Meta-learning Architectures: Collecting,
Organizing and Exploiting Meta-knowledge

Joaquin Vanschoren

Department of Computer Science, K.U.Leuven, Leuven, Belgium

1 Introduction

While a valid intellectual challenge in its own right, meta-learning finds its real
raison d’étre in the practical support it offers Data Mining practitioners [20].
Indeed, the whole point of understanding how to learn in any given situation is
to go out in the real world and learn as much as possible, from any source of
data we encounter! However, almost any type of raw data will initially be very
hard to learn from, and about 80% of the effort in discovering useful patterns lies
in the clever preprocessing of data [47]. Thus, for machine learning to become
a tool we can instantly apply in any given situation, or at least to get proper
guidance when applying it, we need to build extended meta-learning systems
that encompass the entire knowledge discovery process, from raw data to finished
models, and that keep learning, keep accumulating meta-knowledge, every time
they are presented with new problems.

The algorithm selection problem is thus widened into a workflow creation
problem, in which an entire stream of different processes needs to be proposed
to the end user. This entails that our collection of meta-knowledge must also be
extended to characterize all those different processes.

In this chapter, we provide a survey of the various architectures that have
been developed, or simply proposed, to build such extended meta-learning sys-
tems. They all consist of integrated repositories of meta-knowledge on the KD
process and leverage that information to propose useful workflows. Our main
observation is that most of these systems are very different, and were seem-
ingly developed independently from each other, without really capitalizing on
the benefits of prior systems. By bringing these different architectures together
and highlighting their strengths and weaknesses, we aim to reuse what we have
learned, and we draw a roadmap towards a new generation of KD support sys-
tems.

Despite their differences, we can classify the KD systems in this chapter in
the following groups, based on the way they leverage the obtained meta-data:

Expert systems In expert systems, experts are asked to express their reason-
ing when tackling a certain problem. This knowledge is then converted into a
set of explicit rules, to be automatically triggered to guide future problems.

Meta-models The goal here is to automatically predict the usefulness of work-
flows based on prior experience. They contain a meta-model that is updated

as more experience becomes available. It is the logical extension of meta-
learning to the KD process.

Case-based reasoning In general terms, case-based reasoning (CBR) is the
process of solving new problems based on the solutions of similar past prob-
lems. This is very similar to the way most humans with some KD experience
would tackle the problem: remember similar prior cases and adapt what you
did then to the new situation. To mimic this approach, a knowledge base
is populated by previously successful workflows, annotated with meta-data.
When a new problem presents itself, the system will retrieve the most similar
cases, which can then be altered by the user to better fit her needs.

Planning All possible actions in a KD workflow are described as operations
with preconditions and effects, and an Al planner is used to find the most
interesting plans (workflows).

Querying In this case, meta-data is gathered and organized in such a way that
users can ask any kind of question about the utility or general behavior of
KD processes in a predefined query language, which will then be answered
by the system based on the available meta-data. They open up the available
meta-data to help users make informed decisions.

Orthogonal to this distinction, we can also characterize the various systems
by the type of meta-knowledge they store, although in some cases, a combination
of these sources is employed.

Expert knowledge Rules, models, heuristics or entire KD workflows are en-
tered beforehand by experts, based on their own experience with certain
learning approaches.

Experiments Here, the meta-data is purely empirical. They provide objective
assessments of the performance of workflows or individual processes on cer-
tain problems.

Workflows Workflows are descriptions of the entire KD process, involving lin-
ear or graph-like sequences of all the employed preprocessing, transforma-
tion, modeling and postprocessing steps. They are often annotated with sim-
ple properties or qualitative assessments by users.

Ontologies An ontology is a formal representation of a set of concepts within
a domain and the relationships between those concepts [9]. They provide
a fixed vocabulary of data mining concepts, such as algorithms and their
components, and describe how they relate to each other, e.g. what the role
is of a specific component in an algorithm. They can be used to create
unambiguous descriptions of meta-knowledge which can then be interpreted
by many different systems to reason about the stored information.

While we cover a wide range of approaches, the landscape of all meta-learning
and KD solutions is quite extensive. However, most of these simply facilitate
access to KD techniques, sometimes offering wizard-like interfaces with some
expert advice, but they essentially leave the intelligent selection of techniques
as an exercise to the user. Here, we focus on those systems that introduce new
ways of leveraging meta-knowledge to offer intelligent KD support. We also skip

KD systems that feature some type of knowledge base to monitor the current
workflow composition, but that do not use that knowledge to advise on future
problems, such as the INLEN system [44, 33, 34]. This overview partially overlaps
with previous, more concise overviews of meta-learning systems for KD [7, 20].
Here, however, we provide a more in-depth discussion of their architectures,
focussing on those aspects that can be reused to design future KD support
systems.

In the remainder of this chapter, we will split our discussion in two: past and
future. The past consists of all previously proposed solutions, even though some
of these are still in active development and may be extended further. This will
cover the following five sections, each corresponding to one of the five approaches
outlined above. For each system, we consecutively discuss its architecture, the
employed meta-knowledge, any meta-learning that is involved and finally its
benefits and drawbacks. Finally, in Section 7, we provide a short summary of
all approaches, before looking towards the future: we outline a platform for the
development of future KD support systems aimed at bringing the best aspects
of prior systems together.

2 Expert systems

2.1 Consultant-2

One of the first inroads into systematically gathering and using meta-knowledge
about machine learning algorithms was Consultant-2 [14,57]: an expert system
developed to provide end-user guidance for the MLT machine learning toolbox
[46,37]. Although the system did not learn by itself from previous algorithm
runs, it did identify a number of important meta-features of the data and the
produced models, and used these to express rules about the applicability of
algorithms.

Architecture A high-level overview of the architecture of Consultant-2 is shown
in Figure 1. It was centered around a knowledge base that stored about 250
rules, hand-crafted by machine learning experts. The system interacted with the
user through question-answer sessions in which the user was asked to provide
information about the given data (e.g. the number of classes or whether it could
be expected to be noisy) and the desired output (e.g. rules or a decision tree).
Based on that information, the system then used the stored rules to calculate
a score for each algorithm. The user could also go back on previous answers
to see how that would have influenced the ranking. When the user selected an
algorithm, the system would automatically run it, after which it would engage
in a new question-answer session to assess whether the user was satisfied with
the results. If not, the system would generate a list with possible parameter
recommendations, again scored according to the stored heuristic rules.

“Deta descripion. | Consultant-2 |[«—— g’" b
Output preferences - -
I \ Stored rules

-

Pre-run advice Post-run advice
(algorithms) (parameters)

k select ‘Aect Experts

MLT toolbox
Dataset

Fig. 1. The architecture of Consultant-2. Derived from Craw et al. [14]

Meta-knowledge The rules were always of the form if (A,) then B, in which
A, was a conjunction of properties of either the task description or the produced
models, and B expressed some kind of action the system could perform. First, the
task description included qualitative measures entered by the user, such as the
task type, any available background knowledge and which output models were
preferable, as well as quantitative measures such as the number of classes and
the amount of noise. Second, the produced models where characterized by the
amount of time and memory needed to build them and model-specific features
such as the average path length and number of leaf nodes in decision trees, the
number and average center distance of clusters and the number and significance
of rules.! The resulting actions B could either adjust the scores for specific
algorithms, propose ranges for certain parameter values, or transform the data
(e.g. discretization) so as to suit the selected algorithm. Illustrations of these
rules can be found in Sleeman at al. [57].

Meta-learning There is no real meta-learning process in Consultant-2, it just
applied its predefined ‘model’ of the KD process. This process was divided into a
number of smaller steps (selecting an algorithm, transforming the data, selecting
parameters,...), each associated with a number of rules. It then cycles through
that process, asking questions, executing the corresponding rules, and triggering
the corresponding actions, until the user is satisfied with the result.

Discussion The expert advice in Consultant-2 has proven to be successful in
a number of applications, and a new version has been proposed to also provide
guidance for data preprocessing. Still, to the best of our knowledge, Consultant-
3 has never been implemented. An obvious drawback of this approach is the
fact that the heuristic rules are hand-crafted. This means that for every new

! These were used mostly to advise on the perspective algorithm’s parameters.

algorithm, new rules have to be defined that differentiate it from all the existing
algorithms. One must also keep in mind that MLT only had a limited set of
10 algorithms covering a wide range of tasks (e.g. classification, regression and
clustering), making it quite feasible to select the correct algorithm based on the
syntactic properties of the input data and the preferred output model. With
the tens or hundreds of methods available today on classification alone, it might
not be so straightforward to make a similar differentiation. Still, the idea of a
database of meta-rules is valuable, though instead of manually defining them,
they should be learned and refined automatically based on past algorithm runs.
Such a system would also automatically adapt as new algorithms are added.

3 Meta-models

3.1 STABB and VBMS

The groundwork for many meta-learning systems were laid by two early precur-
sors. STABB [61] was a system that basically tried to automatically match a
learner’s bias to the given data. It used an algorithm called LEX with a specific
grammar. When an algorithm could not completely match the hidden concept,
its bias (the grammar) or the structure of the dataset was changed until it could.
VBMS [52] was a very simple meta-learning system that tried to select the best
of three learning algorithms using only two meta-features: the number of training
instances and the number of features.

3.2 The Data Mining Advisor (DMA)

The Data Mining Advisor (DMA) [19] is a web-based algorithm recommenda-
tion system that automatically generates rankings of classification algorithms
according to user-specified objectives. It was developed as part of the METAL
project [43].

Foundations: StatLog Much of the theoretical underpinning of the DMA was
provided by the StatLog project [45], which was aimed to provide a large-scale,
objective assessment of the strengths and weaknesses of the various classification
approaches existing at the time. Its methodology is shown in Figure 2.

First, a wide range of datasets are characterized with a wide range of newly
defined meta-features. Next, the algorithms are evaluated on these datasets. For
each dataset, all algorithms whose error rate fell within a certain (algorithm-
dependent) margin of that of the best algorithms were labeled applicable, while
the others were labeled non-applicable. Finally, decision trees were built for each
algorithm, predicting when it can be expected to be useful on a new dataset.
The resulting rules, forming a rule base for algorithm selection, can be found in
Michie et al. [45].

Algorithms Evaluations < ‘ ’ u»ll >
=

Datasets\ ‘ :t_:;

Data characterizations —
Meta-database

4
a'a) — A& — < o1 o>

Rules C4.5

Fig. 2. The StatLog approach.

Architecture The architecture of the DMA is shown in Figure 3. First, the tool
is trained by generating the necessary meta-data, just as in StatLog. However,
instead of predicting whether an algorithm was applicable or not, it ranked all
of them. New datasets can be uploaded via a web-interface, its meta-features
automatically computed (below the dotted line in Figure 3). Bearing privacy
issues in mind, the user can choose to keep the dataset, the data characterizations
or both hidden from other users of the system. Next, the DMA will use the
stored meta-data to predict the expected ranking of all algorithms on the new
dataset. Finally, as a convenience to the user, one can also run a number of
algorithms on the new dataset, after which the system returns their true ranking
and performance. Figure 4 shows an example of the rankings generated by DMA.
The meaning of the ‘Predicted Score’ is explained in Section 3.2.

