includes all the SNPs that tag independent haplotype blocks (i.e., there

is no SNP selection).

For intuition, we here present an approximation for prediction in a hold-out sample, with

SNP weights based on a GWAS in a single discovery study with sample size N, where both

studies have SNP heritability h2

SNP, and with CGR ρG, between the studies. Under high polyge-

nicity, the R2 of the PGS in the hold-out sample is then given by the following expression:

R2 � h2

SNPr
2

G

h2

SNP
S
N
þ h2

SNP

: ð2Þ

In case the CGR is one, and we consider the R2 between the PGS and the genetic value (i.e., the

genetic component of the phenotype) instead of the phenotype itself, the first two terms in Eq

2 disappear, yielding an expression equivalent to the first equation in [40]. Assuming a CGR of

one and that all SNPs are associated, Eq 2 is equivalent to the expression in [23] for the R2

between the PGS and the phenotype in the hold-out sample.

From Eq 2, we deduce that (i) as the effective number of SNPs S increases, the R2 of the

PGS deteriorates (since every SNP-effect estimate contains noise, owing to imperfect infer-

ences in finite samples), (ii) given the effective number of SNPs, under a polygenic architec-

ture, the precise fraction of effective SNPs that is associated does not affect the R2, (iii) R2 is

quadratically proportional to ρG, implying a strong sensitivity to CGR, and (iv) as the sample

size of the discovery study grows, the upper limit of the R2 is given by h2

SNPr
2

G
, implying that the

full SNP heritability in the hold-out sample cannot be entirely captured as long as CGR is

imperfect.

Online power and R2 calculator

An online version of the MetaGAP calculator can be found at www.devlaming.eu. This calcula-

tor computes the theoretical power per trait-affecting haplotype block, the power to detect at

least one of these blocks, and the expected number of (a) independent hits, (b) true positives,

(c) false positives, (d) false negatives, and (e) true negatives, for a meta-analysis of GWAS

results from C studies. In addition, it provides the expected R2 of a PGS for a hold-out sample,

including all GWAS SNPs, with SNP weights based on the meta-analysis of the GWAS results

from C studies. Calculations are based on the generic expressions for GWAS power derived in

S1 Derivations and PGS R2 derived in S2 Derivations.

Hiding Heritability and Cross-Study Genetic Overlap
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The calculator assumes a quantitative trait. Users need to specify either the average

sample size per study or the sample size of each study separately. In addition, users need to

specify either the average within-study SNP heritability or the SNP heritability per study. The

SNP heritability in the hold-out sample also needs to be provided. Users are required to enter

the effective number of causal SNPs and the effective number of SNPs in total. The calculator

assumes a fixed CGR between all pairs of studies included in the meta-analysis and a fixed

CGR between the hold-out sample and each study in the meta-analysis. Hence, one needs to

specify two CGR values: one for the CGR within the set of meta-analysis studies and one to

specify the genetic overlap between the hold-out sample and the meta-analysis studies.

Finally, a more general version of the MetaGAP calculator is provided in the form of

MATLAB code (www.mathworks.com), also available at www.devlaming.eu. This code can be

used in case one desires to specify a more versatile genetic-correlation matrix, where the CGR

can differ between all pairs of studies. Therefore, this implementation requires the user to spec-

ify a full (C+1)-by-(C+1) correlation matrix. Calculations in this code are also fully in line with

the generic expressions in S1 Derivations and S2 Derivations.

Assessing validity of theoretical power and R2

We simulate data for a wide range of genetic architectures in order to assess the validity of our

theoretical framework. As we show in S1 Simulations, the theoretical expressions we derive for

power and R2 are accurate, even for data generating processes substantially different from the

process we assume in our derivations. Our strongest assumptions are that all truly associated

SNPs have equal R2 with respect to the phenotype, regardless of allele frequency, and that

genome-wide CGRs are shaped solely by the cross-study correlations in the effects of causal

SNPs. When we simulate data where the former assumption fails and where—in addition—

allele frequencies are non-uniformly distributed and different across studies, the root-mean-

square prediction error of statistical power lies below 3% and that of PGS R2 below 2%. More-

over, when we simulate data where the CGR is shaped by both non-overlapping causal loci

across studies and the correlation of the effects of the overlapping loci, the RMSE is less than

2% for both statistical power and PGS R2.

Estimating SNP heritability and CGR

Using 1000-Genomes imputed data from the RS, STR, and HRS, we estimate SNP-based heri-

tability and CGR respectively by means of univariate and bivariate GREML [36, 37] as imple-

mented in GCTA [36]. In our analyses we consider the subset of HapMap3 SNPs available

in the 1000-Genomes imputed data. In S1 Data we report details on the genotype and pheno-

type data, as well as our quality control (QC) procedure. After QC we have a dataset,

consisting of� 1 million SNPs and� 20,000 individuals, from which we infer h2

SNP and CGR.

In S1 Estimation we provide details on the specifications of the models used for GREML

estimation.

Ethics statement

Written informed consent was provided by all participants and the research project was

approved by the Ethics Committee of Erasmus Medical Center (MEC 02.1015), the Ethics

Committee of Stockholm (2007-644-31, 2011-463-32, 2012/270-31/2), the ERIM Institutional

Review Board (2014-04), and dbGaP (#3544, #5752, #5082, #5285).
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Results

Determinants of GWAS power and PGSR2

Using the MetaGAP calculator, we assessed the theoretical power of a meta-analysis of GWAS

results from genetically heterogeneous studies and the theoretical R2 of the resulting PGS in a

hold-out sample, for various numbers of studies and sample sizes, and different values of CGR

and h2

SNP.

Sample size and CGR. Fig 1 shows contour plots for the power per truly associated SNP

and R2, for a setting with 50 studies, for a trait with h2

SNP ¼ 50%, for various combinations of

total sample size and CGR. Increasing total sample size enhances both power and R2. When

the CGR is perfect, power and R2 (relative to h2

SNP) have a near-identical response to sample

size. This similarity in response gets distorted when the CGR decreases. For instance, in the

scenario of 100k SNPs of which a subset of 1k SNPs is causal with h2

SNP ¼ 50%, in a sample of

50 studies with a total sample size of 10 million individuals, a CGR of one yields 94% power

per causal SNP and an R2 of 49%, which is 98% of the SNP heritability, whereas for a CGR of

0.2 the power is still 87% per SNP, while the R2 of the PGS is 8.5%, which is only 17% of h2

SNP.

Thus, R2 is far more sensitive to an imperfect CGR than the meta-analytic power is. This find-

ing is also supported by the approximations of power in Eq 1 and of PGS R2 in Eq 2; these

expressions show that, for two discovery studies, the CGR has a linear effect on the variance of

the meta-analysis Z statistic, whereas, for one discovery and one hold-out sample, the PGS R2

is quadratically proportional to the CGR.

