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Abstract

For many tasks where data is collected over an
extended period of time, its underlying distribu-
tion is likely to change. A typical example is
information filtering, i.e. the adaptive classifi-
cation of documents with respect to a particu-
lar user interest. The interest of the user may
change over time. Machine learning approaches
handling concept drift have been shown to out-
perform more static approaches ignoring it in ex-
periments with different types of simulated con-
cept drifts on real-word text data and in exper-
iments on real-world data for the task of clas-
sifying phases in business cycles exhibiting real
concept drift. While previous concept drift han-
dling approaches only use a single base learning
algorithm and employ this same base learner at
each step in time, this paper proposes a meta-
learning approach allowing the use of alterna-
tive learners and automatically selecting the most
promising base learner at each step in time. This
work in progress investigates, if such a context-
dependent selection of the base learner leads to
a better adaptation to the drifting concept, i.e. to
lower classification error rates, than approaches
based on single base learner only. Furthermore
it investigates, how much the proposed meta-
learning approach allows to speed up the selec-
tion process and how much of the gained reduc-
tion in the error rate may be lost by that speed-up.
The approaches with and without base learner
selection and meta-learning are to be compared
in experiments using real-world data from the
above mentioned domains with simulated and
real-world concept drifts, respectively.1

1 Introduction
Machine learning methods are often applied to problems,
where data is collected over an extended period of time.
In many real-world applications this introduces the prob-
lem that the distribution underlying the data is likely to
change over time. For example, companies collect an in-
creasing amount of data like sales figures and customer data
to find patterns in the customer behavior and to predict fu-
ture sales. As the customer behavior tends to change over
time, the model underlying successful predictions should
be adapted accordingly.

1Experimental results not covered in this paper are presented
at LWA-2005/FGML-2005 and in [Klinkenberg, 2005].

The same problem occurs in information filtering, i.e.
the adaptive classification of documents with respect to a
particular user interest. With the amount of online infor-
mation and communication growing rapidly, there is an in-
creasing need for automatic information filtering. Informa-
tion filtering techniques are used, for example, to build per-
sonalized news filters, which learn about the news-reading
preferences of a user [Lang, 1995; Veltmann, 1997]. Both
the interest of the user, i. e. the concept underlying the clas-
sification of the texts, and the document content change
over time. A filtering system should be able to adapt to
such concept changes.

After a formalization of the concept drift problem in
Section 2.1 and shortly describing previous approaches to
handling concept drift in Sections 2.2 and 2.3, Section 3
describes two machine learning approaches handling this
type of concept drift that have been shown to outperform
more static approaches ignoring concept drift in experi-
ments with different types of simulated concept drifts on
real-word text data (see Section 4 and [Klinkenberg & Jo-
achims, 2000; Klinkenberg & Rüping, 2003; Klinkenberg,
2004]) and on real-world data with real concept drift (see
Section 5 and [Klinkenberg, 2003]).

These methods either maintain an adaptive time window
on the training data [Klinkenberg & Joachims, 2000], se-
lect representative training examples, or weight the train-
ing examples [Klinkenberg & Rüping, 2003; Klinkenberg,
2004]. The key idea is to automatically adjust the win-
dow size, the example selection, and the example weight-
ing, respectively, so that the estimated generalization error
is minimized. The approaches are both theoretically well-
founded as well as effective and efficient in practice. Since
they do not require complicated parameterization, they are
simpler to use and more robust than comparable heuristics.

Section 3 also proposes a meta-learning approach adding
an additional degree of freedom to these two concept drift
handling techniques by not only selecting the examples
best suited for learning at a certain point in time, but by
also selecting the base learner (and its parameterization)
from a given set of base learners (and parameterizations)
that seems to be most approriate for achieving the smallest
expected classification error at that point of time.

Furthermore this section outlines, how this approach
can be extended to use meta-data on the current situa-
tion and experience from previous time points to predict
such a selection based on the meta-data and thereby re-
duce the search space for a good selection. In experiments
on the data sets mentioned before, it will first be anal-
ysed, whether choosing the base learner at each point in
time separately using the first meta-learning approach re-
duces the classification error, and then, whether the second



meta-learning approach allows to reduce the model selec-
tion search space and computation time without sacrificing
too much accuracy. Section 6 summarizes the results of
this paper and provides an outlook on further work.