Meta-knowledge While the METAL project discovered various new kinds of
meta-features, these were not used in the DMA tool. In fact, only a set of 7
numerical StatLog-style characteristics was selected? for predicting the relative
performance of the algorithms. This is most likely due to the employed meta-
learner, which is very sensitive to the curse of dimensionality.

At its inception, the DMA tool was initialized with 67 datasets, mostly from
the UCI repository. Since then, an additional 83 tasks were uploaded by users
[19]. Furthermore, it operates on a set of 10 classification algorithms, shown in
Figure 4, but only with default parameter settings, and evaluates them based
on their predictive accuracy and speed.

Meta-learning DMA uses a k-nearest neighbors (kNN) approach as its meta-
learner, with k=3 [8]. This is motivated by the desire to continuously add new
meta-data without having to rebuild the meta-model every time.

2 Some of them were slightly modified. For instance, instead of using the absolute
number of symbolic attributes, DMA uses the ratio of symbolic attributes.

Algorithms Evaluations\’ < ‘ il >

4
Datasets\"\ ‘

training Data characterizations
predicton % ;
(execute) Meta-database
0 — (oMA)”
New dataset _’
ranking
preferences kNN Algorlthm rankmg

Fig. 3. The architecture of DMA. Adapted from Brazdil at al. [7].

Ranking table

Dowload resulbs | register now! | learm imore about the onling acvisc:

Fr;:::'ttad Algorithm Pr;::t:d Status Run Accurscy Time ;::‘: ;é::e
1. c50riles 1031 finished — 02330000 7 & 1003
i lindisar 1.03 finished — 0.2340000 7 1 1048
3, chlitres 10258 = = = - =
a ttree 1023 o - = = —
5, clemMlLP 1017 finished - QZESDODOD 7 5 1008
B ch0baost 1017 - - - - -
7 ripper 1004 - o - = =
& micnk 1 finished 02430000 7 2 1035
o clamBBEEM 0845 - - - - -
A0 micibd fie13 finishad — 03180000 + 1 38

(a) Emphasis on Accuracy

Ranking table

Dowlaad results | registor naw! | leam mers sboul the-onfiie-adiisor

Pr;eil:.l(od Algorithm Pf;:;?:d Status Run Accuracy Time ;:::‘ E:::;
1 lindiser 1153 finished - 02340000 7 1 1154
2 callrae 1144 finished — 0.2940000 7 2 1am
B ch0nles 107 finlshed - 02930000 7 4 1058
4 lrae 1.081 - . _: L -
5 milcnb 1.051 . = o e -
& c5Cbosst 1.009 - = - = -
i rippar 1.002 - - - - -
23 clembdLP 0,509 = - e = =
a mileibl 0813 finishad -~ Q3180000 7 8 oea
1. ElenRERES = = = = =

(b} Emphasis on Training Time

Fig. 4. An illustration of the output of the DMA. The first ranking favors accurate
algorithms, the second ranking favors fast ones. Taken from Giraud-Carrier [19].

A multi-criteria evaluation measure is defined (the adjusted ratio of ratios)
which allows the user to add emphasis either on the predictive accuracy or the
training time. This is done by defining the weight AceD of the training time ratio.
This allows the user to trade AccD% accuracy for a 10-time increase/decrease
in training time. The DMA interface offers 3 options: AceD=0.1 (focus on ac-
curacy), AceD=10 (focus on speed) or AccD=1 (equal importance). The user
can also opt not to use this measure and use the efficiency measure of Data
Envelopment Analysis (DEA) instead [19]. The system then calculates a kind
of average over the 3 most similar datasets for each algorithm (the ‘predicted
score’ in Figure 4) according to which the ranking is established.

Discussion The DMA approach brings the benefits of meta-learning to a larger
audience by automating most of the underlying steps and allowing the user to
state some preferences. Moreover, it is able to continuously improve its predic-
tions as it is given more problems (which are used to generate more meta-data).
Unfortunately, it has a number of limitations that affect the practical usefulness
of the returned rankings. First, it offers no advice about which preprocessing
steps to perform or which parameter values might be useful, which both have
a profound impact on the relative performance of learning algorithms. Further-
more, while the multi-criteria ranking is very useful, the system only records
two basic evaluation metrics, which might be insufficient for some users. Finally,
using kNN means no interpretable models are being built, making it a purely
predictive system. Several alternatives to kNN have been proposed [50, 3] which
may be useful in future incarnations of this type of system.

3.3 NOEMON

NOEMON (31, 32], shown in Figure 5, follows the approach of Aha [1] to compare
algorithms two by two. Starting from a meta-database similar to the one used in
DMA, but with histogram-representations of attribute-dependent features, the
performance results on every combination of two algorithms are extracted. Next,
the performance values are replaced with a statistical significance tests indicating
when one algorithm significantly outperforms the other and the number of data
meta-features is reduced using automatic feature selection. This data is then fed
to a decision tree learner to build a model predicting when one algorithm will
be superior or when they will tie on a new dataset. Finally, all such pairwise
models are stored in a knowledge base.

At prediction-time, the system collects all models concerning a certain al-
gorithm and counts the number of predicted wins/ties/losses against all other
algorithms to produce the final score for each algorithm, which is then converted
into a ranking.

4 Planning

The former two systems are still limited in that they only tackle the algorithm
selection step. To generate advice on the composition of an entire workflow, we

<. ll> <gF ABtie>

OB e A A .
prediction / ‘__| P
@
(Y @ Knowledge
— @i —|NOEMON i

F
~
New dataset i]

../
Algorithm ranking
Fig. 5. NOEMON’s architecture. Based on Kalousis and Theoharis [32].

need additional meta-data on the rest of the KD processes. One straightforward
type of useful meta-data consists of the preconditions that need to be fulfilled
before the process can be used, and the effect it has on the data it is given. As
such, we can transform the workflow creation problem into a planning problem,
aiming to find the best plan, the best sequence of actions (process applications),
that arrives at our goal - a final model.

4.1 The Intelligent Discovery Electronic Assistant (IDEA)

A first such system is the Intelligent Discovery Electronic Assistant (IDEA) [5].
It regards preprocessing, modeling and postprocessing techniques as operators,
and returns all plans (sequences of operations) that are possible for the given
problem. It contains an ontology describing the preconditions and effects of each
operator, as well as manually defined heuristics (e.g. the speed of an algorithm),
which allows it to produce a ranking of all generated plans according to the
user’s objectives.

Architecture The architecture of IDEA is shown in Figure 6. First, the systems
gathers information about the given task by characterizing the given dataset.
Furthermore, the user is asked to provide additional metadata and to give
weights to a number of heuristic functions such as model comprehensibility,
accuracy and speed. Next, the planning component will use the operators that
populate the ontology to generate all KD workflows that are valid in the user-
described setting. These plans are then passed to a heuristic ranker, which will
use the heuristics enlisted in the ontology to calculate a score congruent with
the user’s objectives (e.g. building a decision tree as fast as possible). Finally,
this ranking is proposed to the user which may select a number of processes
to be executed on the provided data. After the execution of a plan, the user is
allowed to review the results and alter the given weights to obtain new rankings.

— _ Execution
euristics w&qg — ‘si K —*| Engine
‘ Experts ‘/Onéclo Techniques T Select
Joradary
% Planner| — {3 —

Plans

Ranker
Ranking of

KDD plans
Dataset

Fig. 6. The architecture of IDEA. Derived from Bernstein et al. [5].

| Data Mining Cperators

Pre-Processing | Inducticn Algorithm Poat-Proceasing
=T 1 == T "
Fd - Cc4 3 1 CE T 1
| B Ru Ru
| Discretize t yHaive bayes . Tree Pruning

Inpuk:

v Liee

i jui
Praccaditions:

ATk mens Bama |
Incampatibelites:

EE££

£ sdd: Madel dize saall
= oz Lata Heuriatic Indicatora: Heuristic Indicatezs:

Heuristic Tndicators Fpwed = 30 Speen - o LU

Zpeed = 12U

gorical bata add: (i ndueer)

Fig. 7. Part of IDEA’s ontology. Taken from Bernstein et al. [5].

For instance, the user might sacrifice speed in order to obtain a more accurate
model. Finally, if useful partial workflows have been discovered, the system also
allows to extend the ontology by adding them as new operators.

Meta-knowledge IDEA’s meta-knowledge is all contained in its ontology. It
first divides all operators into preprocessing, induction or postprocessing op-
erators, and then further into subgroups. For instance, induction algorithms
are subdivided into classifiers, class probability estimators and regressors. Each
process that populates the ontology is then described further with a list of prop-
erties, shown in Figure 7. It includes the required input (e.g. a decision tree for
a tree pruner), output (e.g. a model), preconditions (e.g. ‘continuous data’ for
a discretizer), effects (e.g. ‘removes continuous data’, ‘adds categorical data’ for
a discretizer), incompatibilities (e.g. not(continuous data) for naive Bayes) and
a list of manually defined heuristic estimators (e.g. relative speed). Addition-
ally, the ontology also contains recurring partial plans in the form of composite
operators.

Meta-learning Though there is no actual meta-learning involved, planning can
be viewed as a search for the best-fitting plan given the dataset, just as learning
is a search for the best hypothesis given the data. In the case of IDEA, this is

achieved by exhaustively generating all possible KD plans, hoping to discover
better, novel workflows that experts never considered before. The provided meta-
data constitute the initial state (e.g. ‘numerical data’) and the user’s desiderata
(e.g. ‘model size small’) make up the goal state.

Discussion This approach is very useful in that it can provide both experts
and less-skilled users with KD solutions without having to know the details of
the intermediate steps. The fact that new operators or partial workflows can
be added to the ontology can also give rise to network externalities, where the
work or expertise of one researcher can be used by others without having to
know all the details. The ontology thus acts as a central repository of KD op-
erators, although new operators can only be added manually, possibly requiring
reimplementation.

The limitations of this approach lie first of all in the hand-crafted heuristics
of the operators. Still, this could be remedied by linking it to a meta-database
such as used in DMA and learning the heuristics from experimental data. Sec-
ondly, the current implementation only covers a small selection of KD operators.
Together with the user-defined objectives, this might constrain the search space
well enough to make the exhaustive search feasible, but it is unclear whether
this would still be the case if large numbers of operators are introduced. A final
remark is that most of the used techniques have parameters, whose effects are
not included in the planning.

4.2 Global Learning Scheme (GLS)

The ‘Global Learning Scheme’ (GLS) [73,71,72] takes a multi-agent system ap-
proach to KDD planning. It creates an “organized society of KDD agents”, in
which each agent only does a small KDD task, controlled by a central planning
component.