SNP heritability and CGR. Fig 2 shows contour plots for the power per truly associated

SNP and R2 for a setting with 50 studies, with a total sample size of 250,000 individuals, for 1k

causal SNPs and 100k SNPs in total, for various combinations of h2

SNP and CGR. The figure

shows a symmetric response of both power and R2 to CGR and h2

SNP. For instance, when

h2

SNP ¼ 25% and CGR = 0.5 across all studies, the power is expected to be around 34% and the

R2 3.0%. When these numbers are interchanged (i.e., h2

SNP ¼ 50% and CGR = 0.25), similarly,

the power is expected to be 35% and the R2 2.9%. Hence, in terms of both R2 and power, a low

heritability can be compensated by a high CGR (e.g., by means of homogeneous measures

across studies) and a low CGR can be compensated by high heritability. When either CGR or

heritability is equal to zero, both power and R2 are decimated in the multi-study setting. How-

ever, when both are moderately low but still substantially greater than zero, neither power nor

R2 are completely diminished.

Number of studies and CGR. Fig 3 shows contour plots for the power per truly associated

SNP and R2 for a trait with h2

SNP ¼ 50%, 1k causal SNPs, 100k SNPs in total, and a fixed total

sample size of 250,000 individuals. In this figure, various combinations of the CGR and the

number of studies are considered. Logically, when there is just one study for discovery, CGR

does not affect power. However, even for two studies, the effect of CGR on power is quite pro-

nounced. For instance, when CGR is a half, the power per causal SNP is 63% for one study,

58% for two studies, 51% for ten studies, and 50% for 100 studies. Thus, when the number of

studies is low, increasing the number of studies makes the effect of CGR on power more pro-

nounced rapidly. When the number of studies is large, further increases in the number of stud-

ies hardly make the effect of CGR on power more pronounced.

For a given number of studies, we observed that the effect CGR has on R2 is stronger than

the effect it has on power. This observation is in line with the approximated theoretical R2 in

Eq 2, indicating that R2 is quadratically proportional to CGR. However, an interesting observa-

tion is that this quadratic relation lessens as the number of studies grows large, despite the

total sample size being fixed. For instance, at a CGR of a half, the R2 in the hold-out sample is
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Fig 1. Theoretical predictions of power per causal SNP (upper panel) and out-of-sampleR2 of the PGS
(lower panel), for total sample size (x-axis) and cross-study genetic correlation (y-axis). Factor levels:
50 studies, 100k independent SNPs, and h2

SNP
¼ 50% arising from a subset of 1k independent SNPs.

doi:10.1371/journal.pgen.1006495.g001
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Fig 2. Theoretical predictions of power per causal SNP (upper panel) and out-of-sampleR2 of the PGS
(lower panel), for a trait that across studies has SNP heritability (x-axis) and cross-study genetic
correlation (y-axis). Factor levels: 50 studies, sample size 5,000 individuals per study, 100k independent
SNPs, and heritability arising from a subset of 1k independent SNPs.

doi:10.1371/journal.pgen.1006495.g002
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Fig 3. Theoretical predictions of power per causal SNP (upper panel) and out-of-sampleR2 of the PGS
(lower panel), for a trait with GWAS results from the number of studies (x-axis) with cross-study
genetic correlation (y-axis). Factor levels: total sample size 250,000 individuals, 100k independent SNPs,
and h2

SNP
¼ 50% arising from a subset of 1k independent SNPs.

doi:10.1371/journal.pgen.1006495.g003

Hiding Heritability and Cross-Study Genetic Overlap

PLOSGenetics | DOI:10.1371/journal.pgen.1006495 January 17, 2017 11 / 23



expected to be 6.9% when there is only one discovery study. However, the expected R2 is 8.1%

for two discovery studies, 9.3% for ten discovery studies, and 9.6% for 100 discovery studies. A

likely reason for this pattern is that, in case of one discovery study, the PGS is influenced rela-

tively strongly by the study-specific component of the genetic effects. This idiosyncrasy is not

of relevance for the hold-out sample. As the number of studies increases—even though each

study brings its own idiosyncratic contribution—each study consistently conveys information

about the part of the genetic architecture which is common across the studies. Since the idio-

syncratic contributions from the studies are independent, they tend to average each other out,

whereas the common underlying architecture gets more pronounced as the number of studies

in the discovery increases, even if the total sample size is fixed.

SNP heritability in the hold-out sample. Fig 4 shows a contour plot for the PGS R2 based

on a meta-analysis of 50 studies with a total sample size of 250,000 individuals, with 1k causal

SNPs and 100k SNPs in total, and a CGR of 0.8 between both the discovery studies and the

hold-out sample. In the plot, various combinations of h2

SNP in the discovery samples and h2

SNP in

the hold-out sample are considered. The response of PGS R2 to heritability in the discovery

sample and the hold-out sample is quite symmetric, in the sense that a low h2

SNP in the discov-

ery samples and a high h2

SNP in the hold-out sample yield a similar R2 as a high h2

SNP in the dis-

covery sample and a low h2

SNP in the hold-out sample. However, R2 is slightly more sensitive to

h2

SNP in the hold-out sample than in the discovery samples. For instance, when SNP heritability

in the discovery samples is 50% and 25% in the hold-out sample, the expected R2 is 10%,

whereas in case the SNP heritability is 25% in the discovery samples and 50% in the hold-out

sample, the expected R2 is 13%.

Fig 4. Theoretical predictions of out-of-sampleR2 of the PGS, for the SNP heritability in the hold-out
sample (x-axis) and the SNP heritability in the discovery samples (y-axis). Factor levels: 50 studies,
sample size 5,000 individuals per study, cross-study genetic correlation 0.8, 100k independent SNPs, and
heritability arising from a subset of 1k independent SNPs.

doi:10.1371/journal.pgen.1006495.g004
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CGR between sets of studies. Fig 5 shows a contour plot for the power per truly associ-

ated SNP in a setting where there are two sets consisting of 50 studies each. Within each set,

the CGR is equal to one, whereas between sets the CGR is imperfect. Consider, for example, a

scenario where one wants to meta-analyze GWAS results for height from a combination of

two sets of studies; one set of studies consisting primarily of individuals of European ancestry

and one set of studies with mostly individuals of Asian ancestry in it. Now, one would expect

CGRs close to one between studies consisting primarily of individuals of European ancestry

and the same for the CGRs between studies consisting primarily of individuals of Asian ances-

try. However, the CGRs between those two sets of studies may be less than one.

