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Meta-Heuristic Combining Prior, Online and Offline

Information for the Quadratic Assignment Problem
Jianyong Sun, Qingfu Zhang and Xin Yao

Abstract— The construction of promising solutions for NP-
hard combinatorial optimisation problems (COPs) in meta-
heuristics is usually based on three types of information, namely a
priori information, a posteriori information learned from visited
solutions during the search procedure, and online information
collected in the solution construction process. Prior information
reflects our domain knowledge about the COPs. Extensive domain
knowledge can surely make the search effective, yet it is not
always available. Posterior information could guide the meta-
heuristics to globally explore promising search areas, but it lacks
of local guidance capability. On the contrary, online information
can capture local structures, its application can help exploit the
search space. In this paper, we studied the effects of using these
information on meta-heuristic’s algorithmic performances for the
COPs. The study was illustrated by a set of heuristic algorithms
developed for the quadratic assignment problem (QAP). We first
proposed an improved scheme to extract online local information,
then developed a unified framework under which all types of
information can be combined readily. Finally, we studied the
benefits of the three types of information to meta-heuristics.
Conclusions were drawn from the comprehensive study, which
can be used as principles to guide the design of effective meta-
heuristic in the future.

Index Terms— Meta-heuristics, quadratic assignment problem,
fitness landscape analysis, online local information, offline global
information.

I. INTRODUCTION

O
Ne of the key points in designing effective meta-

heuristics for NP-hard combinatorial optimisation prob-

lems is how to acquire useful information to build promising

solutions. Acquired information in literatures is usually fallen

into three categories, namely a priori information, a posteriori

information learned from visited solutions, and online infor-

mation collected during the solution construction process.

First of all, it is intuitive that if we have as much as possible

extensive knowledge about the considered problem, we can

develop an optimisation algorithm as effective as possible [25].

The a priori information reflects our domain knowledge

about the considered problem. A useful prior information, if

any, can significantly improve the search effectiveness and
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efficiency1. For example, the location-assignment desirability

has been successfully applied in ant systems for the quadratic

assignment problem [7]. In [62], the prior information about

the characteristics of the cardinality of the maximum clique

problems has shown its significant usefulness to the effective-

ness of the designed meta-heuristics. Moreover, it is claimed

in [21] that the heuristic domain knowledge is very helpful for

evolutionary algorithms to find good approximate solutions

of the node covering problem. Unfortunately, the a priori

information is not always available for NP-hard COPs: we

usually do not have any knowledge about the characteristics

of the global optimum solutions.

Second, most widely-used information in existing heuris-

tics is the information extracted from the visited solutions

during the search, i.e. the posterior information. First, in

genetic algorithms (GA) [19], selection operation is used to

harvest promising solutions from the visited solutions, while

crossover and mutation operators attempt to create better-fit

offspring. The posterior information takes effect implicitly

through the use of selection, crossover and mutation. On the

other hand, in tabu search (TS) [17] and its variants [10][24],

the visited solutions (or moves) are forbidden in further

search in order to avoid cycling; while in particle swarm

optimisation (PSO) [16][26], new offspring are created based

on the location information of the current local best and

global best solutions. The posterior information, i.e. the found

best solutions, is applied directly. In some recently devel-

oped algorithms for the QAP, such as the self controlling

tabu search algorithm [13] and the consultant-guided search

algorithm [23], kinetic global information is collected, shared

and propagated among individuals. In the probability model

based evolutionary algorithms (PMBEAs), such as estimation

of distribution algorithms (EDAs) [29], ant colony optimisa-

tion (ACO) [6][8], cross entropy [53], useful information is

extracted and represented as a posterior probability distribu-

tion. The posterior probability distribution models the visited

promising solutions during the search. It represents the global

statistical information extracted from previous search.

To create a solution with discrete variables by the prob-

ability distribution, one needs to select proper elements for

the components of the solution following an order of these

components. The selection of elements depends on the order

and the probability values of the variables. In the context

1As clarified in [42], the ‘effectiveness’ of an optimisation algorithm
refers to the quality of the solutions found or its robustness in finding
desired solutions. The ‘efficiency’ characterizes the runtime behavior of the
optimisation algorithm. In this paper, we focus on developing an effective
optimisation algorithm, but do not consider its efficiency.
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of EDAs for the COPs, the order of the components im-

plies the structure of variable dependencies. The dependency

structure is often represented by a Bayesian network [29]. In

EDAs, such as the univariate marginal distribution algorithm

(UMDA) [43] [45] and FDA [44] and others, the structure

of the variable dependencies is fixed. While in most other

EDAs [47] [29], the Bayesian network needs to be inferred

from the promising solutions. As well known, the structure

inferring is an NP-hard optimisation problem itself, it is then

not wise to introduce an auxiliary NP-hard problem for the

aim of solving an NP-hard problem. Alternatively, some prob-

ability model based heuristics, such as ant colony optimisation

and guided mutation [62] [64], have been proposed while the

structure of the variable dependencies is not learned, but is

applied in a random manner when sampling solutions. These

algorithms have shown their successes in solving a number of

combinatorial optimisation problems [9] [64].

Specifically, focusing on the solution construction pro-

cedure, a discrete solution x = [x1, · · · , xn]
T is usually

constructed starting from an empty solution. Following a

fixed, learned or random dependency structure, i.e. a Bayesian

network π, elements are sequentially selected, proportionally

to its probability or conditional probability values specified by

the probability distribution p. Suppose that a partial solution

x̃ = [xπ1 , · · · , xπk
] (k = 0 means that we need to build a

solution from scratch) has been created, the selection of an

element for xπk+1
is proportional to conditional probability

p(xπk+1
|xpaπk+1

), where paπk+1
is the parent variables of

xπk+1
specified by the structure. Obviously, the selection of an

element based on p(xπk+1
|xpaπk+1

) has no awareness about

the local structure of the search space.

In literature, apart from the probability information used in

solution construction process, information on local structure

has been applied. For example, in greedy adaptive randomised

search procedure (GRASP), developed by Feo et al. [12][51],

the solution construction is based on some sort of local

information. To select an element for the πk+1-th variable,

GRASP computes problem-specific greedy function values of

the candidate elements (i.e. those elements that can make the

solution feasible) and selects candidates according to these

values. GRASP attempts to exploit the local structure of the

search space. It can be seen that the the selection of a candidate

element is based on the instantaneous computation of the

greedy function during the construction process rather than

learned from visited solutions as in the above PMBEAs. We

therefore call this information as online local information. In

contrast to the online information, the statistical information

used in PMBEAs is referred to as offline global information.

A different type of online local information could be captured

through approximation of (local) fitness landscape [33].

In this paper, we intend to study the effectiveness of the

three kinds of information to find high quality solutions, and

the possibility of combing these information to develop effec-

tive meta-heuristics. The study was illustrated by solving the

well-known NP-hard QAP. We developed a unified multistart

algorithmic framework, in which prior information, online

local information and offline global information are incor-

porated. Various meta-heuristics with different incorporated

information can be derived from the unified framework. This

allows us to readily study the effects of these information to

the performance of the meta-heuristics.

The rest of the paper is organised as follows. Firstly, a

new greedy function for the QAP was defined for the online

information collection in Section II. It improves the original

greedy function developed by Li et al. [32]. Secondly, the

guided mutation operator was briefly introduced in Section

III which is able to cooperate different information. The un-

derlying assumption of the guided mutation was also verified

statistically in this section. Thirdly, a variant of ant system

called Max-Min ant system (MMAS) [56] for the QAP,

which is used to represent the offline global information, was

briefly described in Section IV. The developed unified meta-

heuristic framework was described in Section V. Finally, con-

trolled experimental results were given in Section VI to study

the effects of the new proposed greedy function, the guided

mutation, and the online and offline information. The proposed

heuristics were also compared with some other known meta-

heuristics for the QAP, including the robust tabu search (Ro-

TS) [58], the fast ant colony algorithm (FANT) [60], a variant

of iterated local search algorithm (ILS) [55], the GRASP with

path-relinking [46] (GPATH), and MMAS [56]. Section VII

concluded the paper.