Architecture Figure 8 provides an overview of the system. It consists of a pool
of agents, which are described very similarly to the operators in IDEA, also using
an ontology to describe them formally. However, next to base-level agents, which
basically envelop one DM technique each, there also exist high-level agents, one
for each phase of the KD process, which instead point to a list of candidate agents
that could be employed in that phase. The controlling ‘meta-agent’ (CMA) is the
central controller of the system. It selects a number of agents (high-level agents at
first) and sends them to the planning meta-agent (PMA). The PMA then creates
a planning problem by transforming the dataset properties and user objectives
into a world state description (WSD) for planning and by transforming the
agents into planning operators. It then passes the problem to a STRIPS planner
[17]. The returned plans are passed back to the CMA, which then launches
new planning problems for each high-level agent. For instance, say the data has
missing values, then the returned plan will contain a high-level missing value
imputation agent: the CMA will then send a range of base-level agents to the

Ath Ak i ;) B
Al planner Fhars Planning rInera-agent > ‘ >

i
WSD Ontglog}r
- 5 Search
Bz —> (Contr'oillng mer.a~a,gent) Run
Stored rules High-level agents :ﬁ i Agent pool
b / \ -

— L8 > LR > LRBE — aa@
Dataset Pre-processing Modeling Refinement Knowledge

Fig. 8. The architecture of GLS. Adapted from Zhong et al. [72].

PMA to build a plan for filling in the missing values. The CMA also executes the
resulting sub-plans, and calls for adaptations if they do not prove satisfactory.

Meta-knowledge GLS’s meta-knowledge is similar to that of IDEA. The on-
tology description contains, for each agent, the data types of in- and output,
preconditions and effects. In the case of a base-level agent, it also contains a KD
process, otherwise, a list of candidate sub-agents. However, the same ontology
also contains descriptors for the data throughout the KD process, such as the
state of the data (e.g. raw, clean, selected), whether or not it represents a model
and the type of that model (e.g. regression, clustering, rule). This information
is used to describe the world state description. Finally, the CMA contains some
static meta-rules to guide the selection of candidate agents.

Meta-learning In Zong et al. [72], the authors state that a meta-learning
algorithm is used in the CMA to choose between several discretization agents
or to combine their results. Unfortunately, details are missing. Still, even if the
current system does not learn from previous runs (meaning that the CMA uses
the same meta-rules every time), GLA’s ability to track and adapt to changes
performed by the user can definitely be regarded as a form of learning [7].

Discussion Given the fact that covering the entire KD process may give rise to
sequences of tens, maybe hundreds of individual steps, the ‘divide and conquer’
approach of GLS seems a promising approach. In fact, it seems to mirror the
way humans approach the KD process: identify a hierarchy of smaller subprob-
lems, combine operators to solve them and adapt the partial solutions to each
other until we converge to a working workflow. Unfortunately, to the best of our
knowledge, there are no thorough evaluations of the system, and it remains a
work in progress. It would be interesting to replace the fixed rules of the CMA
with a meta-learning component to select the most promising agents, and to use
IDEA-like heuristics to rank possible plans.

4.3 The Goal-Driven Learner (GDL)

The Goal-Driven Learner 3 [62], is a quite different planning approach, mainly
because it operates on a higher level of abstraction. Its task is to satisfy a pre-
defined goal, given a number of knowledge bases, a group of human experts, and
a collection of KD tools. Each of these (including the experts) are described in
a Learning Modeling Language (LML) which describes properties such as their
vocabulary (e.g. the attribute names in a decision tree or the expert’s field of
expertise), solutions (e.g. classes predicted by the tree or medical treatments)
or the time it takes them to provide a solution (which is obviously higher for an
expert than for a decision tree). Its goal and subgoals are also described in LML,
e.g. expressing that a simple model must be built within a given timeframe. The
GDL then executes a search, using the ‘distance’ to each of the subgoals as a
heuristic and applications of the KD tools as actions. During this process, it se-
lects useful knowledge systems (e.g. based on their vocabulary), combines them
(e.g. after conversion to Prolog clauses), applies KD tools (e.g. to build a new
decision tree) or petitions an expert to provide extra information (e.g. if part
of the vocabulary cannot be found in the available knowledge systems). It is
a very useful approach in settings were many disparate knowledge sources are
available, although the LML description is probably still too coarse to produce
fine-grained KDD plans.

4.4 Complexity Controlled Exploration (CCE)

Complexity Controlled Exploration [22] is also a high-level system that consists
of a number of machine generators, which generate KD workflows, and a search
algorithm based on a measure for the complexity of the proposed KD workflows.
While not performing planning per se, many of the generators could be planners
such as IDEA and GLS. Alternatively, they may simply consist of a list of prior
solutions, or meta-schemes: partial workflows in which certain operators are left
blank to be filled in with a suitable operator later on (also see ‘templates’ in
Section 6.1).

The algorithm asks all generators to propose new KD processes, and to rank
them using an adapted complexity measure [39,40] defined as c(p) = [I(p) +
log(t(p))] - q(p), in which p is a program (a KD workflow), [(p) the length of that
program, ¢(p) the estimated runtime of the program, and ¢(p) the inverse of
the reliability of the program, which reflects their usefulness in prior tasks. For
instance, if a certain combination of a feature selection method and a classifier
proved very useful in the past, it may obtain an improved reliability value. If
the complexity cannot be estimated, it is approximated by taking the weighted
average of past observations of the program on prior inputs. Note that a ‘long’

3 Goal-driven learning is also a more general Al concept, in which the aim is to use the
overall goals of an intelligent system to make decisions about when learning should
occur, what should be learned, and which learning strategies are appropriate in a
given context.

program can still be less complex than a ‘short’ one, e.g. if a feature selection
step heavily speeds up the runtime of a learning algorithm.

The CCE algorithm then takes the least complex solution from each genera-
tor, adds the least complex of those to a queue (until it is full), and updates the
complezity threshold, the maximum of all proposed workflows. The workflows
in the queue are then executed in parallel, but are aborted if they exceed the
complexity threshold and are added, with an increased complexity value, to the
‘quarantine generator’, which may propose them again later on. The algorithm’s
stopping criterion is set by the user: it may be the best solution in a given time,
below a given complexity threshold, or any custom test criterion.

The CCE turns KD workflow selection into an adaptive process in which a
number of other systems can be used as generators, and in which additional meta-
data can be added both in the generators (e.g. new meta-schemes) as well as in
the complexity estimation procedure. Instead of proposing workflows and leaving
it to the user to decide which ones to try next, it also runs them and returns
the optimal solution. Its success is thus highly dependent on the availability of
good generators, and on how well its complexity controlled exploration matches
the choices that the user would make.

5 Case-based reasoning

Planning is especially useful when starting from scratch. However, if successful
workflows were designed for very similar problems, we could simply reuse them.

5.1 CITRUS

CITRUS [16,68] is built as an advisory component of Clementine, a well-known
KDD suite. An overview is shown in Figure 9. It contains a knowledge base of
available ‘processes’ (KD techniques) and ‘streams’ (sequences of processes), en-
tered by experts and described with pre- and postconditions. To use it, the user
has to provide an abstract task description, which is appended with simple data
statistics, and choose between several modi of operation. In the first option, the
user simply composes the entire KDD process (stream) by linking processes in
Clementine’s editor, in which case CITRUS only checks the validity of the se-
quence. In the second option, case-based reasoning is used to propose the most
similar of all known streams. In the third option, CITRUS assists the user in
decomposing the task into smaller subtasks, down to the level of individual pro-
cesses. While pre- and postconditions are used in this process, no planning is
involved. Finally, the system also offers some level of algorithm selection assis-
tance by eliminating those processes that violate any of the constraints.

5.2 ALT

ALT [41] is a case-based reasoning variation on the DMA approach. Next to
StatLog-type meta-features, it adds a number of simple algorithm characteriza-

- —

Processes Streams

Abstract task description G
=

s ~—[CITRUS| «—« SC e

Suggestions Case-based Partial planning Eliminate bad
reasoning - b processes
- <L % . A
"D "l;l"
b Mgl

Fig. 9. The architecture of CITRUS. Derived from Wirth et al. [68].

tions. It has a meta-database of ‘cases’ consisting of data meta-features, algo-
rithm meta-features and the performance of the algorithm. When faced with a
new problem, the user can enter application restrictions beforehand (e.g. ‘the al-
gorithm should be fast and produce interpretable models’), and this information
is then appended to the data meta-features of the new dataset, thus forming a
new case. The system then makes a prediction based on the three most similar
cases. The meta-data consists of 21 algorithms, 80 datasets, 16 StatLog data
characteristics, and 4 algorithm characteristics.

The two previous approaches share a common shortcoming: the user still faces
the difficult task of adapting it to her specific problem. The following systems
try to alleviate this problem by offering additional guidance.

5.3 MiningMart

The MiningMart project [47] is designed to allow successful preprocessing work-
flows to be shared and reused, irrespective of how the data is stored. While most
of the previously discussed systems expect a dataset in a certain format, Min-
ingMart works directly on any SQL database of any size. The system performs
the data preprocessing and transformation steps in the (local) database itself,
either by firing SQL queries or by running a fixed set of efficient operators (able
to run on very large databases) and storing the results in the database again.
Successful workflows can be shared by describing them in an XML-based lan-
guage, dubbed M4, and storing them in an online case-base. The case description
includes the workflow’s inherent structure as well as an ontological description
of business concepts to facilitate searching for cases designed for certain goals or
applications.

Architecture The architecture of the system is shown in Figure 10. To map
uniformly described preprocessing workflows to the way data is stored in specific
databases, it offers three levels of abstraction, each provided with graphical ed-
itors for the end-user. We discuss them according to the viewpoint of the users
who wish to reuse a previously entered case. First, they use the business on-
tology to search for cases tailored to their specific domain. The online interface

Operators

Compller
/-

L_ Re!atlon Concept Case t« »
z—-— Editor Edltor Editor -
Datibase l Mé l M4 l M4 CaseI-base

i) @ <§© QG >

M4 meta data - b
Relat1ona| Conceptual Executable case Business
model model ontology

Fig. 10. MiningMart architecture. Derived from Morik and Scholz [47].

then returns a list of cases (workflows). Next, they can load a case into the case
editor and adapt it to her specific application. This can be done on an abstract
level, using abstract concepts and relations such as ‘customer’, ‘product’ and
the relation ‘buys’. They can each have a range of properties, such as ‘name’
and ‘address’, and can be edited in the concept editor. In the final phase, these
concepts, relations and properties have to be mapped to tables, columns, or sets
of columns in the database using the relation editor. All details of the entire pro-
cess are expressed in the M4 language* and also stored in the database. Next,
the compiler translates all preprocessing steps to SQL queries or calls to the
operators used, and executes the case. The user can then adapt the case further
(e.g. add a new preprocessing step or change parameter settings) to optimize its
performance. When the case is finished, it can be annotated with an ontological
description and uploaded to the case-base for future guidance.

Meta-knowledge MiningMart’s meta-knowledge can be divided in two groups.
First, there is the fine-grained, case-specific meta-data that covers all the meta-
data entered by the user into the M4 description, such as database tables, con-
cepts, and workflows. Second, there is more general meta-knowledge encoded
in the business ontology, i.e. informal annotations of each case in terms of its
goals and constraints, and in the description of the operators. Operators are
stored in a hierarchy consisting of 17 ‘concept’ operators (from selecting rows
to adding columns with moving windows over time series), 4 feature selection
operators, and 20 feature construction operators, such as filling in missing val-
ues, scaling, discretization and some learning algorithms used for preprocessing:
decision trees, k-means and SVMs. The M4 schema also captures known precon-
ditions and assertions of the operators, similar to the preconditions and effects
of IDEA and GLS. Their goal is to guide the construction of valid preprocessing

4 Examples of M4 workflows can be downloaded from the online case-base:
http://mmart.cs.uni-dortmund.de/caseBase/index.html

sequences, as was done in CITRUS. The case-base is available online [47] and
currently contains 6 fully-described cases.