As is shown in S1 Derivations, in case the CGR between the two sets of studies, C
1
and C

2
, is

zero, meta-analyzing the two sets jointly yields power b
C1[ C2

� maxfb
C1
; b
C2
g and

b
C1[ C2

� minfb
C1
; b
C2
g, where b

A
denotes the power in set of studiesA. In particular, when

b
C1
¼ b

C2
we have under a CGR of zero between the sets, that b

C1[ C2
¼ b

C1
¼ b

C2
. Since in

Fig 5 we considered two equally-powered sets, the power of a meta-analysis using both sets,

under zero CGR between sets, is identical to the power obtained when meta-analyzing, for

instance, only the first set. However, as CGR between sets increases, so does power. For

instance, when a total sample size of 250,000 individuals is spread across 2 clusters, each cluster

consisting of 50 studies (i.e., sample size of 125,000 individuals per cluster and 2,500 individu-

als per study), under h2

SNP ¼ 50% due to 1k causal SNPs, a CGR of one within each cluster, and

CGR of zero between clusters, the power is expected to be 49%, which is identical to the power

of a meta-analysis of either the first or the second cluster. However, if the CGR between clus-

ters is 0.5 instead of zero, the power goes up to 58%. In terms of the expected number of hits,

Fig 5. Theoretical predictions of power per causal SNP, for total sample size (x-axis) and CGR
between two sets of studies (y-axis). Factor levels: 2 sets of 50 studies, CGR equal to 1 within both sets,
100k independent SNPs, and h2

SNP
¼ 50% arising from a subset of 1k independent SNPs.

doi:10.1371/journal.pgen.1006495.g005
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this cross-ancestry meta-analysis yields an expected 82 additional hits, compared to a meta-

analysis considering only one ancestry.

Alternatively, one could carry out a meta-analysis in each set of studies and pool the hits

across these sets. However, this would imply more independent tests being carried out, and,

hence, the need for a more stringent genome-wide significance threshold, in order to keep the

false-positive rate fixed. Therefore, this route may yield less statistical power than a meta-

analysis of merely one of the two sets or a joint analysis of both. Ideally, in the scenario where

between-population heterogeneity is likely, one should apply a meta-analysis method that

accounts for the heterogeneity (e.g., [26–31]). By applying such a method, one can consider all

GWAS results from different ancestry groups in one analysis.

Empirical results for SNP-based heritability and CGR

In Table 1 we report univariate GREML estimates of SNP heritability and bivariate GREML

estimates of genetic correlation for traits that attained a pooled sample size of at least 18,000

individuals, which gave us at least 50% power to detect a genetic correlation near one for a trait

that has a SNP heritability of 10% or more [45]. The smallest total sample size is NT = 19,184

for self-rated health. Details per phenotype on sample size, univariate estimates of SNP herita-

bility, and bivariate estimates of genetic correlation, stratified across studies, and cross-study

averages, are provided in S1 Table. Results stratified across sexes are listed in S2 Table.

The univariate estimates of SNP heritability based on the pooled data assume perfect CGRs.

Therefore, such estimates of SNP heritability are downwards biased when based on data from

multiple studies with imperfect CGRs. To circumvent this bias, we estimated SNP heritability

in each study separately, and focused on the sample-size-weighted cross-study average esti-

mate of SNP heritability.

For both height and BMI, we observed genetic correlations close to one across pairs of stud-

ies and between females and males. For years of schooling (EduYears) we found a CGR around

Table 1. GREML estimates of SNP heritability and genetic correlation across studies and sexes.

Phenotype N Estimates SNP heritability1 Estimates genetic correlation1,2

pooled3 study4 sexes5 RS–STR RS–HRS STR–HRS Females–Males

Height 20,458 43.3% (1.8%) *** 44.9% 44.0% 0.976 (0.102) *** 0.954 (0.095) *** 0.967 (0.106) *** 0.981 (0.067) ***

BMI 20,449 20.9% (1.7%) *** 21.9% 22.8% 1.000 (0.269) *** 0.914 (0.172) *** 0.847 (0.246) *** 0.794 (0.122) *** †

EduYears 20,619 16.4% (1.7%) *** 18.2% 18.4% 0.690 (0.233) *** 0.659 (0.224) *** † 1.000 (0.263) *** 0.832 (0.162) ***

CurrCigt 20,686 18.2% (4.0%) *** 19.1% 24.2% 1.000 (0.643) *** 0.611 (0.448) * 1.000 (0.607) *** 0.543 (0.257) *** †

CurrDrinkFreq 20,072 7.0% (2.6%) *** 10.3% 8.3% 1.000 (0.666) *** 0.298 (0.670) -0.056 (0.647) 1.000 (2.068) *

Self-rated health 19,184 10.3% (1.8%) *** 15.7% 9.5% 0.626 (0.439) ** 0.363 (0.223) ** †† 0.447 (0.278) ** 1.000 (0.349) ***

1 Standard errors between parentheses.
2 Significance of deviations from one only tested for genetic correlations.
3 Univariate estimates from pooled data.
4 Sample-size weighted averages of univariate estimates across studies.
5 Sample-size weighted averages of univariate estimates across sexes.

* > 0 at 10% sign.

** > 0 at 5% sign.

*** > 0 at 1% sign.
† < 1 at 10% sign.
†† < 1 at 5% sign.
††† < 1 at 1% sign.

doi:10.1371/journal.pgen.1006495.t001
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0.8 when averaged across pairs of studies. Similarly, the genetic correlation for EduYears in

females and males lies around 0.8. The CGR of self-rated health is substantially below one

across the pairs of studies, whilst the genetic correlation between females and males seems to

lie around one. The reason for this difference in the genetic correlation of self-rated health

between pairs of studies and between females and males may be due to the difference in the

questionnaire across studies, discussed in S1 Data. The questionnaire differences can yield a

low CGR, while not precluding the remaining genetic overlap for this measure across the three

studies, to be highly similar for females and males. For CurrCigt and CurrDrinkFreq, the esti-

mates of CGR and of genetic correlation between females and males are non-informative. For

these two traits the standard errors of the genetic correlations estimates are large, mostly

greater than 0.5. In addition, for CurrDrinkFreq there is strong volatility in the CGR estimate

across pairs of studies.

Attenuation in power andR2 due to imperfect CGR

Considering only the traits for which we obtained accurate estimates of CGR and SNP herita-

bility (i.e., with low standard errors), we used the MetaGAP calculator to predict the number

of hits in a set of discovery samples and the PGS R2 in a hold-out sample, in prominent GWAS

efforts for these traits. Details and notes on the results from existing studies, used as input for

the MetaGAP calculations, can be found S3 Table. Importantly, as reported in S4 Table, for the

traits under consideration here, large-scale GWAS results to date have been obtained using

fixed-effects meta-analyses.

Since we only had accurate estimates for height, BMI, EduYears, and self-rated health, we

focused on these four phenotypes. For these traits, we computed sample-size-weighted average

CGR estimates across the pairs of studies. Table 2 shows the number of hits and PGS R2

reported in the most comprehensive GWAS efforts to date for the traits of interest, together

Table 2. Predicted and observed number of genome-wide-significant hits and PGSR2, for large-scale GWAS efforts to date for height, BMI, Edu-
Years, and self-rated health, assuming 250k effective SNPs (i.e., independent haplotype blocks) of which 20k trait-affecting, using averaged
GREML estimates from Table 1 for setting SNP heritability and CGR.Notes on the sources for the large-scale GWAS efforts are listed in S3 Table.