2 Concept Drift
2.1 Problem Definition
Throughout this paper, we study the problem of concept
drift for the pattern recognition problem in the following
framework [Klinkenberg & Joachims, 2000; Klinkenberg,
2003]. Each example z = (x, y) consists of a feature vector
x ∈ RN and a label y ∈ {−1,+1} indicating its classifi-
cation. Data arrives over time in batches. Without loss of
generality these batches are assumed to be of equal size,
each containing m examples.

z(1,1), ..., z(1,m)
︸ ︷︷ ︸

batch 1

, z(2,1), ..., z(2,m)
︸ ︷︷ ︸

batch 2

, · · · ,

z(t,1), ..., z(t,m)
︸ ︷︷ ︸

batch t

, z(t+1,1), ..., z(t+1,m)
︸ ︷︷ ︸

batch t+1

z(i,j) denotes the j-th example of batch i. For each
batch i the data is independently identically distributed
with respect to a distribution Pri(x, y). Depending on the
amount and type of concept drift, the example distribution
Pri(x, y) and Pri+1(x, y) between batches will differ. The
goal of the learner L is to sequentially predict the labels of
the next batch. For example, after batch t the learner can
use any subset of the training examples from batches 1 to
t to predict the labels of batch t + 1. The learner aims to
minimize the cumulated number of prediction errors.

2.2 Heuristic Approaches to Concept Drift
In machine learning, changing concepts are often handled
by time windows of fixed or adaptive size on the training
data [Mitchell et al., 1994; Widmer & Kubat, 1996; Lan-
quillon, 1997; Klinkenberg & Renz, 1998] or by weighting
data or parts of the hypothesis according to their age and/or
utility for the classification task [Kunisch, 1996; Taylor
et al., 1997]. The latter approach of weighting examples
has already been used for information filtering in the in-
cremental relevance feedback approaches of [Allan, 1996]
and [Balabanovic, 1997]. In this paper, the earlier approach
maintaining a window of adaptive size is explored. More
detailed descriptions of the methods described above and
further approaches can be found in [Klinkenberg, 1998].

For windows of fixed size, the choice of a “good” win-
dow size is a compromise between fast adaptivity (small
window) and good generalization in phases without con-
cept change (large window). The basic idea of adaptive
window management is to adjust the window size to the
current extent of concept drift.

2.3 Theoretical Approaches to Concept Drift
The task of learning drifting or time-varying concepts has
also been studied in computational learning theory. Learn-
ing a changing concept is infeasible, if no restrictions are
imposed on the type of admissible concept changes,2 but
drifting concepts are provably efficiently learnable (at least
for certain concept classes), if the rate or the extent of drift
is limited in particular ways.

2E.g. a function randomly jumping between the values one and
zero cannot be predicted by any learner with more than 50% ac-
curacy.

Helmbold and Long [Helmbold & Long, 1994] assume
a possibly permanent but slow concept drift and define the
extent of drift as the probability that two subsequent con-
cepts disagree on a randomly drawn example. Their results
include an upper bound for the extend of drift maximally
tolerable by any learner and algorithms that can learn con-
cepts that do not drift more than a certain constant extent
of drift. Furthermore they show that it is sufficient for a
learner to see a fixed number of the most recent examples.
Hence a window of a certain minimal fixed size allows to
learn concepts for which the extent of drift is appropriately
limited.

While Helmbold and Long restrict the extend of drift,
Kuh, Petsche, and Rivest [Kuh et al., 1991] determine a
maximal rate of drift that is acceptable by any learner,
i. e. a maximally acceptable frequency of concept changes,
which implies a lower bound for the size of a fixed window
for a time-varying concept to be learnable, which is similar
to the lower bound of Helmbold and Long.

In practice, however, it usually cannot be guaranteed
that the application at hand obeys these restrictions, e.g.
a reader of electronic news may change his interests (al-
most) arbitrarily often and radically. Furthermore the
large time window sizes, for which the theoretical results
hold, would be impractical. Hence more application ori-
ented approaches rely on far smaller windows of fixed
size or on window adjustment heuristics that allow far
smaller window sizes and usually perform better than fixed
and/or larger windows [Widmer & Kubat, 1996; Lanquil-
lon, 1997; Klinkenberg & Renz, 1998]. While these heuris-
tics are intuitive and work well in their particular appli-
cation domain, they usually require tuning their parame-
ters, are often not transferable to other domains, and lack a
proper theoretical foundation.