II. ONLINE LOCAL INFORMATION

In literatures, few algorithms have been developed based on

online local information. Greedy adaptive randomised search

procedure (GRASP), initially developed by Feo et al. [12] [51],

is an excellent example of these algorithms particularly for a

class of COPs, such as assignment problems, routing problems,

and others. We follow the definition of these problems by

Resende and Riberio [51]. That is, these problems can be

defined by a finite set E = {1, 2, · · · , n}, a set of feasible

solutions F ⊂ 2|E|, and an objective function f : 2|E| → R
such that f(S) =

∑

e∈S c(e), ∀S ∈ 2|E|, where c(e) is the

cost associated with the inclusion of element e ∈ E in the

solution S. The quadratic assignment problem is one of them.

As shown in Alg. 1, GRASP constructs a solution step

by step from scratch. To construct a solution S, a problem-

specific greedy function g is firstly defined. The solution

construction process starts (step 1) from an empty solution

S = Φ. Candidate element set (denoted by C) is initialised to

be all possible elements in E. In step 3, the greedy function

values of all candidate elements in C, i.e. g(c), c ∈ C,

are calculated. A restricted set of candidate elements, called

restricted candidate list (RCL), is then selected from C based

on the values in step 4. In step 5, an element s is randomly

selected from the RCL. Step 6 updates the set of available

elements, and the partial solution. The solution construction

is proceed until a full solution is constructed. To improve the

generated solution, local search is applied. It can be seen that

local information (the benefits of selecting a certain elements

measured by the greedy function) collected online (in step 3) is

used to construct a solution in GRASP. Basic GRASP iterates

the construction process until satisfying solutions have been

met.
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Algorithm 1 The solution construction procedure of GRASP.

1: Set S := Φ; C := E.

2: while S is not complete do

3: Evaluate g(c) for all c ∈ C;

4: Build RCL from C based on g(c), c ∈ C;

5: Select element s from the RCL at random;

6: S := S ∪ s, C := C \ {s};
7: end while

8: return solution S.

In the following, GRASP developed for the QAP by Li et

al. [32] is briefly introduced, following the proposed greedy

function. Given two n×n matrices F = (fij) and D = (dkl),
and a set E = {1, 2, · · · , n}, the QAP can be stated as follows:

min
π∈Π

c(π) =

n
∑

i=1

n
∑

j=1

fijdπiπj
. (1)

where Π is the set of all permutations of E, F = (fij) is the

flow matrix where fij is the flow of materials from facility

i to facility j; and D = (dkl) is the distance matrix with

dkl denotes the distance from location k to location l. In a

permutation π, πj = i means that facility i is assigned at

location j. The objective of the QAP is to find the optimal

assignment of all facilities to all locations.

The GRASP implementation proposed by Li et al. includes

two stages [32]. In the first stage, GRASP selects two pairs of

facility-location. To proceed, the n2 −n distance entries in D
are firstly sorted in an ascending order. We keep the smallest

⌊β(n2−n)⌋, where ⌊x⌋ is the largest integer smaller or equal

to x. Secondly, the n2 − n flow entries in F are sorted in

descending order, and the ⌊β(n2−n)⌋ largest are kept. Thirdly,

the cost of the interactions fij × dkl, 1 ≤ i, j, k, l ≤ n, i 6=
j, k 6= l are sorted and the smallest ⌊αβ(n2 − n)⌋ elements

are reserved for the facility-location pair selection, where α
and β are parameters of the GRASP. Note that the above list

only need to be done once for the use in the rest GRASP

iterations. Two facility-location pairs, say (j1, l1), (j2, l2), are

randomly selected from the ⌊αβ(n2 − n)⌋ candidate pairs. In

stage 2 of the GRASP, the rest facilities are assigned to the

rest locations sequentially.

Suppose that at an intermediate construction step, a set of

r facility-location pairs Γ = {(j1, l1), (j2, l2), · · · , (jr, lr)}
has been assigned. The pairs in Γ indicate a partial solution.

To select a new facility-location pair, the greedy function

of assigning facility i to location k w.r.t.. the already-made

assignments is computed as follows [32]:

Cik =
∑

(j,l)∈Γ

fijdkl for (i, k) /∈ Γ

The RCL in the present step includes the ⌈α(n2 − n − r)⌉
facility-location pairs with the smallest Cik values. The (r+1)-
th facility-location pair is then randomly selected from the

RCL, say (jr+1, lr+1). The already-made assignment set Γ
will be updated as Γ = Γ ∪ {(jr+1, lr+1)}. The above

procedure will terminate until a full solution is constructed.

In the above construction procedure, the time complexity of

the first stage is O(n2). In stage two, at each step, the greedy

function values of all the unassigned facility-location pairs

need to be calculated and sorted. This would make the solution

construction computationally time-consuming. However, it is

doubtable whether the calculation is necessary or not. We

here propose a new greedy function without requiring the

intensive computing as follows. To generate a permutation π,

we iteratively assign randomly selected unfilled-location with

unassigned facility, until all locations are filled. The benefit of

assigning a facility to a location is measured by a new greedy

function described as follows. Suppose that at an intermediate

construction step, the set of already-assigned facilities is A,

and the set of already-filled locations is B. To select a facility

for a randomly unassigned location k ∈ E \ B, we compute

the greedy function of assigning a facility i /∈ A to location

k as follows:

ℓik =
∑

s∈A

fiπs
dks. (2)

If i ∈ A, then the cost ℓik is set to ∞. The same as general

GRASP implementation, the facility to be assigned to location

k can only come from the facilities with α(n− |B|) smallest

values, i.e., the RCL for location k, RCLk is defined as:

RCLk = {i /∈ A|ℓik ≤ ℓk + α(ℓ̄k − ℓk)}. (3)

where ℓk = mini/∈A ℓik and ℓk = maxi/∈A ℓik.

In the above greedy solution construction procedure, only

O(n) values need to be calculated in each construction step

rather than O(n2) as in the original one. Based on the new

greedy function, a new GRASP can thus be proposed. We refer

to the new GRASP as Gnew in this paper.

GRASP also incorporates a local search algorithm which

is used to improve the quality of the constructed solution to

local optimum. A number of local search algorithms have

been applied in literature, such as variable neighbourhood

search [20][61], tabu search [18], k-opt local search [32],

simulated annealing [61], etc. In Gnew and all the proposed

heuristics in this paper, the first-improvement 2-opt local

search algorithm (called LS2) is applied, its pseudo code

is shown in Alg. 2. It searches its neighborhood N2(s),
and updates the current solution with the firstly-found better

solution in the neighbourhood. For the QAP, N2(s) is defined

as the set of all solutions that can be obtained by swapping

two elements in solution s.

Algorithm 2 The first-improvement 2-opt local search.

1: for s not locally optimal → do

2: Find a better solution t ∈ N2(s);
3: Let s := t;
4: end for

5: return s as a local optimum.

The benefit of the new greedy function will be shown in

Section VI by comparing Gnew and the old version GRASP

(called Gold) on a set of QAP instances within a given time

limit.

Basic GRASP iterates the above solution construction pro-

cess until satisfied solutions have been found. There are no

cooperation among these constructed solutions. This could
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be a possible shortcoming to the effectiveness of GRASP. A

number of GRASP variants have been proposed attempting

to incorporate learning mechanisms in the solution construc-

tion. For examples, in reactive GRASP, the decision of the

RCL is based on the found solutions [49]. Cost perturbation

methods introduce noise into the greedy function, where the

noise is based on the appearance of elements in the visited

solutions [52]. Bias functions have been used to bias the

selection of element from the RCL toward some particu-

lar candidates [3]. In the intelligent construction method,

adaptive memory strategies and the proximate optimality

principle (POP) were incorporated [14]. Many techniques,

such as hashing [38], filtering [11], variable neighborhood

search [20] [52], genetic algorithm [1], tabu search [27],

and path-relinking [28], and others, are also hybridized

with GRASP. Among these GRASP variants, some of them

(e.g. [3][49]) made attempt to incorporate the search history

to improve the search efficiency, but only in an implicit way.