Phenotype Main studies Architecture Number of hits PGS R2 using all SNPs

Study N C ** h2
SNP

CGR Study Theory|CGR Attenuation* Study Theory|CGR Attenuation*

<1 =1 <1 =1

Height Wood et al. (2014) [1] 253,288 79 44.9% 0.965 697 647.26 700.24 8% 13.5% 13.2% 14.0% 6%

Allen et al. (2010) [46] 183,727 61 44.9% 0.965 180 292.03 320.77 9% 10.0% 10.5% 11.1% 6%

Weedon et al. (2008)
[47]

13,665 5 44.9% 0.965 7 0.00 0.00 n.a. 2.9% 1.0% 1.1% 7%

BMI Locke et al. (2015) [2] 339,224 125 21.9% 0.917 97 188.52 241.07 22% 6.5% 4.3% 5.0% 14%

Speliotes et al. (2010)
[48]

123,865 46 21.9% 0.917 19 5.48 7.64 28% 2.5% 1.8% 2.1% 15%

Willer et al. (2008) [49] 32,387 15 21.9% 0.917 1 0.01 0.02 65% n.a. 0.5% 0.6% 16%

EduYears Okbay et al. (2016) [7] 405,072 65 18.2% 0.783 162 115.28 235.90 51% n.a. 2.7% 4.1% 36%

Okbay et al. (2016) [7] 293,723 64 18.2% 0.783 74 39.30 88.93 56% 3.9% 2.0% 3.2% 36%

Rietveld et al. (2013)
[50]

101,069 42 18.2% 0.783 1 0.63 1.64 62% 2.5% 0.8% 1.2% 38%

Self-rated
health

Harris et al. (2016) [51] 111,749 1 15.7% 0.468 13 1.35 1.35 0% n.a. 0.2% 1.0% 78%

* Attenuation measures the relatively loss in expected power and R2 due to a CGR in accordance with averaged GREML estimates from Table 1.

** C denotes the number of studies in the meta-analysis.

doi:10.1371/journal.pgen.1006495.t002
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with predictions from the MetaGAP calculator. We tried several values for the number of inde-

pendent haplotype blocks (i.e., 100k, 150k, 200k, 250k) and for the number of trait-associated

blocks (i.e., 10k, 15k, 20k, 25k). Overall, 250k blocks of which 20k trait-affecting yielded theo-

retical predictions in best agreement with the empirical observations; we acknowledge the

potential for some overfitting (i.e., two free parameters set on the basis of 17 data points; 10

data points for the reported number of hits and 7 for PGS R2).

For height—the trait with the lowest standard error in the estimates of h2

SNP and CGR—the

predictions of the number of hits and PGS R2 for the two largest GWAS efforts are much in

line with theoretical predictions. For the smaller GWAS of 13,665 individuals [47], our esti-

mates seem slightly conservative; 0 hits expected versus the 7 reported. However, in our frame-

work, we assumed that each causal SNP has the same R2. Provided there are some differences

in R2 between causal SNPs, the first SNPs that are likely to reach genome-wide significance in

relatively small samples, are the ones with a comparatively large R2. This view is supported by

the fact that a PGS based on merely 20 SNPs already explains 2.9% of the variation in height.

Hence, for relatively small samples our theoretical predictions of power and R2 may be some-

what conservative. In addition, the 10k SNPs with the lowest meta-analysis p-values can

explain about 60% of the SNP heritability [1]. If the SNPs tagging the remaining 40% each

have similar predictive power as the SNPs tagging the first 60%, then the number of SNPs

needed to capture the full h2

SNP would lie around 10k/0.6 = 17k, which is somewhat lower than

the 20k which yields the most accurate theoretical predictions. However, as indicated before,

the SNPs which appear most prominent in a GWAS are likely to be the ones with a greater

than average predictive power. Therefore, the remaining 40% of h2

SNP is likely to be stemming

for SNPs with somewhat lower predictive power. Hence, 20k associated independent SNPs is

not an unreasonable number for height.

The notion of a GWAS first picking up the SNPs with a relatively high R2 is also supported

by the predicted and observed number of hits for the reported self-rated-health GWAS [51];

given a SNP heritability estimate between 10% [51] and 16% (Table 2), according to our theo-

retical predictions, a GWAS in a sample of around 110k individuals is unlikely to yield even a

single genome-wide significant hit. Nevertheless, this GWAS has yielded 13 independent hits.

This finding supports the idea that for various traits, some SNPs with a relatively high R2 are

present. However, there is uncertainty in the number of truly associated loci. More accurate

estimates of this number may improve the accuracy of our theoretical predictions.

For BMI our predictions of PGS R2 were quite in line with empirical results. However, for

the number of hits, our predictions for the largest efforts seemed overly optimistic. We there-

fore suspect that the number of independent SNPs associated with BMI is higher than 20k; a

higher number of associated SNPs would reduce the GWAS power, while preserving PGS R2,

yielding good agreement with empirical observation. Nevertheless, given the limited number

of data points, this strategy of setting the number of causal SNPs would increase the chance of

overfitting.

For EduYears we observed that the reported number of hits is in between the expected

number of hits when the CGR is set to the averaged GREML estimate of 0.783 and when the

CGR is set to one. Given the standard errors in the CGR estimates for EduYears, the CGR

might very well be somewhat greater than 0.783, which would yield a good fit with the reported

number of hits. However, as with the number of truly associated SNPs for BMI, in light of the

risk of overfitting, we can make no strong claims about a slightly higher CGR of EduYears.

Overall, our theoretical predictions of the number of hits and PGS R2 are in moderate

agreement with empirical observations, especially when bearing in mind that we are looking at

a limited number of data points, making chance perturbations from expectation likely. In
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addition, regarding the number of hits, the listed studies are not identical in terms of the pro-

cedure to obtain the independent hits. Therefore, the numbers could have been slightly differ-

ent, had the same pruning procedure been used across all reported studies.

Regarding attenuation, we observed a substantial spread in the predicted number of hits

and PGS R2 when assuming either a CGR equal to one, or a CGR in accordance with empirical

estimates, with traits with lower CGR suffering from stronger attenuation in power and pre-

dictive accuracy. In line with theory, R2 falls approximately quadratically with CGR. For

instance, for self-rated health, the estimated CGR of about 0.5, would yield a PGS that retains

approximately 0.52 = 25% of the R2 it would have had under a CGR of one. Hence the approxi-

mated attenuation is 75%. This approximation is corroborated by the theoretical relative atten-

uation of 78%.