2.4 Meta-Learning Approaches to Concept Drift
In some domains, the concept changes in dependence on
some (hidden) context variables. For this kind of domains,
meta learning schemes were developed for identifying the
context variables, i.e. variables indicating the current con-
text, and for learning separate models for each context (see
e.g. [Widmer & Kubat, 1996; Widmer, 1997]).

While these approaches assume the existence of such
context indicating variables and keep their base learners
fixed, the meta learning frameworks proposed in this paper
do not assume that there are any context indicator variables
and allow to select a different base learner at each point in
time.

3 Handling Concept Drift
In a learning problem with drifting concepts as introduced
in Section 2.1, we face the problem to decide, how much
information from past examples may be used to find a hy-
pothesis that is adequate to predict the class information of
future data. Since we do not know, if and when a concept
drift happens, there are two opposing effects: On the one
hand, the older the data is, the more likely it is that its prob-
ability distribution differs from the current distribution that
underlies the process, so that the data may be misleading.
On the other hand, the more data is used in the learning pro-
cess, the better the results are if no concept drift occurred
since the data arrived.

In this section we present different approaches for learn-
ing drifting concepts. They differ in the way previous ex-
amples are used to construct a new hypothesis. All of our



approaches share the assumption, that concept drifts do
not reverse, i.e. newer examples are always more impor-
tant than older ones. This assumption was implemented
by a common scheme for estimating the performance of a
learner: In all experiments, the performance was only cal-
culated on the last batch of data, regardless of how many
batches were used in training.

Some base learners offer very effective and efficient er-
ror estimators. For support vector machines (SVMs), we
used the so-called ξα-estimator of [Joachims, 2000], which
estimates the leave-one-out-error of a SVM based solely on
the one SVM solution learned with all examples, to get a
good estimation of the performance but still be efficient,.

3.1 Adaptive Time Windows
One of the simplest scenarios for detecting concept drift are
concept drifts that happen very quickly between relatively
stable single concepts. For example, imagine a user of an
information filtering system, who wants to buy a new car:
at first, he is interested in information about all sorts of
cars, but after he made his decision and bought the car, he
is only interested in information about this special type of
car. This may be more accurately called “concept change”
or “concept shift” rather than “concept drift”.

In this scenario, the problem of learning drifting con-
cepts can be approached as the problem of finding the time
point t at which the last concept change happened. After
that, a standard learning algorithm for fixed concepts can
be used to learn from the data since t. Similarly, other con-
cept drift scenarios can be handled by using a time window
on the training data, assuming that the amount of drift in-
creases with time and hence focusing on the last n training
examples.

The shortcomings of previous windowing approaches
are that they either fix the window size [Mitchell et al.,
1994] or involve complicated heuristics [Widmer & Ku-
bat, 1996; Lanquillon, 1997; Klinkenberg & Renz, 1998].
A fixed window size makes strong assumptions about how
quickly the concept changes. While heuristics can adapt
to different speed and amount of drift, they involve many
parameters that are difficult to tune.

In [Klinkenberg & Joachims, 2000], Klinkenberg and
Joachims presented an approach to automatically select-
ing an appropriate window size that does not involve com-
plicated parameterization. They key idea is to select the
window size so that the estimated generalization error on
new examples is minimized. For SVMs, to get an estimate
of the generalization error, a special form of ξα-estimates
[Joachims, 2000] is used.

The adaptive window approach employs these estimates
in the following way. At batch t, it essentially tries various
window sizes, training a base learner, e.g. a SVM, for each
resulting training set.

batch t

batch t − 1, batch t

batch t − 2, batch t − 1, batch t

...

For each window size it computes a ξα-estimate based on
the result of training, considering only the last batch for
the estimation (batch t), that is the m most recent training
examples z(t,1), ..., z(t,m) This reflects the assumption that
the most recent examples are most similar to the new ex-
amples in batch t + 1. The window size minimizing the

ξα-estimate of the error rate is selected by the algorithm
and used to train a classifier for the current batch.

The window adaptation algorithm can be summarized as
follows:

• input: a training sample Strain

consisting of t batches containing
m (labeled) examples each

• for h ∈ {0, ..., t − 1}

– train base learner (e.g. SVM)
on examples z(t−h,1), ..., z(t,m)

– compute ξα-estimate on examples
z(t,1), ..., z(t,m)

• output: window size which
minimizes ξα-estimate

3.2 Example Selection
[Klinkenberg & Rüping, 2003] proposed an extension of
the time window adjustment approach by [Klinkenberg &
Joachims, 2000] allowing to select or deselect batches in-
dividually for the training set rather than only allowing an
uninterrupted sequence of batches (time window) as train-
ing set.