III. GUIDED MUTATION

To the best of our knowledge, there are two kinds of prior

information for the QAPs adopted in literatures. In an ant

systems to the QAP, called AS-QAP [37], the desirability of

facility-location assignments is computed according to the flow

and distance matrices [37]. This prior (heuristic) information

has been adopted in a substantially improved ACO, ANTS-

QAP [36]. But most recent ACO variants [15][57][60] choose

not to use this information, which implies that it is not as effec-

tive as we thought. On the other hand, the proximate optimality

principle (POP) proposed by Grover [17], has been implicitly

applied in meta-heuristics for the QAP. The POP states that

good solutions have similar structure. It is considered as the

underlying assumption for most, if not all, heuristics. We have

developed the so-called “guided mutation” operator to apply

the principle in creating promising solutions. Evolutionary

algorithms based on guided mutation have been successfully

applied to the maximum clique problem (MCP) [62] and

the quadratic assignment problem [63]. Its superiority over

other mutation operators has been demonstrated in solving the

MCP [62]. In this paper, we will only use the POP as a prior

information.

Guided mutation generates a solution by the combination of

posterior probability distribution and the location information

of solutions found so far (the actual position of the solutions

in the search space). For the QAP, guided mutation builds a

permutation based on a probability matrix p and a found best

solution π with parameter β. The probability matrix entry pij
indicates the probability of assigning an element i to location

j. The construction of a permutation σ was shown in Alg. 3

(cf. [62]).

The success of the guided mutation to solve a certain COP

depends on whether the COP holds the principle or not. In

literature, there are no theoretical results on the verification

of the assumption. We propose to use a fitness landscape

analysis method to empirically investigate whether the POP

holds to the QAP. In [40] [41], fitness landscape analysis,

including autocorrelation analysis and the fitness distance

Algorithm 3 Guided mutation for constructing a permutation.

1: Set U = I = E. Randomly pick up ⌊βn⌋ integers

uniformly from U and let these integers constitute a set

K ⊂ I. V := I \K, i.e. the set of already-filled locations.

2: for each i ∈ K, σi := πi and U := U \ {πi}. do

3: while U 6= Φ do

4: Select randomly an s from V, then pick up a k ∈ U
with probability psk∑

j∈U
pij

.

5: Set σs := k, U := U\{k} and V := V \ {s}.
6: end while

7: end for

8: return σ.

analysis, has been conducted for several QAP instances for the

classification of these problem instances. The autocorrelation

analysis is applied to investigate the local properties of the

fitness landscapes, while the global structures are investigated

by employing a fitness distance correlation analysis. However,

the fitness analysis in [41] cannot be employed to investigate

the proximate optimality principle. A new fitness landscape

analysis method was proposed recently [30], [31], but no

comprehensive studies have been carried out. The fitness

landscape analysis we employed in this paper is as follows.

To carry out the analysis, we first randomly generate a

set of permutations, and apply the first-improvement 2-opt

local search to result in 500 distinctive local optima Λ =
{π1, · · · , π500} with cost values H = {f1, · · · , f500} sorted

in an ascending order. We perturb each local optimum πi, 1 ≤
i ≤ 500 to form a new permutation. In our experiments, we

perturb πi by randomly exchanging 0.2n elements of πi. The

newly-formed solution is then improved to a local optimum.

We iterate the perturbation until 1000 distinct local optima

Σi = [σi,1, · · · , σi,1000] are created. The average fitness of

these local optima Σi, 1 ≤ i ≤ 500 around the original local

optima πi:

gi =
1

1000

1000
∑

j=1

c(σi,j) (4)

is computed. We then plot G = {g1, · · · , g500} as a function

of the ascending order of the fitness values H as shown in

Fig. 1, taking some QAP instances as examples.

From Fig. 1, it can be seen that the average cost values

are highly correlated with the costs of the template solutions.

The positive correlation indicates that the proximate optimality

principle holds in these QAPs. Moreover, we can claim that

statistically there is a reasonable higher chance to find an

even better solutions around good solutions rather than around

bad solutions. This implies that the guided mutation has the

potential to generate promising solutions if we take the best

solution found so far as the template solution.

Beside the guided mutation, the POP has also been applied

in the iterated local search algorithm (ILS) [55]. ILS mutates a

solution by randomly exchanging some items of the solution,

rather than by sampling some items of the solution from a

probability model as in the guided mutation. We will show

the superiority of the guided mutation over ILS in Section VI.
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(a) tai60a (b) tai80a (c) nug30 (d) bur26a

(e) ste36a (f) sko100a (g) tai60b (h) tai80b

Fig. 1. The fitness landscape analysis for eight QAP instances: tai60a, tai80a, nug30, bur26a, ste36a, sko100a, tai60b and tai80b. The x-axis is the
ascending order of the generated 500 local optima w.r.t. their fitness values; the y-axis is the average fitness values of 1000 local optima generated around
each local optima. The solid lines in the plots are the order-3 interpolation curves.

IV. OFFLINE GLOBAL INFORMATION

We used a variant of ant colony optimisation (ACO), called

Max-Min Ant System (MMAS) [56], as an example to

show the extraction of offline global information (please

refer to [5] for an excellent review of ant systems for the

QAP). A generic ACO heuristic comprises mainly three com-

ponents: heuristic information assignment, pheromone trail

update and solution construction process. The heuristic infor-

mation represents a priori problem-specific information, and

the pheromone trail is the offline global information acquired

by ants about the distribution of promising solutions in the

evolution process. The pheromone trail will be updated along

the evolution process. It is used in the solution construction

process to simulate ant’s foraging behaviour.

In MMAS , the heuristic information is not used. Suppose

at generation t, the best solution found so far is π with cost

cπ . The pheromone trail is denoted by G = (gij), where gij
indicates the probability of assigning facility i at location j.
The pheromone trail gij(t+ 1) is updated as follows:

gij(t+ 1) = ρ · gij(t) + ∆gij ; (5)

where

∆gij =

{

1.0/cπ, if facility i is in location j in solution π;
0, otherwise.

(6)

and 0 < ρ ≤ 1 is a coefficient representing the so-

called pheromone evaporation phenomenon and ρ is called

the evaporation coefficient. The pheromone evaporation is

used to avoid the unlimited accumulation of the pheromone

trails. Moreover, to avoid the premature convergence of the

search, the range of possible pheromone trails on each solution

component is limited, i.e. τmin ≤ gij(t) ≤ τmax. At each

generation, one has to make sure the pheromone trails fall into

the range of limits, that is, if gij(t) > τmax, set gij(t) = τmax;

if gij(t) < τmin, set gij(t) = τmin. As suggested in [57], τmax

can be adaptively updated as:

τmax =
1

1− ρ

1

cπ
. (7)

while τmin can be set as some constant factor lower than τmax.

New offspring is sampled from the probability model G step

by step: at construction step t, firstly a randomly location j is

picked from those unassigned, the probability of facility i to

be assigned at location j is given by:

pij(t) =

{

gij(t)∑
k∈S(j) gkj(t)

, i ∈ S(j)

0, otherwise.
(8)

where S(j) is the set of facilities that can be placed at location

j at the present construction step.

V. THE UNIFIED ALGORITHMIC FRAMEWORK

In this section, we will present a unified algorithmic frame-

work which can facilitate our study on the effectiveness of

these information to solve the QAP. To begin with, we first

present three approaches to combine the global and local

information.
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A. Information Combination

On one hand, the success of GRASP for combinatorial

optimisation is mainly because of the online local information

collected through the use of greedy function (except the local

search). To the best of our knowledge, online local information

is ignored in almost all probability model based evolutionary

algorithms (PMBEAs) except in [54] where solution is con-

structed dynamically. On the other hand, the success of the

PMBEAs is indebted to the use of offline global information.