Given our CGR estimates, the theoretical relative loss in PGS R2 is 6% for height, 14% for

BMI, 36% for EduYears, and 78% for self-rated health, when compared to the R2 of PGSs

under perfect CGRs (Table 2). These losses in R2 are unlikely to be reduced by larger sample

sizes and denser genotyping.

Somewhat contrary to expectation, the number of hits seems to respond even more strongly

to CGR than PGS R2. However, since in each study under consideration the average power per

associated SNP is quite small, a small decrease in power per SNP in absolute terms can consti-

tute a substantial decrease in relative terms. For instance, when one has 2% power per truly

associated SNP, an absolute decrease of 1%—leaving 1% power—constitutes a relative decrease

of 50% of power per causal SNP, and thereby a 50% decrease in the expected number of hits.

This strong response shows, for example, in the case of EduYears, where the expected number

of hits drop by about 37% when going from a CGR of one down to a CGR of 0.783.

Discussion

We have shown that imperfect cross-study genetic correlations (CGRs) are likely to contribute

to the gap between the phenotypic variation accounted for by all SNPs jointly and by the lead-

ing GWAS efforts to date. We arrived at this conclusion in five steps. First, we developed a

Meta-GWAS Accuracy and Power (MetaGAP) calculator that accounts for the CGR. This

online calculator relates the statistical power to detect associated SNPs and the R2 of the poly-

genic score (PGS) in a hold-out sample to the number of studies, sample size and SNP herita-

bility per study, and the CGR. The underlying theory shows that there is a quadratic response

of the PGS R2 to CGR. Moreover, we showed that the power per associated SNP is also affected

by CGR.

Second, we used simulations to demonstrate that our theory is robust to several violations

of the assumptions about the underlying data-generating process, regarding the relation

between allele frequency and effect size, the distribution of allele frequencies, and the factors

contributing to CGR. Further research needs to assess whether our theoretical predictions are

also accurate under an even broader set of scenarios (e.g., when studying a binary trait).

Third, we used a sample of unrelated individuals from the Rotterdam Study, the Swedish

Twin Registry, and the Health and Retirement Study, to estimate SNP-based heritability as

well as the CGR for traits such as height and BMI. Although our CGR estimates have consider-

able standard errors, the estimates make it likely that for many polygenic traits the CGR is pos-

itive, albeit smaller than one.

Fourth, based on these empirical estimates of SNP heritability and CGR for height, BMI,

years of education, and self-rated health, we used the MetaGAP calculator to predict the num-

ber of expected hits and the expected PGS R2 for the most prominent studies to date for these

traits. We found that our predictions are in moderate agreement with empirical observations.
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Our theory seems slightly conservative for smaller GWAS samples. For large-scale GWAS

efforts our predictions were in line with the outcomes of these efforts. More accurate estimates

of the number of truly associated loci may further improve the accuracy of our theoretical

predictions.

Fifth, we used our theoretical model to assess statistical power and predictive accuracy for

these GWAS efforts, had the CGR been equal to one for the traits under consideration. Our

estimates of power and predictive accuracy in this scenario indicated a strong decrease in the

PGS R2 and the expected number of hits, due to imperfect CGRs. Though these observations

are in line with expectation for predictive accuracy, for statistical power the effect was larger

than we anticipated. This finding can be explained, however, by the fact that though the abso-

lute decrease in power per SNP is small, the relative decrease is large, since the statistical power

per associated SNP is often low to begin with.

Overall, our study affirms that although PGS accuracy improves substantially with further

increasing sample sizes, in the end PGS R2 will continue to fall short of the full SNP-based heri-

tability. Hence, this study contributes to the understanding of the hiding heritability reported

in the GWAS literature.

Regarding the etiology of imperfect CGRs, the likely reasons are heterogeneous phenotype

measures across studies, gene–environment interactions with underlying environmental fac-

tors differing across studies, and gene–gene interactions where the average effects differ across

studies due to differences in allele frequencies. Our study is not able to disentangle these differ-

ent causes; by estimating the CGR for different traits we merely quantify the joint effect these

three candidates have on the respective traits.

However, in certain situations it may be possible to disentangle the etiology of imperfect

CGRs to some extent. For instance, in case one considers a specific phenotype that is usually

studied by means of a commonly available but relatively heterogeneous and/or noisy measure,

while there also exists a less readily available but more accurate and homogeneous measure. If

one has access to both these measures in several studies, one can compare the CGR estimates

for the more accurate measure and the CGR estimates for the less accurate but more com-

monly available measure. Such a comparison would help to disentangle the contribution of

phenotypic heterogeneity and genetic heterogeneity to the CGR of the more commonly avail-

able measure.

In considering how to properly address imperfect CGRs, it is important to note that having

a small set of large studies, rather than a large set of small studies, does not necessarily abate the

problem of imperfect genetic correlations. Despite the fact that having fewer studies can help to

reduce the effects of heterogeneous phenotype measures, larger studies are more likely to sam-

ple individuals from different environments. If gene–environment interactions do play a role,

strong differences in environment between subsets of individuals in a study can lead to imper-

fect genetic correlations within that study. The attenuation in power and accuracy resulting

from such within-study heterogeneity may be harder to address than cross-study heterogeneity.

Our findings stress the importance of considering the use of more sophisticated meta-anal-

ysis methods that account for cross-study heterogeneity [26–31]. We believe that the online

MetaGAP calculator will prove to be an important tool for assessing whether an intended

fixed-effects meta-analysis of GWAS results from different studies is likely to yield meaningful

outcomes.
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0002:1), the Ragnar Söderberg Foundation (E9/11), The Swedish Research Council (421-2013-

1061), the Ministry for Higher Education, The Swedish Research Council (M-2205-1112),

GenomEUtwin (EU/QLRT-2001-01254; QLG2-CT-2002-01254), NIH DK U01-066134, The

Swedish Foundation for Strategic Research (SSF).

Hiding Heritability and Cross-Study Genetic Overlap

PLOSGenetics | DOI:10.1371/journal.pgen.1006495 January 17, 2017 19 / 23

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006495.s002
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006495.s003
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006495.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006495.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006495.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006495.s007
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006495.s008
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006495.s009
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006495.s010


HRS (Health and Retirement Study) The HRS (Health and Retirement Study) is spon-

sored by the National Institute on Aging (grant number NIA U01AG009740) and is conducted

by the University of Michigan. The genotyping was funded separately by the National Institute

on Aging (RC2 AG036495, RC4 AG039029). Our genotyping was conducted by the NIH Cen-

ter for Inherited Disease Research (CIDR) at Johns Hopkins University. Genotyping quality

control and final preparation of the data were performed by the Genetics Coordinating Center

at the University of Washington.

RANDHRS RANDHRS Data, Version N. Produced by the RAND Center for the Study of

Aging, with funding from the National Institute on Aging and the Social Security Administra-

tion. Santa Monica, CA (September 2014).