In the first step, a classifier is learned on only the most
recent batch of data. Of course, in most cases this classifier
will not be as good as it can be, but we can be sure that it
always will be the classifier that is most up-to-date with the
drifting concept. Now we can use this classifier to estimate,
which batches of data were generated from the same model
(i. e. the same users interest) as the most recent batch, by
comparing the estimated leave-one-out error of the classi-
fier on the most recent batch to its test error on the other
batches. The higher the error, the more unlikely is the data
given the model. Note that at this point, it is important to
use the leave-one-out-estimation and not the training error
to avoid errors by over-fitting the most recent data.

In a second step, the information about the error of the
classifier can be used to build a training set for the actual
classifier. We can exclude all batches from the new training
set, which have a significantly higher classification error
than the most recent batch (batch selection). By this, we
hope to train the final classifier on all data generated by
the current model in a way similar to the example selection
scheme in Section 3.1 (adaptive time window).

3.3 Meta-Learning for Selecting the Best Base
Learner: Model Selection for Error
Reduction

The two previously described concept drift approaches se-
lect the examples best suited for learning using a fixed base
learner, e.g. SVMs. While alternative base learners like
e.g. a decision-tree or rule-based or instance-based learners
could also be used with these approaches, as long as they
provide reliable error estimates, the base learner is fixed
and has to be chosen before applying these approaches.

The idea now is, to also let the concept drift handling
frame work select the most appropriate learner at each time
step. SVMs usually perform well with large data sets and
hence in phases with no or only little concept drift. How-
ever, they may have problems with very small data sets.
Shortly after a concept drift, when only few representative
examples are available for training, another base learner
may be more appropriate.



By not only selecting the example set, but also the
learner (and its parameterization), we add an additional de-
gree of freedom to the model selection process. In the fol-
lowing we call this type of framework selecting the most
promising combination of example set and base learner
(and parameterization) meta learner of type 1. The meta
learner selects the combination of example selection and
base learner selection that minimizes the expected error.

3.4 Meta-Learning for Predicting the Best
Model Selection to Speed-Up Learning

The meta learner of type 1 expands the search space for the
best expected model selection significantly in the hope to
reduce the classification error. In this section we therefore
introduce a second meta-learning framework, meta learner
of type 2, that reduces this expanded search space in order
to speed up the search.

While meta learner of type 1 did not learn on the meta-
level, but did a complete search of the search space on
that level, we now want to use meta-learning to guide
this search. One may expect the choice of the appropri-
ate learner at a certain point in time to depend on the ex-
pected best size of the training set. Hence the attributes
of the training examples on the meta-level include the
following, where one training example is constructed for
each previously seen batch after the previously chosen base
learner has been evaluated on that batch: number of old
batches used for training at the previous batch3, number of
non-interrupted most recent batches used for training (i.e.
number of batches without a detected concept drift), most
succesful learner on the previous batch4, most succesful
learner overall on all batches seen so far5, and possibly fur-
ther meta-attributes.

The first goal attribute to be learned by the meta-learner
is the prediction of the best (n1) base learner(s) given the
description of a time point by these meta attributes. The
second goal attribute to be learned by the meta-learner
is the prediction of the best (n2) example set selection(s)
given the description of a time point by these meta at-
tributes. The meta learner is trained whenever a new meta
example becomes available, i.e. after each batch.

The prediction of the meta model can then be used to
predict the best n1 expected example set selections and the
best n2 expected base learners and to test only test these
combinations instead of all possible combinations of base
learners and example set selections. The meta learner used
for this framework can be any learner providing a ranking
of the target class attribute values for a new meta example.

The choice of n1 and n2 allows to trade-off learning time
(i.e. search space size) and thereby the amount of time re-
quired for learning versus classification error. The larger
n1 and n2, the more complete is the search and hence the
better the result can be expected to be.

Furthermore one can set n1 and n2 in different ways if
only the choice of the example selection or the choice of
the base learner are really critical but not both.

3The best choice for the base learner can be expected to de-
pend on the (expected best) size of the training set, since some
learners are better on small data sets and others on larger ones,
i.e. different learners have different learning curves.