Meta-learning While it is a CBR approach, there is no automatic recommen-
dation of cases. The user can only browse the cases based on their properties
manually.

Discussion The big benefit of the MiningMart approach is that users are not
required to transform the data to a fixed, often representationally limited for-
mat, but can instead adapt workflows to the way the source data is actually
being stored and manipulated. Moreover, a common language to describe KD
processes would be highly useful to exchange workflows between many different
KD environments. Pooling these descriptions would generate a rich collection of
meta-data for meta-learning and automated KD support. M4 is certainly a step
forward in the development of such a language.

Compared to IDEA, MiningMart focusses much more on the preprocessing
phase, while the former has a wider scope, also covering model selection and
postprocessing steps. Next, while both approaches describe their operators with
pre- and postconditions, MiningMart only uses this information to guide the
user, not for automatic planning. MiningMart could, in principle, be extended
with an IDEA-style planning component, at least if the necessary meta-data can
also be extracted straight from the database.

There are also some striking similarities between MiningMart and GLS.
GLS’s agents correspond to MiningMart’s operators and its controller (CMA)
corresponds to MiningMart’s compiler. Both systems use a hierarchical descrip-
tion of agents/operators, which are all described with pre- and postconditions.
The differences lie in the scope of operators (MiningMart focuses of preprocess-
ing while GLS wants to cover the entire KD process), the database integration
(MiningMart interfaces directly with databases while GLS requires the data to
be prepared first) and in storing the meta-data of the workflows for future use,
which MiningMart supports, but GLS doesn’t.

5.4 The Hybrid Data Mining Assistant (HDMA)

The Hybrid Data Mining Assistant® (HDMA) [11-13] also tries to provide advice
for the entire knowledge discovery process using ontological (expert) knowledge,
as IDEA does, but it does not provide a ranking of complete processes. Instead,
it provides the user with expert advice during every step of the discovery process,
showing both the approach used in similar cases and more specific advice for the
given problem triggered by ontological knowledge and expert rules.

5 This is not the official name, we only use it here to facilitate our discussion.

5-.;. * create cases “ rules L-! : E
————— b 4 — .
Eﬁ - verify cases annotations "~/ Y w

Caskbas ‘\II Experts Ontology & Techniques
| N

J% rule base
Case Rule —‘

Reasoner)| Reasoner
meta-data ~N

: data 1l L_
‘ &choices | _ (DM Assistant -
advice | _Interface / ‘D ta
A
(DMToolit |

Warehouse
Fig. 11. The architecture of HDMA. Adapted from Charest et al. [13].

[N

Architecture An overview of the system is provided in Figure 11. The provided
advice is based on two stores of information. The first is a repository of KDD
‘cases’, detailing previous workflows, while the second is an ontology of concepts
and techniques used in a typical KDD scenario and a number of rules concerning
those techniques. Furthermore, the system is assumed to be associated with a
DM toolkit for actually running and evaluating the techniques.

The user first provides a dataset, which is characterized partly by the system,
partly by the user (see below). The given problem is then compared to all the
stored cases and two scores are returned for each case, one based on similarity
with the current case, the other based on the ‘utility’ of the case, based on scores
provided by previous users. After the user has selected a case, the system starts
cycling through five phases of the KDD process, as identified by the CRISP-
DM [10] model. At each phase the user is provided with the possible techniques
that can be used in that phase, the techniques that were used in the selected
case, and a number of recommendations generated by applying the stored rules
in the context of the current problem. The generated advice may complement,
encourage, but also advice against the techniques used in the selected case. As
such, the user is guided in adapting the selected case to the current problem.

Meta-knowledge In the case base, each case is described by 66 attributes.
First, the given problem is described by 30 attributes, including StatLog-like
meta-features, but also qualitative information entered by users, such as the type
of business area (e.g. engineering, marketing, finance,...) or whether the data can
be expected to contain outliers. Second, the proposed workflow is described by 31
attributes, such as the used preprocessing steps, how outliers were handled, which
model was used, which evaluation method was employed and so on. Finally, 5
more attributes evaluate the outcome of the case, such as the level of satisfaction
with the approach used in each step of the KD process. A number of seed cases
were designed by experts, and additional cases can be added after evaluation.
The ontology, on the other hand, captures a taxonomy of DM concepts, most
of which where elicited from CRISP-DM. A small part is shown in Figure 12.

Data suitability

Class imbalance Dimensionality (Exampie reductianj

Data quality

(Data transform) @

| reduction
:cor;:;srer:::we E (Redu::uon) (SE'ECtIOH) (Sampling)

Fig.12. Part of the HDMA ontology. Adapted from Charest et al. [13].

For instance, it shows that binarization and discretization are two data transfor-
mation functions, used to make the data more suitable to a learning algorithm,
which is part of the data preparation phase of the CRISP-DM model. The dashed
concepts are the ones for which exist specific KD-techniques (individuals). These
individuals can be annotated with textual recommendations and heuristics, and
also feature in expert rules that describe when they should be used, depending
on the properties of the given problem. Some of these rules are heuristic (e.g.
“use an aggregation technique if the ezample count is greater than 30000 and
the data is of a transactional nature”), while others are not (e.g. “if you select
the Naive Bayes technique, then a nominal target is required”). In total, the
system contains 97 concepts, 58 properties, 63 individuals, 68 rules and 42 tex-
tual annotations. All knowledge is hand-crafted by experts and formalized in the
OWL-DL ontology format [15] and the SWRL rule description language [28].

Meta-learning The only meta-learning occurring in this system is contained
in the case based reasoning. It uses a kNN approach to select the most similar
case based on the characterization of the new problem, using a feature-weighted,
global similarity measure. The weight of each data characteristic is pre-set by
experts.

Discussion HDMA is quite unique in that it leverages both declarative infor-
mation, viz. concepts in the ontology and case descriptions, as well as procedural
information in the form of rules. Because of the latter, it can be seen as a welcome
extension of Consultant-2. It doesn’t solve the problem of (semi-)automatically
finding the right KD approach, but it provides practical advice to the user dur-
ing every step of the KD process. Its biggest drawback is probably that it relies
almost entirely on input from experts. Besides from the fact that the provided
rules and heuristics may not be very accurate in some cases, this makes it hard
to maintain the system. For every new technique (or just a variant of an existing
one), new rules and concepts will have to be defined to allow the system to re-
turn proper advice. As with Consultant-2, some of these issues may be resolved
by introducing more meta-learning into the system, e.g. advice on the proper

weights for each data characteristic in the case based reasoning step, to update
the heuristics in the rules and to find new rules based on experience. Finally, the
case-based advice, while useful in the first few steps, may lose its utility in the
later stages of the KD process. More specifically, say the user chooses a different
preprocessing step as applied in the proposed case, then the subsequent stages
of that case (e.g. model selection) may lose their applicability. A possible solu-
tion here would be to update the case selection after each step, using the partial
solution to update the problem description.

5.5 NExT

NExT, the Next generation Experiment Toolbox [4] is an extension of the IDEA
approach to case-based reasoning and to the area of dynamic processes, in which
there is no guarantee that the proposed workflow will actually work, or even that
the atomic tasks of which it consists will execute without fault. First, it contains
a knowledge base of past workflows and uses case-based reasoning to retrieve
the most similar ones. More often than not, only parts of these workflows will
be useful, leaving holes which need to be filled with other operators. This is
where the planning component comes in: using the preconditions and effects of
all operators, and the starting conditions and goals of the KD problem, it will
try to find new sequences of operators to fill in those holes.

However, much more can go wrong when reusing workflows. For instance, a
procedure may have a parameter setting that was perfect for the previous setting,
but completely wrong for the current one. Therefore, NExT has an ontology of
possible problems related to workflow execution, including resolution strategies.
Calling a planner is one such strategy, other strategies may entail removing
operators, or even alerting the user to fix the problem manually.

Finally, it does not start over each time the workflow breaks. It records all
the data processed up to the point where the workflow breaks, tries to resolve
the issue, and then continues from that point on. As such, it also provides an
online log of experimentation which can be shared with other researchers willing
to reproduce the workflow.

NEXT has only recently been introduced and thorough evaluations are still
scarce. Nevertheless, its reuse of prior workflows and semi-automatic adaption
of these workflows to new problems seems a very promising.

6 Querying

A final way to assist users is to automatically answer any kind of question they
may have about the applicability, general utility or general behavior of KD
processes, so that they can make informed decisions when creating or altering
workflows. While the previous approaches only stored a selection of meta-data
necessary for the given approach, we could collect a much larger collection of
meta-data of possible interest to users, and organize all this data to allow the
user to write queries in a predefined query language, which will then be answered

by the system based on the available meta-data. While this approach is mostly
useful for experts knowing how to ask the questions and interpret the results,
frequently asked questions could be wrapped in a simpler interface for use by a
wider audience.

6.1 Advanced Meta-Learning Architecture (AMLA)

One example of this approach is the Advanced Meta-Learning Architecture®
(AMLA) [21]. Tt is a data mining toolbox architecture aimed at running ML
algorithms more efficiently whilst inherently supporting meta-learning by col-
lecting all meta-data from every component in the system and allowing the user
to query or manipulate it.

Architecture An overview of the system is provided in Figure 13. It encap-
sulates all standard KD operations with modules which can then be used as
building blocks for KD processes. Each module has a set of inputs and outputs,
each of which is a ‘model’, i.e. an actual model (e.g. a decision tree) or a dataset.
It also has a special ‘configuration’ input which supplies parameter settings, and
a special ‘results’ output, which produces meta-data about the process. For in-
stance, in the case the process encapsulates a decision tree learner, the input
would be training data, the configuration would state its parameters, the output
would provide a decision tree model and the results would state, for instance,
the number of nodes in the tree. All results are represented as name-value pairs
and stored in a repository, which collects all results generated by all modules.
The modules are very fine grained. For instance, there are separate modules for
testing a model against a dataset (which export the performance evaluations
to the repository) and for sub-components of certain techniques, such as base-
learners in ensembles, kernels in SVMs and so on. Modules often used together
can be combined in ‘schemes’, which again have their own inputs, outputs, con-
figurations and results. Schemes can also contain unspecified modules, to be
filled in when used, in which case they are called templates. There also exist
‘repeater’ modules which repeat certain schemes many times, for instance for
cross-validation. This compositionality allows to build arbitrarily complex KD
workflows, quicker implementation of variants of existing algorithms, and a more
efficient execution, as modules used many times only have to be loaded once. The
result repository can be queried by writing short scripts to extract certain values,
or to combine or filter the results of previous queries. Finally, ‘commentators’
can be written to perform frequently used queries, e.g. statistical significance
tests, and store their results in the repository.

Meta-knowledge The stored meta-data consists of a large variety of name-
value pairs collected from (and linked to) all previously used modules, templates
and schemes. They can be of any type.