Dutch national e-infrastructure This work was carried out on the Dutch national e-

infrastructure with the support of SURF Cooperative.

Individual acknowledgements All authors acknowledge the valuable feedback provided by

Peter M. Visscher, Jian Yang, David A. Cesarini, and Daniel J. Benjamin.

Author Contributions

Conceptualization: RdV PDK.

Data curation: RdV AO CARMJ PKEM AGU FJAvR AH.

Formal analysis: RdV AO.

Funding acquisition: PDK ART CAR.

Investigation: RdV AO.

Methodology: RdV.

Project administration: PDK CAR ART.

Resources: PDK ART.

Software: RdV.

Supervision: PDK ART PJFG.

Validation: RdV AO.

Visualization: RdV.

Writing – original draft: RdV AO PDK.

Writing – review & editing: RdV PDK AO ART PJFG CAR.

References
1. Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, et al. Defining the role of common vari-

ation in the genomic and biological architecture of adult human height. Nat Genet. 2014; 46:1173–1186.
doi: 10.1038/ng.3097 PMID: 25282103

2. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index
yield new insights for obesity biology. Nature. 2015; 518:197–206. doi: 10.1038/nature14177 PMID:
25673413

3. Eeles RA, Kote-Jarai Z, Al Olama AA, Giles GG, Guy M, Severi G, et al. Identification of seven new
prostate cancer susceptibility loci through a genome-wide association study. Nat Genet. 2009;
41:1116–1121. doi: 10.1038/ng.450 PMID: 19767753

4. Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, et al. Genetic variants in novel
pathways influence blood pressure and cardiovascular disease risk. Nature. 2011; 478:103–109. doi:
10.1038/nature10405 PMID: 21909115

Hiding Heritability and Cross-Study Genetic Overlap

PLOSGenetics | DOI:10.1371/journal.pgen.1006495 January 17, 2017 20 / 23

http://dx.doi.org/10.1038/ng.3097
http://www.ncbi.nlm.nih.gov/pubmed/25282103
http://dx.doi.org/10.1038/nature14177
http://www.ncbi.nlm.nih.gov/pubmed/25673413
http://dx.doi.org/10.1038/ng.450
http://www.ncbi.nlm.nih.gov/pubmed/19767753
http://dx.doi.org/10.1038/nature10405
http://www.ncbi.nlm.nih.gov/pubmed/21909115


5. Ripke S, Neale BM, the SchizophreniaWorking Group of the Psychiatric Genomics Consortium. Biolog-
ical insights from 108 schizophrenia-associated genetic loci. Nature. 2014; 511:421–427. doi: 10.1038/
nature13595 PMID: 25056061

6. Rietveld CA, Cesarini D, Benjamin DJ, Koellinger PD, De Neve JE, Tiemeier H, et al. Molecular genetics
and subjective well-being. Proc Natl Acad Sci USA. 2013; 110:9692–9697. doi: 10.1073/pnas.
1222171110 PMID: 23708117

7. Okbay A, Beauchamp JP, FontanaMA, Lee JJ, Pers TH, Rietveld CA, et al. Genome-wide association
study identifies 74 loci associated with educational attainment. Nature. 2016; 533:539–542. doi: 10.
1038/nature17671 PMID: 27225129

8. Okbay A, Baselmans BML, De Neve JE, Turley P, Nivard MG, FontanaMA, et al. Genetic variants
associated with subjective well-being, depressive symptoms, and neuroticism identified through
genome-wide analyses. Nat Genet. 2016; 48:624–633. doi: 10.1038/ng.3552 PMID: 27089181

9. Visscher PM, BrownMA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J HumGenet.
2012; 90:7–24. doi: 10.1016/j.ajhg.2011.11.029 PMID: 22243964

10. Benjamin DJ, Cesarini D, Chabris CF, Glaeser EL, Laibson DI, Guðnason V, et al. The Promises and
Pitfalls of Genoeconomics. Annu Rev Econom. 2012; 4:627–662. doi: 10.1146/annurev-economics-
080511-110939 PMID: 23482589

11. Maher B. Personal genomes: the case of the missing heritability. Nature. 2008; 456:18–21. doi: 10.
1038/456018a PMID: 18987709

12. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing herita-
bility of complex diseases. Nature. 2009; 461:747–753. doi: 10.1038/nature08494 PMID: 19812666

13. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, et al. Missing heritability and strategies for
finding the underlying causes of complex disease. Nat Rev Genet. 2010; 11:446–450. doi: 10.1038/
nrg2809 PMID: 20479774

14. Zuk O, Hechter E, Sunyaev SR, Lander ES. Themystery of missing heritability: genetic interactions cre-
ate phantom heritability. Proc Natl Acad Sci USA. 2012; 109:1193–1198. doi: 10.1073/pnas.
1119675109 PMID: 22223662

15. Wray NR, Yang J, Hayes BJ, Price AL, Goddard ME, Visscher PM. Pitfalls of predicting complex traits
from SNPs. Nat Rev Genet. 2013; 14:507–515. doi: 10.1038/nrg3457 PMID: 23774735

16. Witte JS, Visscher PM,Wray NR. The contribution of genetic variants to disease depends on the ruler.
Nat Rev Genet. 2014; 15:765–776. doi: 10.1038/nrg3786 PMID: 25223781

17. Wray NR, Maier R. Genetic basis of complex genetic disease: the contribution of disease heterogeneity
to missing heritability. Curr Epidemiol Rep. 2014; 1:220–227. doi: 10.1007/s40471-014-0023-3

18. Evangelou E, Fellay J, Colombo S, Martinez-Picado J, Obel N, Goldstein DB, et al. Impact of phenotype
definition on genome-wide association signals: empirical evaluation in human immunodeficiency virus
type 1 infection. Am J Epidemiol. 2011; 173:1336–1342. doi: 10.1093/aje/kwr024 PMID: 21490045

19. Wray NR, Lee SH, Kendler KS. Impact of diagnostic misclassification on estimation of genetic correla-
tions using genome-wide genotypes. Eur J HumGenet. 2012; 20:668–674. doi: 10.1038/ejhg.2011.257
PMID: 22258521

20. Wray NR, Lee SH, the Cross-Disorder Group of the Psychiatric Genomics Consortium. Genetic rela-
tionship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet. 2013;
45:984–994. doi: 10.1038/ng.2711 PMID: 23933821

21. Lee S, Teslovich TM, Boehnke M, Lin X. General framework for meta-analysis of rare variants in
sequencing association studies. Am J HumGenet. 2013; 93:42–53. doi: 10.1016/j.ajhg.2013.05.010
PMID: 23768515

22. Sham PC, Purcell SM. Statistical power and significance testing in large-scale genetic studies. Nat Rev
Genet. 2014; 15:335–346. doi: 10.1038/nrg3706 PMID: 24739678