4Indicator for a locally successful learner.
5The choice of the learner certainly depends on the overall

data set and its (unknown) characteristics and hence the previous
success on this data set should be a relevant indicator.

4 Evaluation on Simulated Concept Drift
Scenarios

4.1 Experimental Setup and Evaluation Scheme:
Simulated Scenarios on Business News

In order to evaluate the learning approaches for drifting
concepts proposed in this paper, three simple non-adaptive
data management approaches are compared to the adaptive
time window approach and to the batch selection strategy,
all using SVMs as their core learning algorithm:

• “Full Memory”: The learner generates its classifica-
tion model from all previously seen examples, i.e. it
cannot “forget” old examples.

• “No Memory”: The learner always induces its hy-
pothesis only from the most recent batch. This cor-
responds to using a window of the fixed size of one
batch.

• Window of “Fixed Size”: A time window of the fixed
size of three batches is used on the training data.6

• “Adaptive Window”: The window adjustment algo-
rithm described in Section 3.1 (and in [Klinkenberg &
Joachims, 2000]) adapts the window size to the cur-
rent concept drift situation.

• “Batch Selection”: The batches producing an error
less than twice the estimated error of the newest batch,
when applied to a model learned on the newest batch
only, receive a weight of one, i.e. they are selected for
the final training set. The weight of all other examples
is set to zero, i.e. they are deselected (see Section 3.2
and [Klinkenberg & Rüping, 2003]).

The experiments are performed in an information filter-
ing domain, a typical application area for learning drifting
concept. Text documents are represented as attribute-value
vectors (bag of words model), where each distinct word
corresponds to a feature whose value is the “ltc”-TF/IDF-
weight [Salton & Buckley, 1988] of that word in that docu-
ment. Words occurring less than three times in the training
data or occurring in a given list of stop words are not con-
sidered. Each document feature vector is normalized to unit
length to abstract from different document lengths.

The performance of the classifiers is measured by predic-
tion error. All reported results are estimates averaged over
four runs. For more detailed results including precision and
recall results and graphical plots of the performance and
the selected window size over time see [Klinkenberg & Jo-
achims, 2000; Klinkenberg & Rüping, 2003; Klinkenberg,
2004].

While most evaluation methods for machine learning,
like e. g. cross-validation, assume that examples are in-
dependent and identically distributed, this assumption is
clearly unrealistic in the presence of concept drift. There-
fore the concept drift approaches proposed in this paper use
ξα-estimates [Joachims, 2000] instead of cross-validation
to estimate and optimize the performance of a particular pa-
rameterization at each learning step and only estimate the
performance on the currently last batch (see Section 3.1).
This is not only more appropriate for the concept drift sit-
uation at hand, but also more efficient, because the ξα-
estimator can be computed within a single training run.

6The fixed window size of three batches outperformed smaller
and larger fixed window sizes in the following experiments and
hence was chosen here.



Such an evaluation problem occurs not only within each
time step of a concept drift scenario handled by one of
the concept drift frameworks (internal evaluation and pa-
rameter optimization), but it also occurs when several such
frameworks are to be compared like here (external evalua-
tion and overall performance comparison). Just like in the
earlier case, evaluation methods like cross-validation are
inappropriate for the latter case. In this paper, we use re-
peated runs with simulated concept drift scenarios to obtain
averaged and thereby statistically more reliable results.

The experiments use a subset of 2608 documents of the
data set of the Text REtrieval Conference (TREC) consist-
ing of English business news texts. Each text is assigned to
one or several categories. The categories considered here
are 1 (Antitrust Cases Pending), 3 (Joint Ventures), 4 (Debt
Rescheduling), 5 (Dumping Charges), and 6 (Third World
Debt Relief). For the experiments, three concept change
scenarios are simulated. The texts are randomly split into
20 batches of equal size containing 130 documents each.7

The texts of each category are distributed as equally as pos-
sible over the 20 batches.