Both GRASP and PMBEAs have achieved great success in

solving difficult COPs. However, GRASP lacks of learning

mechanism, and PMBEAs do not use local information except

for some rare cases where clustering was used in numerical

optimisation [35]. It is then worthwhile studying whether

we can take the advantages of both information to produce

effective algorithms or not.

Recalling the solution construction process in GRASP and

MMAS, at a certain step, the filling of a location j depends

on the online local information ℓij (Eq. 2) and offline global

information gij (Eq. 5) respectively, for those unassigned

facilities i ∈ S(j). However, the online local information and

the offline global information are applied in different ways.

When the online information is applied, we want to select a

facility with relatively small ℓij value. On the contrary, the

larger the gij value, the higher the probability of selecting

facility i. In order to combine the two kinds of information

properly, at a certain construction step, we first change the

probability value gij to τmax − gij for all i ∈ S(j) and

normalise it:

qij =
τmax − gij

∑

k∈S(j)(τmax − gkj)
. (9)

After the transformation, we see that the smaller value of qij ,

the higher probability of selecting facility i. We also normalise

ℓij , i ∈ S(j) values:

rij =
ℓij

∑

k∈S(j) ℓik
. (10)

The normalisation of ℓij , i ∈ S(j) is to make a balanced com-

bination of online and global information since the normalized

qij and rij are both in the range [0, 1], while the un-normalised

gij and ℓij will be in different ranges.

To combine online and global information, we propose the

following three methods. Suppose that the values provided

for the solution construction are represented by ψij , i ∈ S(j)
at a construction step for assigning facility to location j, we

summarize the three methods as follows.

(1) Crossover. That is, for each ψij , i ∈ S(j),

ψij =

{

rij , if rand() < δ;

qij , otherwise.
(11)

where rand() is a uniform random number in [0,1], δ
is a parameter to balance the contribution of the online

local information and offline global information.

(2) Linear. For each ψij , i ∈ S(j), it is obtained by combin-

ing the two kinds of information in a linear way. That

is,

ψij = λ · rij + (1.0− λ) · qij . (12)

where λ ∈ [0, 1] is a parameter.

(3) Power-law. That is, for each ψij , i ∈ S(j),

ψij = rκijq
γ
ij . (13)

where κ, γ are parameters.

The control parameters, including δ,λ,κ and γ, in the three

combination methods, are used to control the intensities of the

online and offline information in calculating ψ. Note that in

special case of the parameter settings, it can be degenerated

to using only online or offline information (cf. Remark 2 of

subsection V-B).

B. The Algorithm

The pseudocode of the proposed meta-heuristics, called

Information Combination based Evolutionary Algorithm

(ICEA), is summarised in Alg. 4.

Algorithm 4 The pseudo-code of the developed ICEA.

Input: Termination Criterion, Restart Criterion

Output: Best solution

1: Compute prior information if possible.

2: while Termination Criterion not met do

3: Randomly create a set of solution, set the best solution

to be empty, global information to be null.

4: Perform local search over initialised solutions.

5: Construct new solutions combining available informa-

tion; Perform local search over newly created solutions.

6: Update global information.

7: if Improved strictly then

8: Update best solution.

9: else

10: if Restart Criterion met then

11: Perform diversification.

12: Goto line 4.

13: end if

14: end if

15: end while

16: return best solution.

In the pseudocode, the algorithm iterates until termination

criterion has been met. For example, the algorithm could

terminate if a maximal number of fitness evaluations or a

time limit has been reached. The algorithm starts a new search

if the restart criterion has been met. In our implementation,

if in consecutive some iterations, there is no update on the

best solution, we restart the search. The prior information

is computed in line 1, the global information is updated in

line 6 after local search over newly created solutions. Online

information is computed during the solution construction pro-

cedure. Particularly for the QAP, the algorithm can be detailed

as in Alg. 5.

In ICEA, the population size is set to 1 as in MMAS [57]

and fast any colony [60]. In step 1 of ICEA, the algorithmic

parameters are set; the global best solution π∗
g is set to empty

with infinite cost. In step 2, the matrix G representing the

global offline information is initialised where the probability

of assigning a facility to a location is set equally for all
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Algorithm 5 The Developed ICEA for the QAP

Input: Termination Criterion, Restart Criterion

Output: Best solution

1: Set π∗
g to be an empty permutation with cost c(π∗

g) =
∞. Set the algorithmic parameters, including the restrict

candidate list parameter α, the guided mutation parame-

ter β, the evaporation parameter ρ, and the information

combination parameter δ (or λ, or κ, γ).

2: Initialisation.

• Initialize the offline information G with element gij =
1.0/n for all 1 ≤ i, j ≤ n.

• Randomly generate a solution π and improve the

solution π = LS2(π). Update G according to Eq. (5).

Let π∗ := π and s = ⌈β · n⌉.

3: Solution construction.

3.1 Randomly select a set of indices I = {i1, i2, · · · , is}
as the set of fixed locations. Copy facilities assigned

in π∗ to the new solution ν in the fixed locations I ,

i.e.

νi = π∗
i , i ∈ I. (14)

Let J be the set of facilities that has been assigned:

J = {π∗
i1
, · · · , π∗

is
}.

3.2 While E \ I 6= Φ, do

3.2.1 Random select an j ∈ E \ I;

3.2.2 Calculate the online local information, i.e., ℓij , the

greedy function value of placing facility i (i ∈
S(j) = E \ J) at location j according to Eq. (2).

3.2.3 Normalize ℓij , i ∈ S(j) as rij (cf. Eq. (10)), and

gij , i ∈ S(j) as qij (cf. Eq. (9)).

3.2.4 Combine the local information and global informa-

tion by using Eq. (11) or (12) or (13) to obtain ψij

for i ∈ S(j).
3.2.5 Decide the restricted candidate list T , the set of po-

tential facilities which can be assigned at location

j; set θ = ψ
j
+α ·(ψj−ψj

), where ψ
j
= mini ψij

and ψj = maxi ψij , and T = {i : ψ
i
≤ ψij ≤ θ}

3.2.6 Randomly select a facility t ∈ T , update νj := t
and I := I ∪ {j} and J := J ∪ {t}.

3.3 Return the new solution ν.

4: Improve the constructed solution ν, let ν = LS2(ν).
5: Update the global offline information G by Eq. (5). If any

gij > τmax, set gij = τmax; if gij < τmin, set gij = τmin.

Update the best solution so far π∗: If c(ν) < c(π∗), set

π∗ := ν.

6: Restart. If the restart criterion has been met, set π∗
g :=

argmin(c(π∗), c(π∗
g)), goto step 2.

7: Stop Criterion. If the stop criterion is met, stop and return

the found best solution π∗
g and its cost. Otherwise goto

step 3.

the facility-location pairs. An initial solution is randomly

generated and improved by local search to a local optimum

π∗. The probability matrix G is updated, and the current

best solution is set to π∗. In step 3, first a set of locations

is randomly selected. These locations are filled by facilities

copied from the current best solution π∗. The greedy function

values will be calculated for these unassigned facilities. It will

be combined with the probability model value G for producing

new offspring. This step returns a new solution. The new

solution is then improved by local search in step 4. Then G
and the current best solution π∗ are updated in step 5. The

algorithm iterates from steps 3 and 5 until the restart criterion

has been met. The iterates from steps 2 to 5 are called a cycle.

The algorithm restarts its search in step 6 if current search has

been converged, and the global best solution π∗
g is updated by

comparing with the current best solution π∗. When the stop

criterion has been met, the algorithm stops and returns the best

solution found in all the cycles. The algorithm will terminate

when the maximum number of fitness evaluations or a given

time limit, have been reached.