6 This is again not the officially coined name of the system.

___——<name,value> —_ ——

Dataset 4 D o advice - veeene “
\ Result
repository
config. results / \
I
2 2 3
2% e > 0% «
inputs outputs templates . b
T and schemes Queries Commentators
Modules

Fig. 13. The architecture of AMLA. Derived from Grabczewski and Jankowski[21].

Meta-learning Meta-learning is done manually by programming queries. The
query’s constraints can involve the modules having generated the meta-data or
the type of properties (the name in the name-value pairs). As such, previously
obtained meta-data can be extracted and recombined to generate new meta-
knowledge. Secondly, templates with missing modules can also be completed
by looking up which were the most successful completed templates in similar
problems.

Discussion This is indeed a very fundamental approach to meta-learning, in
the sense that it keeps track of all the meta-data generated during the design
and execution of KD processes. On the other hand, each query has to be written
as a small program that handles the name-value pairs, which might make it a
bit harder to use, and the system is still very much under construction. For
instance, at this stage of development, it is not entirely clear how the results
obtained from different workflows can be compared against each other. It seems
that many small queries are needed to answer such questions, and that a more
structured repository might be required instead.

6.2 Experiment Databases

Experiment databases (ExpDBs) [6, 65,67, 66, 64] provide another, although much
broader, user-driven platform for the exploitation of meta-knowledge. They aim
to collect the thousands of machine learning experiments that are executed every
day by researchers and practitioners, and to organize them in a central repository
to offer direct insight into the performance of various, state-of-the-art techniques
under many different conditions. It offers an XML-based language to describe
those experiments, dubbed ExpML, based on an ontology for data mining exper-
imentation, called Exposé, and offers interfaces for DM toolboxes to automati-
cally upload new experiments or download previous ones. The stored meta-data

can be queried extensively using SQL queries, or mined to build models of algo-
rithm performance providing insight into algorithm behavior or to predict their
performance on certain datasets. While most of the previously discussed systems
are designed to be predictive, ExpDBs are mainly designed for declarative meta-
learning, offering insights into why algorithms work or fail on certain datasets,
although it can easily be used for predictive goals as well.

Architecture A high-level view of the system is shown in Fig. 14. The five
boxed components include the three components used to share and organize the
meta-data: an ontology of domain concepts involved in running data mining
experiments, a formal experiment description language (ExpML) and an experi-
ment database to store and organize all experiments (ExpDB). In addition, two
interfaces are defined: an application programming interface (API) to automati-
cally import experiments from data mining software tools, and a query interface
to browse the results of all stored experiments.

Interface First, to facilitate the automatic exchange of data mining experiments,
an application programming interface (API) is provided that builds uniform,
manipulable experiment instances out of all necessary details and exports them
as ExpML descriptions. The top of Fig. 14 shows some of the input details:
properties (indicated by tag symbols) of the involved components, from download
urls to theoretical properties, as well as the results of the experiments: the models
built and their evaluations. Experiments are stored in full detail, so that they
can be reproduced at any time (at least if the dataset itself is publicly available).

Software agents such as data mining workbenches (shown on the right in Fig.
14) or custom algorithm implementations can simply call methods from the API
to create new experiment instances, add the used algorithms, parameters, and
all other details as well as the results, and then stream the completed experi-
ments to online ExpDBs to be stored. A multi-tier approach can also be used: a
personal database can collect preliminary experiments, after which a subset can
be forwarded to lab-wide or community-wide databases.

ErpML The XML-based ExpML markup language aims to be an extensible, gen-
eral language for data mining experiments, complementary to PMML’, which
allows to exchange predictive models, but not detailed experimental setups nor
evaluations. Based on the Exposé ontology, the language defines various kinds
of experiments, such as ‘singular learner evaluations’, which apply a learning al-
gorithm with fixed parameter settings on a static dataset, and evaluate it using
a specific performance estimation method (e.g. 10-fold cross validation) and a
range of evaluation metrics (e.g. predictive accuracy). Experiments are described
as workflows, with datasets as inputs and evaluations and/or models as outputs,
and can contain sub-workflows of preprocessing techniques. Algorithms are han-
dled as composite objects with parameters and components such as kernels,
distance functions or base-learners. ExpML also differentiates between general

" See http://www.dmg.org/pmml-v3-2.html

algorithms (e.g. ‘decision trees’), versioned implementations (e.g. weka.J48) and
applications (weka.J48 with fixed parameters). Finally, the context of sets of
experiments can also be added, including conclusions, experimental designs, and
the papers in which they are used so they can be easily looked up afterwards.
Further details can be found in Vanschoren et al. [66], and on the ExpDB website.

Ezxposé The Exposé ontology provides a formal domain model that can be
adapted and extended on a conceptual level, thus fostering collaboration be-
tween many researchers. Moreover, any conceptual extensions to the domain
model can be translated consistently into updated or new ExpML definitions
and database models, thus keeping them up to date with recent developments.

Exposé is built using concepts from several other data mining ontologies.
First, OntoDM [49] is a general ontology for data mining which tries to relate
various data mining subfields. It provides the top-level classes for Exposé, which
also facilitates the extension of Exposé to other subfields covered by OntoDM.
Second, EXPO [58] models scientific experiments in general, and provides the
top-level classes for the parts involving experimental designs and setups. Finally,
DMOP [26] models the internal structure of learning algorithms, providing de-
tailed concepts for general algorithm definitions. Exposé unites these three on-
tologies and adds many more concepts regarding specific types of experiments,
evaluation techniques, evaluation metrics, learning algorithms and their specific
configurations in experiments.

ExzpDB The ExpDB database model, also based on Exposé, is very fine-grained,
so that queries can be written about any aspect of the experimental setup,
evaluation results, or properties of involved components (e.g. dataset size). When
submitted to an ExpDB, the experiments are automatically stored in a well-
organized way, associating them with all other stored experiments and available
meta-level descriptions, thus linking empirical data with all known theoretical
properties of all involved components.

All further details, including detailed design guidelines, database models,
ontologies and XML definitions, can be found on the ExpDB website, which can
be found at http://expdb.cs.kuleuven.be.

It also hosts a working implementation in MySQL which can be queried
online through two query interfaces: an online interface on the homepage itself
and an open-source desktop application. Both allow to launch queries written
in SQL, or composed in a graphical query interface, and can show the results in
tables or graphical plots. The database has been extended several times based
on user requests, and is frequently being visited by over 400 users.

Meta-knowledge The ExpML language is designed not only to upload new ex-
periments, but also to add new definitions of any new component, such as a new
algorithm or a new data characteristic. As such, the meta-knowledge contained
in the database can be dynamically extended by the user to be up to date with
new developments. Algorithms, datasets, preprocessing algorithms and evalua-
tion methods are first of all described with all necessary details (e.g. version

Evaluation L

sy — = Pre-processors
Parameters "¢ = iethad p

’ Algorithms 2% ‘l h ’ Datasets =4
-
g =

¥ WEKA
> || s ExpML ,)'f’
Ontology| * + % o
. W DM toolboxes
s
Query <
interface 4§’}

_—

‘%\ Mining .
G, 2)
Algorith Th tical
gorithm earetica Meta-models KD assistance

refinement examination

Fig. 14. The architecture of experiment databases.

numbers) to allow unique identification, as well as more informational descrip-
tions of their use. Furthermore, they can be described with an arbitrary number
of characterizations, and new ones can be added at any time, preferably with a
description of how they are computed, and immediately be used to see whether
they improve meta-learning predictions. Attribute-specific data characteristics
can be stored as well. Parameter settings are also stored, and each parameter
can be described with additional meta-data such as default values, suggested
ranges and informal descriptions of how to tune them. Furthermore, an arbi-
trary number of performance evaluations can be added, including class-specific
metrics such as AUROC, and entire contingency matrices. In principle, the pro-
duced models could also be stored, e.g. using the PMML format, although in the
current version of the system only the predictions for all instances are stored®.
At the time of writing, the database contained over 650,000 experiments on 67
classification and regression algorithms from WEKA [23], 149 different datasets
from UCI [2], 2 data preprocessing techniques (feature selection and sampling),
40 data characteristics [29] and 10 algorithm characterizations [25]. In its current
implementation, it covers mostly classification, and some regression tasks, natu-
rally extending to more complex settings, such as kernel methods, ensembles or
multi-target learning.

Meta-learning The bottom half of Figure 14 shows the different ways the
stored meta-data can be used. First of all, any hypothesis about learning be-

8 This allows computation of new evaluation metrics without rerunning experiments.

havior can be checked by translating it to an SQL query and interpreting the
returned results. Adding and dropping constraints from the query provides an
easy and effective means of thoroughly browsing the available meta-data. For in-
stance, we could ask for the ‘predictive accuracy’ of all support vector machine
‘SVM’ implementations, and for the value of the ‘gamma’ parameter (kernel
width) of the ‘RBF’ kernel, on the original (non-preprocessed) version of dataset
‘letter’. The result, showing the effect of the gamma parameter, is shown in Fig.
15 (the curve with squares). Adding three more datasets to the query gener-
ates the other curves. Just as easily, we could have asked for the size of all
datasets instead, or we could have selected a different parameter or any other
kind of alteration to explore the meta-data further. SQL queries also allow for
the meta-data to be rearranged or aggregated to answer very general questions
directly, such as algorithm comparisons, rankings, tracking the effects of prepro-
cessing techniques (e.g. learning curves), or building profiles of algorithms based
on many experiments [6,67]. An example of the latter is shown in Fig. 17: since
a large number of bias-variance decomposition experiments are stored, we can
write a query that reorganizes all the data and calculates the average percent-
age of bias error (as opposed to variance error) produced by each algorithm.
Such algorithm profiling can be very useful for understanding the performance
of learning algorithms.

As shown in Fig. 14, querying is but one of the possible meta-learning ap-
plications. First of all, insights into the behavior of algorithms could lead to al-
gorithm refinement, thus closing the algorithm design loop. As a matter of fact,
the results in Fig. 15 suggested a correlation between the useful range of the
gamma parameter and the number of attributes (shown in parentheses), which
led to a refinement of WEKA’s SVM implementation [67]. Furthermore, instead
of browsing the meta-data, we could also construct meta-models by downloading
parts of the meta-data and modeling it. For instance, we could build decision
trees predicting when one algorithm outperforms another, as shown in Fig. 16
for algorithms J48 and OneR, or how different parameters interact on certain
datasets [63]. Finally, the meta-data can also be used to provide the necessary
meta-data for other DM assistance tools, as shall be discussed in Section 7.