23. Dudbridge F. Power and predictive accuracy of polygenic risk scores. PLOSGenet. 2013; 9:e1003348.
doi: 10.1371/journal.pgen.1003348 PMID: 23555274

24. Brown BC, the Asian Genetic Epidemiology Network Type 2 Diabetes Consortium, Ye CJ, Price AL, Zai-
tlen N. Transethnic Genetic-Correlation Estimates from Summary Statistics. Am J HumGenet. 2016;
99:76–88. doi: 10.1016/j.ajhg.2016.05.001 PMID: 27321947

25. Wray NR, Goddard ME, Visscher PM. Prediction of individual genetic risk to disease from genome-wide
association studies. Genome Res. 2007; 17:1520–1528. doi: 10.1101/gr.6665407 PMID: 17785532

26. Lebrec JJ, Stijnen T, Van Houwelingen HC. Dealing with heterogeneity between cohorts in genomewide
SNP association studies. Stat Appl Genet Mol Biol. 2010; 9:8. doi: 10.2202/1544-6115.1503 PMID:
20196758

Hiding Heritability and Cross-Study Genetic Overlap

PLOSGenetics | DOI:10.1371/journal.pgen.1006495 January 17, 2017 21 / 23

http://dx.doi.org/10.1038/nature13595
http://dx.doi.org/10.1038/nature13595
http://www.ncbi.nlm.nih.gov/pubmed/25056061
http://dx.doi.org/10.1073/pnas.1222171110
http://dx.doi.org/10.1073/pnas.1222171110
http://www.ncbi.nlm.nih.gov/pubmed/23708117
http://dx.doi.org/10.1038/nature17671
http://dx.doi.org/10.1038/nature17671
http://www.ncbi.nlm.nih.gov/pubmed/27225129
http://dx.doi.org/10.1038/ng.3552
http://www.ncbi.nlm.nih.gov/pubmed/27089181
http://dx.doi.org/10.1016/j.ajhg.2011.11.029
http://www.ncbi.nlm.nih.gov/pubmed/22243964
http://dx.doi.org/10.1146/annurev-economics-080511-110939
http://dx.doi.org/10.1146/annurev-economics-080511-110939
http://www.ncbi.nlm.nih.gov/pubmed/23482589
http://dx.doi.org/10.1038/456018a
http://dx.doi.org/10.1038/456018a
http://www.ncbi.nlm.nih.gov/pubmed/18987709
http://dx.doi.org/10.1038/nature08494
http://www.ncbi.nlm.nih.gov/pubmed/19812666
http://dx.doi.org/10.1038/nrg2809
http://dx.doi.org/10.1038/nrg2809
http://www.ncbi.nlm.nih.gov/pubmed/20479774
http://dx.doi.org/10.1073/pnas.1119675109
http://dx.doi.org/10.1073/pnas.1119675109
http://www.ncbi.nlm.nih.gov/pubmed/22223662
http://dx.doi.org/10.1038/nrg3457
http://www.ncbi.nlm.nih.gov/pubmed/23774735
http://dx.doi.org/10.1038/nrg3786
http://www.ncbi.nlm.nih.gov/pubmed/25223781
http://dx.doi.org/10.1007/s40471-014-0023-3
http://dx.doi.org/10.1093/aje/kwr024
http://www.ncbi.nlm.nih.gov/pubmed/21490045
http://dx.doi.org/10.1038/ejhg.2011.257
http://www.ncbi.nlm.nih.gov/pubmed/22258521
http://dx.doi.org/10.1038/ng.2711
http://www.ncbi.nlm.nih.gov/pubmed/23933821
http://dx.doi.org/10.1016/j.ajhg.2013.05.010
http://www.ncbi.nlm.nih.gov/pubmed/23768515
http://dx.doi.org/10.1038/nrg3706
http://www.ncbi.nlm.nih.gov/pubmed/24739678
http://dx.doi.org/10.1371/journal.pgen.1003348
http://www.ncbi.nlm.nih.gov/pubmed/23555274
http://dx.doi.org/10.1016/j.ajhg.2016.05.001
http://www.ncbi.nlm.nih.gov/pubmed/27321947
http://dx.doi.org/10.1101/gr.6665407
http://www.ncbi.nlm.nih.gov/pubmed/17785532
http://dx.doi.org/10.2202/1544-6115.1503
http://www.ncbi.nlm.nih.gov/pubmed/20196758


27. Morris AP. Transethnic meta-analysis of genomewide association studies. Genet Epidemiol. 2011;
35:809–822. doi: 10.1002/gepi.20630 PMID: 22125221

28. Han B, Eskin E. Random-effects model aimed at discovering associations in meta-analysis of genome-
wide association studies. Am J HumGenet. 2011; 88:586–598. doi: 10.1016/j.ajhg.2011.04.014 PMID:
21565292

29. Bhattacharjee S, Rajaraman P, Jacobs KB, Wheeler WA, Melin BS, Hartge P, et al. A subset-based
approach improves power and interpretation for the combined analysis of genetic association studies of
heterogeneous traits. Am J HumGenet. 2012; 90:821–835. doi: 10.1016/j.ajhg.2012.03.015 PMID:
22560090

30. Wen X, Stephens M. Bayesian methods for genetic association analysis with heterogeneous sub-
groups: frommeta-analyses to gene-environment interactions. Ann Appl Stat. 2014; 8:176–203. doi:
10.1214/13-AOAS695 PMID: 26413181

31. Shi J, Lee S. A novel random effect model for GWASmeta-analysis and its application to trans-ethnic
meta-analysis. Biometrics. 2016; 72:945–954. doi: 10.1111/biom.12481 PMID: 26916671

32. Evangelou E, Ioannidis JPA. Meta-analysis methods for genome-wide association studies and beyond.
Nat Rev Genet. 2013; 14:379–389. doi: 10.1038/nrg3472 PMID: 23657481

33. Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, et al. Large-scale meta-analysis of
genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet. 2014;
46:989–993. doi: 10.1038/ng.3043 PMID: 25064009

34. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association
scans. Bioinformatics. 2010; 26:2190–2191. doi: 10.1093/bioinformatics/btq340 PMID: 20616382

35. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a
large proportion of the heritability for human height. Nat Genet. 2010; 42:565–569. doi: 10.1038/ng.608
PMID: 20562875

36. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J
HumGenet. 2011; 88:76–82. doi: 10.1016/j.ajhg.2010.11.011 PMID: 21167468

37. Lee SH, Yang J, Goddard ME, Visscher PM,Wray NR. Estimation of pleiotropy between complex dis-
eases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum
likelihood. Bioinformatics. 2012; 28:2540–2542. doi: 10.1093/bioinformatics/bts474 PMID: 22843982

38. Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, et al. LD Score regression dis-
tinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;
47:291–295. doi: 10.1038/ng.3211 PMID: 25642630