In the three scenarios, a document is considered relevant
at a certain point in time, if it matches the interest of the
simulated user at that time. For each TREC topic and each
batch in each scenario the probability that a document from
this topic is relevant for the user interest at this time (batch)
is specified. In the scenarios simulated here, the user in-
terest changes between the topics 1 and 3. Documents of
the classes 4, 5, and 6 are never relevant in any of these
scenarios. Figure 1 shows the probability of being relevant
for a document of category 1 at each batch for each of the
three scenarios. Documents of category 3 are specified to
always have the inverse relevance probability of documents
of category 1, i.e. 1.0 - relevance of category 1. In the first
scenario (scenario A), first documents of category 1 are
considered relevant for the user interest and all other doc-
uments irrelevant. This changes abruptly (concept shift)
in batch 10, where documents of category 3 are relevant
and all others irrelevant. In the second scenario (scenario
B), again first documents of category 1 are considered rele-
vant for the user interest and all other documents irrelevant.
This changes slowly (concept drift) from batch 8 to batch
12, where documents of category 3 are relevant and all oth-
ers irrelevant. The third scenario (scenario C) simulates an
abrupt concept shift in the user interest from category 1 to
category 3 in batch 9 and back to category 1 in batch 11.

The experiments were conducted with the machine
learning environment YALE [Ritthoff et al., 2001; Fischer
et al., 2003; Mierswa et al., 2003a; Mierswa et al., 2003b].8

For all time window and example selection approaches,
support vector machines were used as core learning algo-
rithm. Here we chose the SVM implementation mySVM9

[Rüping, 2000]. Since linear kernels are the standard kernel
type used for text classification problems, and since more
complex kernel types usually do not perform better on text
classification tasks, only linear and no other kernel types
were tried here. After preliminary experiments to deter-
mine a good value for the capacity constant C of the SVM,
which allows to trade off model complexity versus gener-

7Hence, in each trial, out of the 2608 documents, eight ran-
domly selected texts are not considered.

8http://yale.cs.uni-dortmund.de/
= http://yale.sf.net/

9http://www-ai.cs.uni-dortmund.de
/SOFTWARE/MYSVM/
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Figure 1: Relevance of the TREC topic 1 in the concept
change scenarios A, B, and C. The relevance of TREC topic
3 is 1.0 - relevance of topic 1. The relevance of all other
topics is always zero.

Table 1: Error of all time window and example selection
methods for all scenarios averaged over 4 trials with 20
batches.

Full No Fixed Adaptive Batch
Memory Memory Size Size Selection

Scen.
A 21.11% 11.16% 9.03% 6.65% 6.15%

Scen.
B 21.30% 12.64% 9.76% 9.06% 9.33%

Scen.
C 8.60% 12.73% 11.19% 8.56% 7.55%

alization, testing the values C ∈ {1, 10, 100, 1000}, the
value C = 1000 was chosen for the experiments described
here.

4.2 Experimental Results
Table 1 shows the results of all static and adaptive time
window and batch selection approaches on all scenarios in
terms of prediction error. The adaptive time window ap-
proach and the batch selection strategy clearly outperform
the trivial non-adaptive approaches.

Among the two example selection strategies, batch se-
lection performs better than the adaptive time window ap-
proach, especially on scenario C as Table 1 shows, where
the initial concept reflecting the user interest, topic 1, is
only shortly interrupted by a concept shift to topic 3, and
then returns to topic 1 again. In the batches after the second
concept shift in scenario C, the adaptive time window can
only capture the data after the second concept shift, if it is to
exclude the no longer representative data between the two
concept shifts, while the batch selection strategy can also
use the earlier data of the time before the first concept shift
and selectively exclude only the no longer relevant batches
between the two concept shifts. This allows the batch selec-
tion to maintain a larger consistent training set and thereby
to better generalize resulting in a lower error rate.

From the results of the non-adaptive approaches (full
memory, no memory, and fixed size), we can see that the er-
ror is the lowest if the time window contains all time points
from the current model and no others. For example in sce-
nario A, as depicted in Figure 2, as long as no concept drift
occurs, the full memory approach has the lowest error. Im-
mediately after the concept drift the no memory approach
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Figure 2: Classification errors of the trivial approaches on
each batch in scenario A (averaged over 4 runs).
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Figure 3: Classification errors of the batch selection ap-
proaches on each batch in scenario A (averaged over 4
runs).

quickly returns to its previous error level, while the fixed
size memory approach takes longer until it finally reaches
a lower error than the no memory approach again. For the
full memory approach, even nine time points after the con-
cept shift the error rate is still three times higher than the
error of the other strategies. Of course, these findings are
not very surprising.