Discussion For researchers developing new algorithms, or practitioners try-
ing to apply them, there are many benefits to sharing experiments. First, they
make results reproducible and therefore verifiable. Furthermore, they serve as
an ultimate reference, a ‘map’ of all known approaches, their properties, and
results on how well they fared on previous problems. And last but not least,
it allows previous experiments to be readily reused, which is especially useful
when benchmarking new algorithms on commonly used datasets, but also makes
larger, more generalizable studies much easier to perform. As such there is a real
incentive to share experiments for further reuse, especially since integration in
existing DM toolboxes is relatively easy. Such integration can also be used to
automatically generate new experimental runs (using, for instance, active learn-
ing principles) based on a query or simply on a lack of experiments on certain

& | s=uwopuey
ucsidadsagisteinny
1uvd

dopty

wisllg

ouu,
| =2uM
8241 WAPUEY-83 ILICIWOpUEY
| a=ugn
| gprsyssepeseeumio
| spr-e=1eioaag

5

76% margs win J43)

W
o
@
=
z
wl
w
o
]

76

| 1zasogwopuey
| sprasuissepEE)y
| omgansgy
Il | BEr-EUssEIpAIBESANgURY
1 | onsiBot-opajzspioysaiy L
I | @aud3y
Al
| uen
ousiBoq
dwnigusispag-asocguEon
VeI ey BE T B e
2]
| dSw-unissaSayRIAUaNEIYISEE| D
| Bor
| aaupd3y-3uiddeg
[wE
| dwniguoispag-THIsacEERY
| A
| 484-0MS
| dwniguoisnag-gyisaogn iy
” dwngucisag
| onsiBoiadung
| dwniguoiEaag-1T
| ajnyanpauniuay
[EILIaUAad-ONS
| 300w
| uondassadpaion
T waug
[dwnisaag-jsnagydooupasey
WoJaz-awaws oy
| womz
I weszaop
[yoiag-uanIspEsmMALEIRIA]
ajgEalEpdnsadegaaey
| sakegamen
apduwgsadeganiey

""'00@01‘_‘@

| default.acc<
0.98|(win_J48)

nb examples<

[classentropy<
Fig.16. A meta-decision tree predict-

ing J48’s superiority over OneR.

il hd ';.éé.aqh.ig.@;o doee
| | | =

S o eelal

e
&

&
i

e e d

gamma (log)

0.5

MMMMLGEOTS

P
“@_

===letter{17)
“eewaveform5000(41)
==optdigits{65)

hEIEIPS

0.05

sadigiaddy

0.3 | =*=yeast(d)

o AL
= o

0.9

) wo
(=] L= =1
Azeanaoe sanaipaad

085 (&
0.8

L]
(=l - |

0.9

W
Lol B =
=T 1

0.45

Fig. 15. The effect of parameter gamma of

the RBF-kernel in SVMs.

u
n
[=]
10433 SBI %

related error for each algorithm.

Fig. 17. The average percentage of bias-

techniques. There are also numerous network effects in which advancements in
learning algorithms, pre-processing techniques, meta-learning and other subfields
all benefit from each other. For instance, results on a new preprocessing tech-
nique may be used directly in designing KD workflows, new data characteristics
can highlight strengths and weaknesses of learning algorithms, and the large
amounts of experiments can lead to better meta-learning predictions. Possible
drawbacks are that, unless integrated in a toolbox, the system cannot execute
algorithms or KD workflows on demand (although code or urls to executables are
always stored) and that, while results received from toolboxes can be assumed
to be accurate, results from individual users may have to be verified by referees.

Compared to DMA, one could say that DMA is a local, predictive system,
while an ExpDB is a community-based, descriptive system. DMA also employed
a database, but it was much simpler, consisting of a few large tables with many
columns describing all different kinds of data characterizations. In ExpDBs, the
database is necessarily very fine-grained to allow very flexible querying and to
scale to millions of experiments from many different contributors. The main dif-
ference though is that, while DMA is a system designed for practical algorithm
selection advice, ExpDBs offer a platform for any kind of meta-learning study
and for the development of future meta-learning systems. It is also quite comple-
mentary to MiningMart. While ExpDBs do store preprocessing workflows, Min-
ingMart is much more developed in that area. Finally, compared to AMLA, the
repository in ExpDBs is much more structured, allowing much more advanced
queries in standard SQL. On the other hand, while ExpDBs can be integrated in
any toolbox, AMLA offers a more controlled approach which gathers meta-data
from every component in a KD workflow.

7 A new platform for intelligent KD support

7.1 Summary

An overview of the previously discussed architectures is shown in Table 1. The
columns represent consecutively the portion of the KD process covered, the sys-
tem type, how it interacts with the user, what type of meta-information is stored,
the data it has been trained on, which KD processes it considers, which evalua-
tion metrics are covered, which meta-features are stored and which meta-learning
techniques are used to induce new information, make predictions or otherwise
advise the user.

As the table shows, and the systems’ discussions have indicated, each sys-
tem has its own strengths and weaknesses, and cover the KD process to various
extents. Some algorithms, like MiningMart and DMA provide a lot of support
and gather a lot of meta-information about a few, or only one KD step, while
others try to cover a larger part of the entire process, but consider a smaller
number of techniques or describe them with less information, usually provided
by experts. All systems also expect very different things from their users. Some,
especially CITRUS, GDL and AMLA, put the user (assumed to be an expert)
firmly in the driver’s seat, leaving every important decision to her. Others, like

Table 1. Comparison of meta-learning architectures

KD step®|type user interface type meta-info data scope KD process |evaluation meta-feature scope |meta-learning
scope scope technique
Consultant-2 Expert |Q&A sessions |heuristic expert rules|NA 10 algorithms |speed, model |simple statistics, static
system from MLT properties prior knowledge meta-model
DMA meta- Webinterface: |collection of 67 datasets + |10 classific. accuracy and |7 modified StatLog |[kNN and
model algo ranking experiments 83 from users |algorithms speed features ranking
NOEMON meta- Algorithm collection of decision |77 datasets |3 classific. accur., speed |idem StatLog + Vote over mod-
model ranking trees (ucn) algorithms and memory |histograms els and ranking
IDEA Planning | Ranking of KD |ontology of KD NA 10 preproc., 6 |accuracy, IOPE® + basic ATl planning
plans operators with ML algo’s, 5 |speed, model- |[data properties
heuristics postproc. properties
GLS Planning | User reviews ontology of KD NA 7 preproc., 7 |[NA NA emergent agent
partial plans operators + agent ML algo’s, 2 behavior + Al
meta-rules postproc. planning
GDL Planning | May call on LML descriptions Knowledge NA NA 12 LML properties |Search
experts bases
CCE Planning | Stop criterion | ‘reliability’ values NA extensible complexity NA Adaptive system
CITRUS CBR Clementine case base + process |NA Clementine |depends on |workflow CBR, checking
editor constraints processes operator description constraints
ALT CBR Returns ‘best’ | collection of cases 80 datasets |21 classific. accuracy and |StatLog features + |Case-based
algorithm (experiments) (UCI+more) |algorithms speed 4 algorithm feats |reasoning
MiningMart CBR Editors: create |collection of cases + |NA (any 41 NA business none (manual
or adapt cases |business ontology database) preprocessors description of each |CBR)
workflow
HDMA CBR Step-by-step, set of KD cases + set [NA selection of user ratings |30 data features, 31|Case-based
show cases + of heuristic expert WEKA solution features, 5 |reasoning
advice rules, ontological algorithms user ratings
NExT CBR + |Interaction to |ontology of workflow |NA NA NA IOPE? + workflow |CBR + Al
Planning |solve workflow |issues and solutions description planning
issues
AMLA Querying | Process editor |Name-value pairs NA extensible extensible extensible querying + fill
+ Query lang. |from any component in templates
ExpDBs Querying | Query interf. 4+ |searchable repository |extensible extensible extensible extensible (50+ querying and
meta-data of experim’s, algo’s, |(150+ UCI (704+ WEKA |(50+ metrics) [data and algorithm |mining (any
up/download |data,... + ontology |datasets) algorithms) features) algorithm)

“ The boxes stand consecutively for the Data Selection, Preprocessing+transformation, Data Mining, and Postprocessing step.
® JOPE=Inputs, Outputs, Preconditions and Effects of KD operators

Consultant-2, GLS, MiningMart, HDMA and NExT allow the user to interfere
in the workflow creation process, often explicitly asking for input. Finally, the
meta-model systems and IDEA almost completely automate this process, offer-
ing suggestions to users which they may adopt or ignore. Note that, with the
exception of Consultant-2, none of the systems performing algorithm selection
also predict appropriate parameters, unless they are part of a prior workflow.

A few systems obviously learned from each other. For instance, DMA, NOE-
MON and ALT learned from StatLog, NExT learned from IDEA and HDMA
learned from prior CBR and expert system approaches. Still, most systems are
radically different from each other, and there is no strong sense of convergence
to a general platform for KD workflow generation.

7.2 Desiderata

We now look forward, striving to combine the best aspects of all prior systems:

Extensibility Every KD support system that only covers a limited number of
techniques will at some point become obsolete. It is therefore important that
new KD techniques can be added very easily. (GLS, AMLA, ExpDBs)

Integration Ideally, the system should be able to execute the workflow, in-
stead of just offering an abstract description. Keeping extensibility in mind,
it should also be able to call on some existing KD tools to execute processes,
instead of reimplementing every KD process in a new environment. Indeed,
as new types of algorithms are created, new data preprocessing methods are
developed, new learning tasks come about, and even new evaluation proce-
dures are introduced, it will be infeasible to re-implement this continuously
expanding stream of learning approaches, or to run all the experiments nec-
essary to learn from them. (Consultant-2, HDMA, ExpDBs)

Self-maintenance Systems should be able to update their own meta-knowledge
as new data or new techniques become available. While experts are very
useful to enrich the meta-knowledge with successful models and workflows,
they cannot be expected to offer all the detailed meta-data needed to learn
from previous KD episodes. (DMA, NOEMON, ALT, AMLA, ExpDBs)

Common language Effective KD support hinges on a large body of meta-
knowledge. As more and more KD techniques are introduced, it becomes
infeasible to locally run all the experiments needed to collect the necessary
meta-data. It is therefore crucial to take a community-based approach, in
which descriptions of KD applications and generated meta-data can be gen-
erated by, and shared with, the entire community. To achieve this, a common
language should be used to make all the stored meta-data interchangeable.
This could lead to a central repository for all meta-data, or a collection of
different repositories interfacing with each other. (MiningMart, ExpDBs)

Ontologies Meta-knowledge should be stored in a way that makes it machine-
interpretable, so that KD support tools can use it effectively. This is reflected
by the use of ontologies in many of the discussed systems. Ideally, such an
ontology should also establish a common vocabulary for the concepts and

relations used in KD research, so that different KD systems can interact.
This vocabulary could be the basis of the proposed common description
language. (IDEA, GLS, MiningMart, HDMA, NExT, ExpDBs)

Meta-data organization The stored meta-data should also be stored in a way
that facilitates manual querying by users. Indeed, we cannot foresee all the
possible uses of meta-data beforehand, and should therefore enable the user
to perform her own investigations. Moreover, when extending KD support
tools with new ways of using meta-data, such a structured repository will
drastically facilitate this extension. (AMLA, ExpDBs)

Workflow reuse and adaptation Since most KD applications focus on a lim-
ited number of tasks, it is very likely that there exist quite a few prior suc-
cessful workflows that have been designed for that task. Any intelligent KD
support system should therefore be able to return similar workflows, but also
offer extensive support to adapt them to the new problem. For instance, if
a prior workflow can only partially be reused, new solutions should be pro-
posed to fill in the missing pieces. (MiningMart, HDMA, NExT)

Planning When no similar workflows exist, or when parts of workflows need to
be redesigned, using the KD processes’ preconditions and effects for planning
is clearly a good approach, although care should be taken that the planning
space is not prohibitively large. (IDEA,GLS,NExT)

Learning Last but not least, the system should get better as it gains more
experience. This includes planning: over time, the system should be able to
optimize its planning approach, e.g. by updating heuristic descriptions of the
operators used, instead of generating the same plan every time it encounters
the same problem. (DMA, NOEMON, GLS, all CBR approaches)

7.3 Architecture

These aspects can be combined in the KD support platform shown in Figure 18.
It is based on both our analysis here and on the description of a proposed DM
laboratory in Kalousis et al. [30].