39. Bulik-Sullivan BK, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, et al. An atlas of genetic correla-
tions across human diseases and traits. Nat Genet. 2015; 47:1236–1241. doi: 10.1038/ng.3406 PMID:
26414676

40. Daetwyler HD, Villanueva B, Woolliams JA. Accuracy of predicting the genetic risk of disease using a
genome-wide approach. PLOSONE. 2008; 3:e3395. doi: 10.1371/journal.pone.0003395 PMID:
18852893

41. Li MX, Yeung JMY, Cherny SS, Sham PC. Evaluating the effective numbers of independent tests and
significant p-value thresholds in commercial genotyping arrays and public imputation reference data-
sets. HumGenet. 2012; 131:747–756. doi: 10.1007/s00439-011-1118-2 PMID: 22143225

42. Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AAE, Lee SH, et al. Genetic variance estimation with
imputed variants finds negligible missing heritability for human height and body mass index. Nat Genet.
2015; 47:1114–1120. doi: 10.1038/ng.3390 PMID: 26323059

43. Yang J, WeedonMN, Purcell SM, Lettre G, Estrada K, Willer CJ, et al. Genomic inflation factors under
polygenic inheritance. Eur J HumGenet. 2011; 19:807–812. doi: 10.1038/ejhg.2011.39 PMID:
21407268

44. Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL. Advantages and pitfalls in the application of
mixed-model association methods. Nat Genet. 2014; 46:100–106. doi: 10.1038/ng.2876 PMID:
24473328

45. Visscher PM, Hemani G, Vinkhuyzen AAE, Chen GB, Lee SH,Wray NR, et al. Statistical power to
detect genetic (co) variance of complex traits using SNP data in unrelated samples. PLOSGenet. 2014;
10:e1004269. doi: 10.1371/journal.pgen.1004269 PMID: 24721987

46. Lango Allen H, Estrada K, Lettre G, Berndt SI, WeedonMN, Rivadeneira F, et al. Hundreds of variants
clustered in genomic loci and biological pathways affect human height. Nature. 2010; 467:832–838. doi:
10.1038/nature09410 PMID: 20881960

47. WeedonMN, Lango Allen H, Lindgren CM,Wallace C, Evans DM, ManginoM, et al. Genome-wide
association analysis identifies 20 loci that influence adult height. Nat Genet. 2008; 40:575–583. doi: 10.
1038/ng.121 PMID: 18391952

Hiding Heritability and Cross-Study Genetic Overlap

PLOSGenetics | DOI:10.1371/journal.pgen.1006495 January 17, 2017 22 / 23

http://dx.doi.org/10.1002/gepi.20630
http://www.ncbi.nlm.nih.gov/pubmed/22125221
http://dx.doi.org/10.1016/j.ajhg.2011.04.014
http://www.ncbi.nlm.nih.gov/pubmed/21565292
http://dx.doi.org/10.1016/j.ajhg.2012.03.015
http://www.ncbi.nlm.nih.gov/pubmed/22560090
http://dx.doi.org/10.1214/13-AOAS695
http://www.ncbi.nlm.nih.gov/pubmed/26413181
http://dx.doi.org/10.1111/biom.12481
http://www.ncbi.nlm.nih.gov/pubmed/26916671
http://dx.doi.org/10.1038/nrg3472
http://www.ncbi.nlm.nih.gov/pubmed/23657481
http://dx.doi.org/10.1038/ng.3043
http://www.ncbi.nlm.nih.gov/pubmed/25064009
http://dx.doi.org/10.1093/bioinformatics/btq340
http://www.ncbi.nlm.nih.gov/pubmed/20616382
http://dx.doi.org/10.1038/ng.608
http://www.ncbi.nlm.nih.gov/pubmed/20562875
http://dx.doi.org/10.1016/j.ajhg.2010.11.011
http://www.ncbi.nlm.nih.gov/pubmed/21167468
http://dx.doi.org/10.1093/bioinformatics/bts474
http://www.ncbi.nlm.nih.gov/pubmed/22843982
http://dx.doi.org/10.1038/ng.3211
http://www.ncbi.nlm.nih.gov/pubmed/25642630
http://dx.doi.org/10.1038/ng.3406
http://www.ncbi.nlm.nih.gov/pubmed/26414676
http://dx.doi.org/10.1371/journal.pone.0003395
http://www.ncbi.nlm.nih.gov/pubmed/18852893
http://dx.doi.org/10.1007/s00439-011-1118-2
http://www.ncbi.nlm.nih.gov/pubmed/22143225
http://dx.doi.org/10.1038/ng.3390
http://www.ncbi.nlm.nih.gov/pubmed/26323059
http://dx.doi.org/10.1038/ejhg.2011.39
http://www.ncbi.nlm.nih.gov/pubmed/21407268
http://dx.doi.org/10.1038/ng.2876
http://www.ncbi.nlm.nih.gov/pubmed/24473328
http://dx.doi.org/10.1371/journal.pgen.1004269
http://www.ncbi.nlm.nih.gov/pubmed/24721987
http://dx.doi.org/10.1038/nature09410
http://www.ncbi.nlm.nih.gov/pubmed/20881960
http://dx.doi.org/10.1038/ng.121
http://dx.doi.org/10.1038/ng.121
http://www.ncbi.nlm.nih.gov/pubmed/18391952


48. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al. Association analyses
of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010; 42:
937–948. doi: 10.1038/ng.686 PMID: 20935630

49. Willer CJ, Speliotes EK, Loos RJF, Li S, Lindgren CM, Heid IM, et al. Six new loci associated with body
mass index highlight a neuronal influence on body weight regulation. Nat Genet. 2008; 41:25–34. doi:
10.1038/ng.287 PMID: 19079261

50. Rietveld CA, Medland SE, Derringer J, Yang J, Esko T, Martin NW, et al. GWAS of 126,559 individuals
identifies genetic variants associated with educational attainment. Science. 2013; 340:1467–1471. doi:
10.1126/science.1235488 PMID: 23722424

51. Harris SE, Hagenaars SP, Davies G, Hill WD, Liewald DCM, Ritchie SJ, et al. Molecular genetic contri-
butions to self-rated health. Int J Epidemiol. 2016;advance access:dyw219. doi: 10.1093/ije/dyw219
PMID: 27864402

Hiding Heritability and Cross-Study Genetic Overlap

PLOSGenetics | DOI:10.1371/journal.pgen.1006495 January 17, 2017 23 / 23

http://dx.doi.org/10.1038/ng.686
http://www.ncbi.nlm.nih.gov/pubmed/20935630
http://dx.doi.org/10.1038/ng.287
http://www.ncbi.nlm.nih.gov/pubmed/19079261
http://dx.doi.org/10.1126/science.1235488
http://www.ncbi.nlm.nih.gov/pubmed/23722424
http://dx.doi.org/10.1093/ije/dyw219
http://www.ncbi.nlm.nih.gov/pubmed/27864402