Remark 1: In the described algorithmic framework, the

backbone is GRASP. An element is selected randomly from

RCL, which depends on the combined information. Alterna-

tively, we can select an element proportionally to the combined

information. That is, step 3.2.5 can be written as follows:

3.2.5 Select an element i for location j proportionally

to

pij =
gij

∑

k∈S(j) gkj
, i ∈ S(j) (15)

Note that gij is applied rather than qij as in the old step 3.2.5.

In the following, we do not experimentally study this variants,

but leave it as an alternative for future study.

Remark 2: According to different algorithmic parameter

settings, ICEA has the following five variants. In case that

δ = 1 (or λ = 1, or κ = 1, γ = 0), no global information

is incorporated. The resultant algorithm is called “ILSOL”

(Iterated Local Search with Online Local information). Note

that the only difference of ILSOL and GRASP is that ILSOL

uses guided mutation to create offspring. In case that δ = 0
(or λ = 0, or κ = 0, γ = 1), no local information is used. If

we replace step 3.2.5 with the new step 3.2.5 in Remark 1,

the resultant algorithm is similar to the MMAS, except that

the guided mutation is applied. We call the resultant algorithm

“GANT” (Guided mutation based ant system). Except ILSOL

and GANT, three ICEA variants, called “ICEA-CRO” (the

cross combination), “ICEA-LIN” (the linear combination) and

“ICEA-POW” (the power-law combination), can be derived

by setting different δ, λ, or κ and γ values. Moreover, if

the guided mutation parameter β is set to zero, no prior

information is combined. If we set δ = 1 (or λ = 1, or

κ = 1, γ = 0), Gnew is recovered. If we set δ = 0 (or λ = 0,

or κ = 0, γ = 1), MMAS is obtained. Table I shows the

relationship among these variants and the information used.

Remark 3: The restart, or diversification, strategy is used to

avoid the ‘closed orbits” and “chaotic attractor” phenomena

as discussed in [58]. In some cases, the evolution trajectory

endlessly repeat a sequence of states, which indicates that

the algorithm is trapped in a closed orbit. Chaotic attractor
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TABLE I

THE INFORMATION USED BY THE HEURISTICS.

type of information MMAS Gnew/GRASP ICEA

GANT ILSOL -LIN -CRO -POW

global Yes No Yes No Yes Yes Yes

local No Yes No Yes Yes Yes Yes

prior No No Yes Yes Yes Yes Yes

indicates that the search trajectory is confined in a limited

portion of the search space. To avoid the phenomena, a simple

method is to restart the search procedure. In the proposed

algorithms, if in executive 100 generations no better solution

can be found, the algorithms will restart.

The experimental comparison among the ICEA variants, and

some other heuristics on some QAP instances will be given

in the following section.

VI. EXPERIMENTAL RESULTS

To study the proposed algorithms and compare them with

some best-known algorithms, the proposed algorithms will be

applied to solve a set of QAP instances with size up to 256

from QAPLIB [4]. As claimed in [59], the type of a QAP

instance has very significant influence to the performance of

meta-heuristics. In this paper, the proposed algorithms have

several parameters. The performances of these algorithms

would depend on these parameters, and consequently the

selection of these parameters may depend on the types of the

QAP instances. We follow the QAP instances’ classification

in [59] to classify these instances as follows:

(I) Unstructured, randomly generated instances. In these

QAP instances, elements in the distance and flow matrices

are randomly generated according to a uniform distribu-

tion.

(II) Real-life instances. Instances of this class are from real-

life applications of the QAP.

(III) Grid-based distance matrix. Elements in the distance

matrix are defined as the Manhattan distance between

grid points.

(IV) Real-life like instances. Elements in the matrices of this

class are generated from a distribution which is similar

to the distribution found in real-life problem.

In this section, instances from the above four classes were

used to compare among different algorithms and the parame-

ters were determined according to the classes. The comparison

was divided into three stages.

• Stage 1. Gnew was compared with Gold, and a purely ran-

dom start algorithm (called pRand). In pRand, solutions

were independently and randomly generated, and were

improved to local optima by LS2. The comparison was

used to show the benefit of the proposed greedy function

(cf. subsection VI-A).

• Stage 2. ILSOL and GANT were compared with Gnew,

MMAS with LS2, and a variant of the iterated local

search (ILS) algorithm. Note that the only difference

between ILSOL & Gnew, and GANT & MMAS, is

that the prior information (guided mutation) is applied

in the previous ones, but not in the later ones. Hence,

the comparison can be used to show the benefit of the

prior information to the performance of the heuristics

(cf. subsection VI-B). The comparison with ILS was to

answer whether or not the online and offline information

does improve the search capability.

• Stage 3. The ICEA variants, including ILSOL, GANT,

ICEA-CRO, ICEA-LIN and ICEA-POW, were compared

with each other in order to study the benefits of the global,

local information, and their combination to effective

search. They were also compared with some other known

algorithms, including the robust tabu search (Ro-TS) [58],

FANT, the GRASP with path relinking [46] (GPATH),

and the MMAS with tabu search (cf. subsection VI-C).

The comparison was to investigate whether the informa-

tion combination could result in effective meta-heuristics.

To fairly compare the considered algorithms, we have

used the codes developed by the corresponding authors, and

run them on our machines with the algorithmic parameters

suggested in these papers.

A. The New Implementation of GRASP

The authors in [14] [55] claimed that GRASP outperforms

pRand when both the algorithms terminate at a given number

of solution evaluations. However, it is not clear which one

perform better in terms of solution quality within a given time,

since it is obvious that the time used for solution generation by

pRand is shorter than GRASP. The comparison in this section

is used to clear the open question. Moreover, we concern on

the performance of Gnew, in which the new greedy function

is adopted.

In Table II, the experimental results of pRand, Gold (the

basic GRASP for the QAP developed in [32]), and Gnew

are listed. There are two versions of Gold by Oliveria et

al. [46] and Li et al. [32], respectively. We found that the

implementation by Oliveria et al. achieved better performance.

Hence the implementation of Oliveria et al. was used to carry

out the comparison. The parameter settings of Gold is the same

as in [46], while the algorithmic parameters of Gnew is the

same as those of Gold.

In the table (and the following tables), t indicates the time

given for different QAP instances, and the best results are

typeset in bold. The algorithms terminate when the given time

has been reached. Entries in the table and the following tables

are the average percentage of the found solutions excess over

the best-known solutions over 30 runs, avg.% is the average

value of the entries in each column for the corresponded

algorithm.

According to the avg.% values in the table, we can see that

on average, (1) the new GRASP is superior to all the others;
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TABLE II

THE COMPARISON RESULTS OBTAINED BY Gold , Gnew AND PRAND

WITHIN A GIVEN TIME ON SOME QAP INSTANCES. THE BEST RESULTS

ARE TYPESET IN BOLD.

instances pRand Gnew Gold t

randomly generated instances

tai20a 0.447 0.198 0.442 5
tai25a 0.936 0.792 1.272 15
tai30a 1.302 1.414 1.464 20
tai35a 1.621 1.627 1.768 60
tai40a 1.867 1.901 2.124 60
tai50a 2.474 2.440 2.494 90
tai60a 2.632 2.442 2.736 90
tai80a 2.166 2.174 2.208 180

tai100a 2.032 2.026 2.130 300
tai256c 2.127 0.210 0.237 1200

avg. % 1.764 1.668 1.687 /

real-life instances

chr25a 7.444 5.389 6.870 15
bur26a 0.000 0.000 0.000 15
kra30a 0.601 0.156 0.572 20
kra30b 0.120 0.126 0.236 20
ste36a 0.982 1.077 1.440 30
ste36b 0.126 0.272 1.090 30

avg. % 1.545 1.170 1.701 /

instances with grid-based distance matrix

nug30 0.209 0.150 0.317 20
sko42 0.413 0.407 0.508 60
sko49 0.560 0.519 0.569 60
sko56 0.520 0.516 0.670 90
sko64 0.589 0.622 0.713 90
sko72 0.679 0.627 0.823 120
sko81 0.690 0.666 0.837 120
sko90 0.682 0.670 0.818 180