A community-based approach This platform is set in a community-based
environment, with many people using the same KD techniques. It could cover
a very general domain, such as KD as a whole, or a more specific one, such as
bio-technology, which may result in more specific types of meta-data and more
specific ontologies.

Notice that first of all, a common language is used to exchange meta-data
between the KD assistant and the tools with which it interacts. First, on the
right, there are the many DM /KD toolboxes that implement a wide variety of
KD processes. They exchange workflows, descriptions of algorithms and datasets,
produced models and evaluations of the implemented techniques.

On the left, there are web services. In the last couple of years, there has
been a strong movement away from locally implemented toolboxes and datasets,
and towards KD processes and databases offered as online services. These Service

s R Jgﬂfw
g '\J"}J .Il @

4 DM toolboxes

Web Services .
(Taverna,WekadWs,..) — TTrreel a'

A
<
il -r- > [~ -
& 3..) = %¥
Planner Ontoio Ex I

am il
]
Ranked Interactive work-

workflows flow composition

interface

Fig. 18. A proposed platform for intelligent KD support.

Oriented Architectures (SOAs) [18] define standard interfaces and protocols that
allow developers to encapsulate tools as services that clients can access without
knowledge of, or control over, their internal workings. In the case of a database,
this interface may offer to answer specific queries, e.g. a database of airplane
flight may return the flight schedule for a specific plane. In the case of a learning
algorithm, the interface may accept a dataset (or a database implemented as a
web service) and return a decision tree.

While we did not explicitly include experts as a source of meta-knowledge,
we assume that they will build workflows and models using the available web
services and toolboxes.

When the KD assistant interacts with these services, it will exchange work-
flows, descriptions of the web services (where to find them and how to interact
with them), produced models and evaluation results. Given the rise of web ser-
vices, XML is a very likely candidate as the modeling language for this common
language. Web services interact with each other using SOAP (Simple Object
Access Protocol) messages, and describe their interface in WSDL (Web Services
Description Language), both of which are described in XML. XML is also used
by many KD/DM toolboxes to serialize their data and produced models.

A DM/KD ontology The vocabulary used for these descriptions should be
described in a common ontology. Despite many proposed ontologies, there is
of yet no consensus on an ontology for DM or KD, but we hope that such an

ontology will arise over the coming years. Imagine the internet without HTML,
and it is obvious that a common language for KD is essential for progress in this
field. The ontology should also provide detailed descriptions of KD processes,
such as their place in the hierarchy of different processes, the internal structure
of composite learning algorithms, preconditions and effects of all known KD
operators, and the parameters that need to be tuned in order to use them.
Additional information can be added to extend the ontology to engender further
KD support (such as the list of KD issues and solutions in NExT).

A meta-data repository All generated meta-data is automatically stored and
organized in a central repository, such as an ExpDB. It collects all the details
of all performed experiments, including the workflows used and the obtained
results, thus offering a complete log of the experimentation which can be used to
reproduce the submitted studies. Moreover, using the ontology, it automatically
organizes all the data so it can be easily queried by expert users, allowing it to
answer almost any kind of question about the properties and the performance
of the used KD techniques, using the meta-data from many submitted studies.
It serves as the long-term memory of the KD assistant, but also as that of the
individual researcher and the community as a whole. It will be frequently polled
by the KD assistant to extract the necessary meta-data, and should contain
a query interface for manual investigations as well. The database itself can be
wrapped as a web service, allowing automatic interaction with other tools and
web services.

Planning and execution The KD assistant interacts with two more com-
ponents: an Al planner used to solve any planning problems, and an executer
component which runs the actually implemented KD algorithms in KD /DM tool-
boxes or web services to execute workflows, or perhaps to do other calculations
such as computing meta-features if they are not implemented in the KD assis-
tant itself. The executer polls the ExpDB to obtain the necessary descriptions
and locations of the featured web services, algorithms or datasets.

As for the output generated by the KD assistant, we foresee two important
types of advice (beyond manual querying), although surely many more kinds of
advice are possible. The first is a ranked list of workflows produced by the KD
assistant (even if this workflow only consists of a single learning algorithm). The
second, possibly more useful approach is a semi-automatic interactive process in
which the user actively participates during the creation of useful workflows. In
this case, the KD assistant can be associated with a workflow editing tool (such
as Taverna), and assist the users as they compose workflows, e.g. by checking the
correctness of a workflow, by completing partial workflows using the planner, or
by retrieving, adapting or repairing previously entered workflows.

7.4 Implementation

ExpDBs and ontologies While such a KD support system may still be some
way off, recently, a great deal of work has been done that brings us a lot closer
to realizing it.

First of all, repositories organizing all the generated meta-data can be built
using the experiment databases discussed in Section 6.2. Its ontology and XML-
based language for exchanging KD experiments can also be a good starting
point. However, building such ontologies and languages should be a collaborative
process, so we should also build upon some other recently proposed ontologies in
DM, such as OntoDM [48,49], DMOP [30, 26], eProPlan [35], KDDONTO [24]
and KD ontology [69, 70].

Planning Concerning planning, several approaches have been outlined that
translate the ontological descriptions of KD operators to a planning description
based on the standard Planning Domain Description Language (PDDL) by using
an ontological reasoner to query their KD ontologies before starting the actual
planning process [36,42,56]. Other approaches integrate a reasoning engine di-
rectly in the planner, so that the planner can directly query the ontology when
needed [35,69,70]. For instance, eProPlan[35] covers the preconditions and ef-
fects of all KD operators, expressed as rules in the Semantic Web Rule Language
(SWRL) [28].

Klusch et al. [36] and Liu et al. [42] use a classical STRIPS planner to produce
the planning, while Sirin et al. [56] and Kietz et al. [35] propose an Hierarchical
Task Network (HTN) planning approach [55], in which each task has a set of
associated methods, which decompose into a sequence of (sub)tasks and/or oper-
ators that, when executed in that order, achieve the given task. The main task is
then recursively decomposed until we obtain a sequence of applicable operators.
Somewhat similar to GLS, this divide-and-conquer approach seems an effective
way to reduce the planning space.

Zakova et al. [70] uses an adaptation of the heuristic Fast-Forward (FF)
planning system [27]. Moreover, it allows the completed workflows to be executed
on the Orange DM platform, and vice-versa: workflows composed in Orange are
automatically annotated with their KD ontology so that they can be used for
ontology querying and reasoning. It does this by mapping their ontology to the
ontology describing the Orange operators.

Finally, Kalousis et al. [30] propose a system that will combine planning
and meta-learning. It contains a kernel-based, probabilistic meta-learner which
dynamically adjusts transition probabilities between DM operators, conditioned
on the current application task and data, user-specified performance criteria,
quality scores of workflows applied in the past to similar tasks and data, and the
users profile (based on quantified results from, and qualitative feedback on, her
past DM experiments). Thus, as more workflows are stored as meta-knowledge,
and more is known about the users building those workflows, it will learn to
build workflows better fit to the user.

Web services The development of service oriented architectures for KD, also
called third-generation DM/KD, has also gathered steam, helped by increasing
support for building workflows of web services.

Taverna [53], for instance, is a system designed to help scientists compose
executable workflows in which the components are web services, especially for
biological in-silico experiments. Similarly, Triana [60] supports workflow execu-
tion in multiple environments, such as peer-to-peer (P2P) and the Grid. Discov-
ery Net [54] and ADMIRE [38] are platforms that make it easier for algorithm
designers to develop their algorithms as web services and WekadWS [59] is a
framework offering the algorithms in the WEKA toolkit as web services.

Finally, OrangedWS [51] is a service-oriented KD platform based on the
Orange toolkit. It wraps existing web services as Orange workflow components,
thus allowing to represent them, together with Orange’s original components
as graphical ‘widgets’ for manual workflow composition and execution. It also
proposes a toolkit to wrap ‘local’ algorithms as web services.

8 Conclusions

In this chapter, we have provided a survey of the different solutions proposed
to support the design of KD processes through the use of meta-knowledge and
highlighted their strengths and weaknesses. We observed that most of these sys-
tems are very different, and were seemingly developed independently from each
other, without really capitalizing on the benefits of prior systems. Learning from
these prior architectures, we proposed a new, community-based platform for KD
support that combines their best features, and showed that recent developments
have brought us close to realizing it.

Acknowledgements

This research is supported by GOA 2003/08 “Inductive Knowledge Bases” and
F.W.0O.-Vlaanderen G.0108.06 “Foundations of Inductive Databases for Data
Mining”.

References

1. Aha, D.: Generalizing from case studies: A case study. Proceedings of the Ninth
International Conference on Machine Learning pp. 1-10 (1992)

2. Asuncion, A., Newman, D.: Uci machine learning repository. University of Cali-
fornia, School of Information and Computer Science (2007)

3. Bensusan, H., Giraud-Carrier, C.: Discovering task neighbourhoods through land-
mark learning performances. Lecture Notes in Computer Science 1910, 136-137
(2000)

4. Bernstein, A., Daenzer, M.: The next system: Towards true dynamic adaptations
of semantic web service compositions. Lecture Notes in Computer Science 4519,
739-748 (2007)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Bernstein, A., Provost, F., Hill, S.: Toward intelligent assistance for a data mining
process: an ontology-based approach for cost-sensitive classification. IEEE Trans-
actions on Knowledge and Data Engineering 17(4), 503-518 (2005)

Blockeel, H., Vanschoren, J.: Experiment databases: Towards an improved exper-
imental methodology in machine learning. Lecture Notes in Computer Science
4702, 6-17 (2007)

Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R.: Metalearning: Applications
to data mining. Springer (2009)

. Brazdil, P., Soares, C., Costa, J.P.D.: Ranking learning algorithms: Using ibl and

meta-learning on accuracy and time results. Machine Learning 50, 251-277 (2003)
Chandrasekaran, B., Josephson, J.: What are ontologies, and why do we need
them? IEEE Intelligent systems 14(1), 20-26 (1999)

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C.,
Wirth, R.: Crisp-dm 1.0. a step-by-step data mining guide [http://www.crisp-
dm.org] (1999)

Charest, M., Delisle, S.: Ontology-guided intelligent data mining assistance: Com-
bining declarative and Proceedings of the 10th TASTED International Con-
ference on Artificial Intelligence and Soft Computing pp. 9-14 (2006)

Charest, M., Delisle, S., Cervantes, O., Shen, Y.: Intelligent data mining assis-
tance via cbr and ontologies. Proceedings of the 17th International Conference on
Database and Expert Systems Applications (DEXA’06) (2006)

Charest, M., Delisle, S., Cervantes, O., Shen, Y.: Bridging the gap between data
mining and decision support: A case-based reasoning and Intelligent Data
Analysis 12, 1-26 (2008)