sko100a 0.647 0.590 0.779 300

avg. % 0.554 0.529 0.670 /

real-life like Instances

tai20b 0.000 0.000 0.000 5
tai25b 0.007 0.000 0.007 15
tai30b 0.032 0.090 0.111 20
tai35b 1.437 0.171 0.200 60
tai40b 0.021 0.008 0.010 60
tai50b 0.182 0.166 0.273 90
tai60b 0.226 0.202 0.267 90
tai80b 0.883 0.969 1.033 180

tai100b 0.595 0.698 0.825 300
tai150b 1.373 1.313 1.529 600

avg. % 0.476 0.348 0.399 /

(2) GRASP is only comparable with the pure random restart

algorithm. It seems that the online information does not really

contribute to the search. This observation seems contradict the

claim in the beginning of this section that GRASP outperforms

pRand. To explain this, we record the number of local search

the algorithms carried out within the given time and plot the

results in Fig. 2. In the figure, the x-axis shows the QAP

instances sorted in ascending order w.r.t. the number of local

optima visited by the new GRASP (Gnew); the y-axis is the

number of visited local optima. From the figure, we can see

that within a given time, pRand conducts much more LS2 than

Gold, but only a few more than Gnew. This indicates that the

extra time used by the solution construction procedure in Gold

cannot compensate for the solution quality.

On the other hand, although the number of local optima

that Gnew conducted is always smaller than those of pRand,

the performance of Gnew is still better than that of pRand

on average. Note that Gnew chooses the locations to be
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Fig. 2. The comparison of the number of local searches performed by Gnew ,
Gold, and pRand within given time limits.

assigned randomly rather than being decided along with the

construction step as in Gold, we can then claim that the random

order of locations does not necessarily deteriorate the search

performance, and the online local information collected by the

new greedy function can indeed benefit the search.

B. ILSOL and GANT

In the ICEA variants, ILSOL and GANT create new

offspring by applying the guided mutation. The online lo-

cal information and the offline global information are used,

respectively. This section is to answer the following two

questions. The first is whether the search can benefit from

the guided mutation operator. The second is whether or not

the incorporation of the guiding information as in ILSOL and

GANT is better than random exchanging as used in ILS, as

already proposed in section III.

To answer the questions, we compare the related algorithms,

including ILSOL, Gnew, GANT, a variant of MMAS and

a variant of ILS. In the ILS variant, the “better” acceptance

criterion and the restart strategy are applied (please see [56]

for details). That is, when a better solution is found during

the search, the current best solution is updated and mutated

for a new solution; when the algorithm cannot find a better

solution in some executive generations, the algorithm will

restart. The variant is called “ILSb
r” following [56]. MMAS

developed in [57] has two variants with different local search

approaches, including the first-improvement 2-opt local search

(MMASLS), and tabu search (MMASTS). In this section,

MMASLS was used. The reason that we used ILSb
r and

MMASLS to carry out the comparison is that they are the

same as GANT and ILSOL respectively except the guiding

information. The comparison between ILSOL & Gnew, and

GANT & MMASLS can answer the first question, while the

comparison among ILSOL, GANT and ILSb
r can be used to

answer the second question.

The algorithmic parameters of these algorithms were set as

follows:
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• The algorithmic parameters of ILSOL include the re-

stricted candidate list parameter α and the guided muta-

tion parameter β. They are set differently with respect to

different QAP classes. For instances in the unstructured,

randomly generated class, α = 0.1, β = 0.9 (i.e., 90%

items of the current best solution are fixed). For most

instances in the other three classes, α = 0.3, β = 0.9. For

the QAP instances with smaller problem sizes including

tai20a, tai20b, tai25b, chr25a, bur26a, β = 0.8.

• For MMASLS , τmax is set adaptively as in Eq. (7),

τmin = 2τmax/n, the evaporation parameter ρ = 0.8.

• For GANT, the guided mutation parameter β is set to

be 0.9 for large-size QAP instances, and 0.8 for the

QAP instances with size less than 26. The evaporation

parameter ρ is 0.8. τmax and τmin are the same as in

MMASLS .

• The parameter settings of ILSb
r follow the settings in [56].

All the algorithms terminate when the given time limits as

shown in Table II have been reached. Experimental results

obtained by these algorithms are listed in Table III.

From the average values listed in the tables, we have the

following observations:

(1) ILSOL clearly outperforms Gnew in all the four classes;

(2) GANT outperforms MMASLS for the QAP instances

in type I, and shows a slightly better performance for the

QAP instances in other types;

(3) both ILSOL and GANT are superior to ILSb
r for all the

QAP instances;

(4) The performance of ILSOL is slightly better than GANT

for the QAP instances in type I and IV, is slightly worse

in type III, and is the same as in type II.

Since the only difference between ILSOL and Gnew (GANT

and MMASLS) is that POP is applied in ILSOL and GANT,

we can claim that the use of POP can indeed improve the

search effectiveness according to observations (1) and (2).

Moreover, since ILSb
r uses random exchanging to mutate a

solution, while ILSOL and GANT use collected information

as guidance, we can claim that the incorporation of the

guiding information indeed improve the performances of meta-

heuristics according to observation (3). Finally observation

(4) indicates that the capabilities of the online and offline

information are generally about the same. Specifically, it seems

that the the local information (ILSOL) works better if the QAP

instances have complex structures as in types I and IV.

C. ICEA: Study of Information Incorporation

It is shown in the last section that the incorporation of both

online information and offline information does benefit the

performance of the corresponding algorithms. In this section,

we intended to study whether the combined information can

be more useful for designing effective heuristics.

The proposed ICEA provides us a chance to study the effects

of information incorporation. The ICEA variants, including

ILSOL, GANT, ICEA-CRO, ICEA-LIN and ICEA-POW, use

different probability information to produce new offspring. In

this section, we compare them with each other, and with some

TABLE III

THE EXPERIMENTAL RESULTS OF ILSb
r , ILSOL, Gnew , GANT AND

MMASLS ON THE TEST QAP INSTANCES WITH DIFFERENT CLASSES.

THE BEST RESULTS ARE TYPESET IN BOLD.

instances ILSb
r ILSOL Gnew GANT MMASLS t

randomly generated instances

tai20a 0.248 0.192 0.198 0.345 0.183 5
tai25a 0.785 0.262 0.792 0.298 0.284 15
tai30a 0.958 0.276 1.414 0.289 0.394 20
tai35a 1.046 0.529 1.627 0.480 0.698 60
tai40a 1.015 0.790 1.901 0.743 0.777 60
tai50a 1.577 1.211 2.440 1.178 1.217 90
tai60a 1.619 1.408 2.442 1.226 1.353 90
tai80a 1.501 1.009 2.174 1.111 1.891 180

tai100a 1.396 0.996 2.026 0.947 1.061 300
tai256c 0.098 0.082 0.210 0.261 1.245 1200

avg.% 1.127 0.675 1.668 0.688 0.910

real-life instances

chr25a 2.718 0.000 5.389 0.000 0.000 15
bur26a 0.000 0.000 0.000 0.000 0.000 15
kra30a 0.101 0.000 0.156 0.000 0.000 20
kra30b 0.040 0.000 0.126 0.000 0.000 20
ste36a 0.283 0.000 1.077 0.000 0.000 30
ste36b 0.000 0.000 0.272 0.000 0.000 30

avg.% 0.524 0.000 1.170 0.000 0.000

instances with grid-based distance matrix

nug30 0.042 0.000 0.150 0.000 0.000 20
sko42 0.074 0.000 0.407 0.000 0.000 60
sko49 0.137 0.053 0.519 0.049 0.056 60
sko56 0.247 0.080 0.516 0.064 0.062 90
sko64 0.174 0.057 0.622 0.009 0.011 90
sko72 0.227 0.159 0.627 0.137 0.149 120
sko81 0.326 0.188 0.666 0.185 0.179 120
sko90 0.270 0.239 0.670 0.200 0.224 180

sk0100a 0.284 0.153 0.590 0.246 0.270 300

avg.% 0.198 0.102 0.129 0.098 0.106

real-life like Instances

tai20b 0.000 0.000 0.000 0.000 0.000 5
tai25b 0.000 0.000 0.000 0.000 0.000 15
tai30b 0.000 0.000 0.090 0.000 0.000 20
tai35b 0.018 0.000 0.171 0.000 0.000 60
tai40b 0.000 0.000 0.008 0.000 0.000 60
tai50b 0.233 0.008 0.166 0.115 0.013 90
tai60b 0.483 0.002 0.202 0.004 0.021 90
tai80b 0.367 0.221 0.969 0.254 0.291 180

tai100b 0.193 0.153 0.698 0.211 0.190 300
tai150b 0.616 0.614 1.313 0.580 0.691 600

avg.% 0.182 0.086 0.348 0.116 0.121

known heuristics, including robust tabu search algorithm (Ro-

TS) [58], fast ant colony algorithm (FANT) [60], GRASP with

path-relinking algorithm (GPATH) [46], Max-Min ant system

with tabu search (MMASTS) [56].

For the ICEA variants, different parameter settings were

used. The parameter settings of ILSOL and GANT have been

described in Section VI-B. For ICEA-POW, α = 0.6, ρ = 0.8;

κ and γ = 1.0. For ICEA-CRO, the parameter settings are:

α = 0.3, ρ = 0.8 and δ = 0.6. For ICEA-LIN, α = 0.5,

ρ = 0.6 and λ = 0.5.

The comparison results are listed in Table IV. In the table,

the given time limits are the same as in the above experiments.

Figs. 3 and 4 show the evolution process of the algorithms

taking four QAP instances from each class as examples. In the

figures, the x-axis is the time steps, while the y-axis shows the

objective function values. From the figures, it can be observed

that the performances of the developed algorithms vary along

with the different QAP classes. Detailed observations are as



11

follows:

(1) On average, all the ICEA variants perform clearly better

than Ro-TS for the QAP instances in types (II), (III), but

worse for the QAP instances in type I in terms of solution

quality within a given time limit. The linear combination

variant ICEA-LIN performs better than Ro-TS for type

IV instances. But the other variants, especially GANT,

performs worse than Ro-TS in type IV. The performance

of Ro-TS for the QAP instances from type I is the best

among these algorithms except MMASTS .

(2) The ICEA variants clearly compare favorably against

FANT and GPATH. Actually, on average, among the nine

algorithms, GPATH performs the worst. FANT performs

better than Ro-TS for the real-life instances (type II).

(3) Among the nine algorithms, the tabu search variant of

MMAS achieved the best performance. The perfor-

mance of MMASTS is significantly better than the

ICEA variants for type I and III QAP instances, but sim-

ilar to those of the ICEA variants for type IV instances.

(4) Comparing the ICEA variants, we can see that for type I

instances, ILSOL obtained the best average results, and

the combined versions of ICEA are worse than ILSOL

and GANT; for type III instances, ICEA-POW and ICEA-

CRO perform better than ICEA-LIN and GANT but

worse than ILSOL; for type IV instances, ICEA-POW

and ICEA-LIN work better than the other three variants.

Observation (1) indicates that Ro-TS is superior to most of

the ICEA variants in terms of solution quality within a given

time limit for the QAP instances in type I. The observation

is actually not surprising. As we already knew [42], the

QAP instances in type I are completely unstructured (high

epistasis and high landscape ruggedness). Since the proposed

algorithms are learning-based heuristics which are designed

to exploit some kind of global / local structure through a

learned distribution model of the promising solutions in the

QAP search space, it can be expected that these algorithms

would perform better on the structured problem instances like

the QAP instances in type II, than in the QAP instances

with complicated structures (type I). The observation that

FANT performs better than Ro-TS for type II QAP instances

(observation (2)), and the better performance of the ICEA

variants for the type II-IV QAP instance provide us more

evidences to verify that learning-based meta-heuristics can

indeed work well on well-structured (type II) and unstructured

(but not completely unstructured, e.g. types III and IV) QAP

instances.

Observation (2) indicates that the variants of ICEA are

superior to FANT and GPATH in terms of solution quality

on all the QAP instances. This again proves the effectiveness

of the application of prior information (cf. Section VI-B). This

also shows that the information combination has the potential

to develop effective meta-heuristics.

Focusing on the comparison among the combined informa-

tion variants of ICEA (observation (4)), the better performance

of ILSOL against GANT for the type I QAP instances indi-

cates that the online local information is significantly useful

in solving unstructured QAP instances. While the observation

that combined information variants (ICEA-POW and ICEA-

LIN) are superior to GANT and ILSOL in solving type III and

IV instances indicates that the global information is useful in

solving structured problem instances. This can be explained

by noticing that the global properties of the structured QAP

instances can be easily learned. For the unstructured instances,

the learned global information can be misleading for the new

offspring generation since the local optima obtained by LS2

in the search space can be totally uncorrelated.

Observation (4) states that ILSOL is superior to GANT,

and GANT is superior to the ICEA variant with combined

information for type I QAP instances. This tells us that the

combined information is not useful for completely unstruc-

tured QAP instances. It is probably because that the combined

global information distracts the online information which can

guide the search to a promising area. Moreover, we found that

the crossover combination is not as effective as the linear and

power-law combination for the QAP instances with complex

structures (type I and type IV).

Comparing the results of MMASLS listed in Table III

with those of the ICEA variants in Table IV, we can see

that the ICEA variants obtained better results than MMASLS

for all the QAP instances (observation (3)). On the contrary,

the MMAS with tabu search performs favorably over the

ICEA variants. Hence, the performance difference between

MMASLS and MMASTS must due to the use of the

different local search algorithms. The use of tabu search can

gain much better local solutions since it does not stop in

local optima. Due to the better solutions, offspring sampled

from the extracted posterior probability model could be more

accurate since we have a better understanding of the fitness

landscape of the QAP search space. Note that tabu search has

been proven to be more effective on the QAP landscapes [42].

Moreover, even though the extracted probability model is not

accurate, the application of tabu search on offspring solutions

can still guarantee a fairly good local optima. That explains

why MMASTS can perform better than the others. In the

future, it is worth studying the hybridization of tabu search in

the proposed algorithmic framework.

D. Algorithmic Parameter Settings

As well known, to decide on an appropriate set of parameter

values is always a difficult problem for meta-heuristics [34].

In our study, we adjusted the parameters of the developed

algorithms using a greedy method similar to the coordinate

descent method [2]. The parameters are considered as discrete

variables, that is, each parameter can only take from a set of

predefined values. The average objective function value over

10 runs for a set of parameters is considered as the objective

function for parameter tuning. The search for appropriate

parameter set is iterated as follows. At each iteration, the

setting of a particular parameter is to choose the parameter

value with the least objective function value. In the following

iteration, this parameter is fixed. The iteration continues until

all the parameters do not vary.

According to our experiences in adjusting the parameters of

the ICEA variants, it seems that the guided mutation parameter
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β is the easiest to be set. The usual value for β is 0.9 for

the QAP instances with size n ≥ 30. For small-size QAP

instances, β can be set to 0.8. Note that the β value indicates

the number of components to be statistically fixed during the

search. This large value setting implies that the number of local

minima in the QAP instances are extremely large even for the

small-size QAP instances. The reason is that if there is less

local minima, the large β value will cause the improvement of

a perturbed solution to an already-visited local minima which

will no doubt deteriorate the performance of the algorithm.

For ρ, the evaporation coefficient, it can be set between

[0.6,0.8]. The large value indicates that we need to be careful

about the forgetting of previous history and including of new

knowledge. In many ant systems for the COPs, the ρ is set a

similar value.