Craw, S., Sleeman, D., Graner, N., Rissakis, M.: Consultant: Providing advice for
the machine learning toolbox. Research and Development in Expert Systems IX:
Proceedings of Expert Systems '92 pp. 523 (1992)

Dean, M., Connolly, D., van Harmelen, F., Hendler, J., Horrocks, I., orah
L McGuinness, D., Patel-Schneider, P.F., Stein, L.A.: Web ontology lan-
guage (owl) reference version 1.0. W3C Working Draft. Available at
http://www.w3.org/TR /2003 /WD-owl-ref-20030331. (2003)

Engels, R.: Planning tasks for knowledge discovery in databases; performing task-
oriented user-guidance. Proceedings of the 2nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD’96) pp. 170-175 (1996)
Fikes, R., Nilsson, N.: Strips: A new approach to the application of theorem proving
to problem solving. Artificial intelligence 2, 189-208 (1971)

Foster, I.: Service-oriented science. Science 308(5723), 814 (2005)
Giraud-Carrier, C.: The data mining advisor: meta-learning at the service of prac-
titioners. Proceedings of the 4th International Conference on Machine Learning
and Applications pp. 113-119 (2005)

Giraud-Carrier, C.: Metalearning-a tutorial. Tutorial at the 2008 International
Conference on Machine Learning and Applications (ICMLA’08) (2008)
Grabczewski, K., Jankowski, N.: Versatile and efficient meta-learning architecture:
Knowledge representation and IEEE Symposium on Computational Intelli-
gence and Data Mining pp. 51-58 (2007)

Grabczewski, K., Jankowski, N.: Meta-learning with machine generators and com-
plexity controlled exploration. Lecture Notes in Computer Science 5097, 545-555
(2008)

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The
weka data mining software: An update. SIGKDD Explorations 11(1), 10-18 (2009)

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Hidalgo, M., Menasalvas, E., Eibe, S.: Definition of a metadata schema for describ-
ing data preparation tasks. Proceedings of the ECML/PKDD09 Workshop on 3rd
generation Data Mining (SoKD-09) pp. 64-75 (2009)

Hilario, M., Kalousis, A.: Building algorithm profiles for prior model selection in
knowledge discovery systems. Engineering Intelligent Systems 8(2) (2000)
Hilario, M., Kalousis, A., Nguyen, P., Woznica, A.: A data mining ontology for
algorithm selection and meta-mining. Proceedings of the ECML/PKDD09 Work-
shop on 3rd generation Data Mining (SoKD-09) pp. 76-87 (2009)

Homann, J., Nebel, B.: The ff planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research 14, 253-302 (2001)
Horrocks, 1., Patel-Schneider, P., Boley, H.: Swrl: A semantic web
rule language combining owl and ruleml. W3C Member submission,
http://www.w3.org/Submissions/SWRL/ (2004)

Kalousis, A.: Algorithm selection via meta-learning. PhD Thesis. University of
Geneve. (2002)

Kalousis, A., Bernstein, A., Hilario, M.: Meta-learning with kernels and similarity
functions for planning of data mining workflows. ICML/COLT/UAI 2008 Planning
to Learn Workshop (PlanLearn) pp. 23-28 (2008)

Kalousis, A., Hilario, M.: Model selection via meta-learning: a comparative study.
International Journal on Artificial Intelligence Tools 10(4), 525-554 (2001)
Kalousis, A., Theoharis, T.: Noemon: Design, implementation and performance
results of an intelligent assistant for classifier selection. Intelligent Data Analysis
3(4), 319-337 (1999)

Kaufman, K.: Inlen: a methodology and integrated system for knowledge discovery
in databases. PhD Thesis. School of Information Technology and Engineering,
George Mason University (1997)

Kaufman, K., Michalski, R.: Discovery planning: Multistrategy learning in data
mining. Proceedings of the Fourth International Workshop on Multistrategy Learn-
ing pp. 14-20 (1998)

Kietz, J., Serban, F., Bernstein, A., Fischer, S.: Towards cooperative planning
of data mining workflows. Proceedings of the Third Generation Data Mining
Workshop at the 2009 European Conference on Machine Learning (ECML 2009)
pp. 1-12 (2009)

Klusch, M., Gerber, A., Schmidt, M.: Semantic web service composition planning
with owls-xplan. Proceedings of the First International AAAI Fall Symposium on
Agents and the Semantic Web (2005)

Kodratoff, Y., Sleeman, D., Uszynski, M., Causse, K., Craw, S.: Building a machine
learning toolbox. Enhancing the knowledge engineering process: contributions from
ESPRIT pp. 81-108 (1992)

Le-Khac, N., Kechadi, M., Carthy, J.: Admire framework: Distributed data mining
on data grid platforms. Proceedings of the 1st International Conference on Software
and Data Technologies 2, 67-72 (2006)

Levin, L.: Universal sequential search problems. Problemy Peredachi Informatsii
9(3), 115-116 (1973)

Li, M., Vitdnyi, P.: An introduction to kolmogorov complexity and its applications.
Text and Monographs in Computer Science, Springer (1993)

Lindner, G., Studer, R.: Ast: Support for algorithm selection with a cbr approach.
Lecture Notes in Computer Science 1704, 418-423 (1999)

Liu, Z., Ranganathan, A., Riabov, A.: A planning approach for message-oriented
semantic web service composition. Proceedings of the National Conference on Al
5(2), 1389-1394 (2007)

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

METAL: Metal: A meta-learning assistant for providing user support in machine
learning and data mining. ESPRIT Framework IV LRT Reactive Project Nr.
26.357 (2001)

Michalski, R., Kerschberg, L., Kaufman, K.: Mining for knowledge in databases:
The inlen architecture, initial implementation and first results. Journal of Intelli-
gent Information Systems 1(1), 85-113 (1992)

Michie, D., Spiegelhalter, D., Taylor, C.: Machine learning, neural and statistical
classification. Ellis Horwood (1994)

MLT: Machine learning toolbox. Esprit Framework II Research Project Nr. 2154
(1993)

Morik, K., Scholz, M.: The miningmart approach to knowledge discovery in
databases. Intelligent Technologies for Information Analysis pp. 47-65 (2004)
Panov, P., Dzeroski, S., Soldatova, L.: Ontodm: An ontology of data mining. Pro-
ceedings of the 2008 IEEE International Conference on Data MIning Workshops
pp. 752-760 (2008)

Panov, P., Soldatova, L., Dzeroski, S.: Towards an ontology of data mining inves-
tigations. Lecture Notes in Artificial Intelligence 5808, 257—271 (2009)
Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Meta-learning by landmarking
various learning algorithms. Proceedings of the Seventeenth International Confer-
ence on Machine Learning pp. 743-750 (2000)

Podpecan, V., Jursic, M., Zakova, M., Lavrac, N.: Towards a service-oriented
knowledge discovery platform. Proceedings of the SoKD-09 International Work-
shop on Third Generation Data Mining at ECML PKDD 2009 pp. 25-38 (2009)
Rendell, L., Seshu, R., Tcheng, D.: Layered concept learning and dynamically-
variable bias management. Proceedings of the 10th International Joint Conference
on Artificial Intelligence pp. 308-314 (1987)

Roure, D.D., Goble, C., Stevens, R.: The design and realisation of the myexperi-
ment virtual research environment for social sharing of workflows. Future Gener-
ation Computer Systems 25, 561-567 (2009)

Rowe, A., Kalaitzopoulos, D., Osmond, M.: The discovery net system for high
throughput bioinformatics. Bioinformatics 19, 225-231 (2003)

Sacerdoti, E.: Planning in a hierarchy of abstraction spaces. Artificial intelligence
5(2), 115-135 (1974)

Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: Htn planning for web service
composition using shop2. Journal of Web Semantics 1(4), 377-396 (2004)
Sleeman, D., Rissakis, M., Craw, S., Graner, N., Sharma, S.: Consultant-2: Pre-and
post-processing of machine learning applications. International journal of human-
computer studies 43(1), 43-63 (1995)

Soldatova, L., King, R.: An ontology of scientific experiments. Journal of the Royal
Society Interface 3(11), 795-803 (2006)

Talia, D., Trunfio, P., Verta, O.: Wekadws: a wsrf-enabled weka toolkit for dis-
tributed data mining on grids. Lecture Notes in Computer Science 3721, 309-320
(2005)

Taylor, 1., Shields, M., Wang, 1., Harrison, A.: The triana workflow environment:
Architecture and applications. Workflows for e-Science. Springer. pp. 320-339
(2007)

Utgoff, P.: Shift of bias for inductive concept learning. Machine learning: An
artificial intelligence approach. Volume II. Morgan Kaufmann. (1986)

Van Someren, M.: Towards automating goal-driven learning. Proceedings of the
planning to learn workshop at the 18th European conference of machine learning
(ECML 2007) pp. 42-52 (2007)

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Vanschoren, J., Assche, A.V., Vens, C., Blockeel, H.: Meta-learning from experi-
ment databases: An illustration. Proceedings of the 16th Annual Machine Learning
Conference of Belgium and The Netherlands (Benelearn07) pp. 120-127 (2007)
Vanschoren, J., Blockeel, H.: A community-based platform for machine learning
experimentation. Lecture Notes in Artificial Intelligence 5782, 750-754 (2009)
Vanschoren, J., Blockeel, H., Pfahringer, B.: Experiment databases: Creating a
new platform for meta-learning research. Proceedings of the ICML/UAI/COLT
Joint Planning to Learn Workshop (PlanLearn08) pp. 10-15 (2008)

Vanschoren, J., Blockeel, H., Pfahringer, B., Holmes, G.: Organizing the world’s
machine learning information. Communications in Computer and Information
Science 17, 693-708 (2008)

Vanschoren, J., Pfahringer, B., Holmes, G.: Learning from the past with experiment
databases. Lecture Notes in Artificial Intelligence 5351, 485-492 (2008)

Wirth, R., Shearer, C., Grimmer, U., Reinartz, T., Schlosser, J., Breitner, C.,
Engels, R., Lindner, G.: Towards process-oriented tool support for knowledge dis-
covery in databases. Lecture Notes in Computer Science 1263, 243-253 (1997)
Zakova, M., Kremen, P., Zelezny, F., Lavrac, N.: Planning to learn with a
knowledge discovery ontology. Second planning to learn workshop at the joint
ICML/COLT/UAI Conference pp. 29-34 (2008)

Zakova, M., Podpecan, V., Zelezny, F., Lavrac, N.: Advancing data mining work-
flow construction: A framework and cases using the orange toolkit. Proceedings of
the SoKD-09 International Workshop on Third Generation Data Mining at ECML
PKDD 2009 pp. 39-51 (2009)

Zhong, N., Liu, C., Ohsuga, S.: Dynamically organizing kdd processes. Interna-
tional Journal of Pattern Recognition and Artificial Intelligence 15(3), 451-473
(2001)

Zhong, N., Matsui, Y., Okuno, T., Liu, C.: Framework of a multi-agent kdd system.
Lecture Notes in Computer Science 2412, 337-346 (2002)

Zhong, N., Ohsuga, S.: The gls discovery system: its goal, architecture and current
results. Lecture Notes in Computer Science 869, 233-244 (1994)