For α, the parameter that controls the restricted candidate

list, its setting depends on what information combination

method is used. If there is no global information as in

ILSOL, the value is in the range of [0,0.3]. If the information

combination method is used, its setting seems correlated to the

other parameters, such as δ, or κ, γ, λ w.r.t. the information

combination method. It is intuitive since the performance of

the algorithm largely depends on the balance of the global

and local information. It is these parameters that defines the

compromise.

VII. CONCLUSION AND FUTURE WORK

In this paper, the effects of different kinds of information

to the performances of the heuristics were investigated. A

unified framework, named ICEA, was proposed in which

different kinds of information are incorporated to produce

promising solutions. The incorporated information types are a

priori information, online local information and offline global

information.

The developed ICEA was applied to the QAP as a case

study. In the ICEA variants, the online local information

collection method by GRASP (greedy randomised adaptive

search procedure) was improved and adopted. The pheromone

trail update method in MMAS was adopted as the offline
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TABLE IV

THE EXPERIMENTAL RESULTS OF ICEA VARIANTS, RO-TS, FANT, GRASP WITH PATH RELINKING, MMAS WITH TABU SEARCH. THE BEST RESULTS

ARE TYPESET IN BOLD.

instances Ro-TS FANT GPATH ICEA MMASTS t

ILSOL GANT POW CRO LIN

randomly generated instances

tai20a 0.000 0.405 0.345 0.192 0.345 0.182 0.168 0.182 0.000 5
tai25a 0.129 0.968 0.872 0.262 0.298 0.216 0.268 0.201 0.000 15
tai30a 0.187 1.023 1.183 0.276 0.289 0.568 0.454 0.393 0.000 20
tai35a 0.389 1.195 1.267 0.529 0.480 0.518 0.707 0.705 0.006 60
tai40a 0.628 1.171 1.760 0.790 0.743 0.883 0.964 0.834 0.402 60
tai50a 1.083 1.906 2.026 1.211 1.178 1.279 1.300 1.232 0.682 90
tai60a 1.169 2.646 2.460 1.408 1.226 1.390 1.271 1.405 0.902 90
tai80a 0.989 2.562 2.171 1.009 1.111 1.148 1.510 0.998 0.746 180

tai100a 0.899 2.561 2.205 0.996 0.947 0.987 1.080 0.984 0.696 300
tai256c 0.234 0.263 0.276 0.082 0.261 0.115 0.120 0.112 0.271 1200

Avg. 0.570 1.470 1.456 0.675 0.688 0.728 0.784 0.705 0.371

real-life instances

chr25a 2.808 1.243 3.746 0.000 0.000 0.000 0.000 0.000 0.000 15
bur26a 0.000 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 15
kra30a 0.000 0.552 0.090 0.000 0.000 0.000 0.000 0.000 0.000 20
kra30b 0.000 0.015 0.040 0.000 0.000 0.000 0.000 0.000 0.000 20
ste36a 0.010 0.487 0.613 0.000 0.000 0.000 0.000 0.000 0.000 30
ste36b 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 30

Avg. 0.469 0.384 0.748 0.000 0.000 0.000 0.000 0.000 0.000

instances with grid-based distance matrix

nug30 0.000 0.091 0.072 0.000 0.000 0.000 0.000 0.000 0.000 20
sko42 0.000 0.038 0.193 0.000 0.000 0.000 0.000 0.002 0.000 60
sko49 0.073 0.155 0.355 0.053 0.049 0.082 0.063 0.055 0.000 60
sko56 0.037 0.094 0.365 0.080 0.064 0.073 0.065 0.052 0.035 90
sko64 0.043 0.203 0.468 0.057 0.009 0.022 0.041 0.107 0.009 90
sko72 0.126 0.299 0.503 0.159 0.137 0.170 0.133 0.158 0.083 120
sko81 0.113 0.272 0.499 0.188 0.185 0.157 0.135 0.186 0.121 120
sko90 0.103 0.403 0.512 0.239 0.200 0.158 0.230 0.209 0.108 180

sko100a 0.109 0.347 0.496 0.153 0.246 0.186 0.175 0.204 0.107 300

Avg. 0.168 0.214 0.385 0.088 0.098 0.094 0.093 0.108 0.051

real-life like Instances

tai20b 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5
tai25b 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 15
tai30b 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 20
tai35b 0.000 0.047 0.023 0.000 0.000 0.000 0.000 0.000 0.000 60
tai40b 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 60
tai50b 0.008 0.239 0.062 0.008 0.115 0.000 0.001 0.001 0.010 90
tai60b 0.019 0.008 0.088 0.002 0.004 0.005 0.012 0.014 0.009 90
tai80b 0.195 0.385 0.259 0.221 0.254 0.168 0.195 0.154 0.150 180

tai100b 0.172 0.193 0.432 0.153 0.211 0.180 0.305 0.160 0.115 300
tai150b 0.441 0.818 1.022 0.674 0.580 0.524 0.597 0.432 0.481 600

Avg. 0.084 0.169 0.187 0.106 0.116 0.087 0.111 0.076 0.077

global information collection method. The guided mutation,

with the proximate optimality principle (the prior information)

as the underlying assumption, was used to produce new

offspring. In the ICEA variants, either only online local in-

formation (ILSOL), or offline global information (GANT), or

the combination of online and offline information (ICEA-CRO,

ICEA-LIN and ICEA-POW), was used. The prior information,

i.e. the guided mutation, was used in all the ICEA variants.

In the experimental studies, firstly, we investigated the

significance of the proposed new greedy function to the perfor-

mance of the meta-heuristic. Secondly, the benefits of different

types of information were compared. Finally, experiments

were carried out to compare algorithms among the variants

of ICEA and other known algorithms. From the experiment

results, we have the following conclusions:

• The new proposed greedy function is more effective

than the old greedy function on collecting online local

information;

• The prior information (POP) has significant effect on

generating promising offspring;

• The online local information has more significant effect

on designing efficient heuristics for completely unstruc-

tured QAP instances, while the offline global information

extracted from the LS2 local optima is more suitable for

the QAP instances with relatively simple structure.

• It is not wise to combine the global information with

the online information in solving completely unstructured

QAP instances in case a cheap local search algorithm like

LS2 is applied. However, the information combination

can indeed result in effective meta-heuristics for struc-

tured QAP instances.

• The linear and power-law information combination meth-

ods perform better than the crossover method on average.

Since there are many other global information collection

methods rather than MMAS, we will embed these methods

into the ICEA framework for information combination in
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the future. Furthermore, the observation that MMAS with

tabu search performs well implies that the global structure

of completely unstructured QAP instances could be learned

from the local optima obtained by expensive local search

algorithm e.g. tabu search. Therefore, we will study the

information combination by hybridising other local search or

even meta-heuristic methods, such as tabu search and guided

local search [63] in ICEAs. Moreover, the effect of the infor-

mation combination on the performance of probability model

based evolutionary algorithms will be further investigated

by applying the information combination method to other

difficult COPs, such as traveling salesman problem, frequency

assignment problem, routing problems [39], etc.

To apply the information combination framework to a COP,

we are expecting that the solution of the COP can be con-

structed gradually from partial solution. Moreover, we expect

some sort of local information that can be extracted during

the solution construction process, and global information as

references from visited solutions. The global information may

not be limited to the form of probabilistic model as presented

in the paper. Other forms, such as crossover and mutation, can

also be applied. With the local and global information, a proper

method to combine them is required. From our study, we can

say that the investigation of the information combination has

the potential to achieve highly effective and efficient meta-

heuristics for COPs.

Finally, since a multi-start strategy is applied in the devel-

oped framework, the diversification scheme will have a critical

effect on the algorithmic performance. In this paper, only a

random diversification scheme is applied. In the future, we will

work on developing a sophisticated diversification scheme,

including a portfolio of complementary algorithms [48]. More-

over, the developed algorithm will be applied to some real

application, such as the hybrid electric vehicle [22], fuzzy

controllers [50], and others.
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[58] É.D. Taillard. Robust taboo search for the quadratic assignment problem.

Parallel Computing, 17:443–455, 1991.
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