For practical use, though, these non-adaptive approaches
are not very useful, as it cannot be determined beforehand,
when and how often a concept shift will occur, so an opti-
mal static time window cannot be set. The longer the time
window is, the lower error the classifier can achieve if no
concept drift occurs, but the shorter the time window is, the
faster it will adjust to a new concept. In general, balancing
between the two extremes of no and full memory, the fixed
size approach seems to work best.

The adaptive window and the batch selection approach
adjust very well to concept drift. In all three scenarios, the
error rate quickly reaches its prior level after a concept drift
occurred. In scenario C, the batch selection approach out-
performs the adaptive window method, as the more flexible
way of selecting the final training set allows it to exclude
the two outlier batches and use all other data, while the
adaptive window method can only use the information be-
fore the first concept shift if it also includes the outliers in
the middle.

Summing up, the batch selection strategy achieves the

lowest error of all tested approaches. An explanation for
this may be, that outliers, even if there a relatively few, se-
riously hurt the performance of the SVM classification. As
the special properties of text data - very high dimensional-
ity and linear separability - make it easy to identify large
groups of outliers, the batch selection method can reliably
choose the largest possible set of training examples that are
useful to construct the final hypothesis.

A more detailed description of the results including
plots showing the performance of the different approaches
and the selected window sizes over time can be found in
[Klinkenberg & Joachims, 2000; Klinkenberg & Rüping,
2003; Klinkenberg, 2004].

4.3 Concept Drift Handling with Meta-Learning
Results for allowing the concept drift framework to choose
from different base learners, i.e. support vector machines
(SVMs), decision tree learners (Weka/J48), and nearest
neighbor learning and comparing the performance of the
approaches with base learner selection and meta-learning
will be presented in [Klinkenberg, 2005].

5 Evaluation on a Real-World Concept Drift
Problem From Economics

5.1 Predicting Phases in Business Cycles
The second evaluation domain is a task from economics
based on real-world data. The quarterly data describes the
West German Business Cycles From 1954 to 1994 [Heile-
mann & Münch, 1998; Heilemann & Münch, 1999]. Each
of the 158 examples is described by 13 indicator variables.
The task is to predict the current phase of the business cy-
cle.

While Heilemann and Münch use a model with four
phases for the business cycle, in which each cycle con-
sists of a lower turning point, an upswing, an upper turning
point, and a down swing, where the turning points cover
several month, Theis and Weihs have shown that in cluster-
ing analysis of West German macro-economic data at most
three clusters can be identified [Theis & Weihs, 1999]. The
first two clusters roughly correspond to the cycle phases of
upswing and downswing and the eventual third cluster cor-
responds to the period of the oil-crisis around 1971. This
suggests that two phases instead of four may be more suit-
able for the description of the business data.

While linear discriminant analysis as a baseline model
achieves 54% accuracy using uni-variate rules (according
to [Morik & Rüping, 2002a]) for the four phase model
on this data set, sophisticated statistical models achieve
63% accuracy. Sondhauß and Weihs incorporate economic
background knowledge into business cycle analysis by us-
ing advanced Markov Switching Models to express knowl-
edge about the past and the transition probability to the next
phase [Sondhauß & Weihs, 2001].

Morik and Rüping applied an inductive logic program-
ming approach also using domain knowledge on this data
set and achieved an accuracy of 53% for the four phase
model and of 81.5%10 for the two phase model [Morik &

10For comparison with the results reported later in this section:
81.5% accuracy obviously correspond to a classification error rate
of 100% - 81.5% = 18.5%. However, this result was obtained for
leave-one-cycle-out validation, i. e. also using data from future
cycles and thereby violating the timely ordering of the data. The
experiments described in this paper preserve this timely ordering
and hence the learners then obviously have less data to learn from.



Table 2: Error of all time window and example selection
methods for splits of the business cycle data into 5 and 15
batches, respectively.

Full No Fixed Adaptive Batch
Memory Memory Size Size Selection

5
batches 32.80% 27.20% 24.00% 24.80% 24.80%

15
batches 28.08% 28.77% 20.55% 24.80% 23.29%

Rüping, 2002b; Morik & Rüping, 2002a]. In the following
experiments, we also use this two phase model mapping
all time points classified as upper turning point to upswing
and all quarters of a year classified as lower turning point
to downswing. However, we do not make any use of back-
ground domain knowledge.

The timely order of the examples (quarters) was pre-
served and no artificial concept drift was simulated. The
two questions of interest are, whether this domain actually
exhibits concept drift behavior and whether our approaches
are able handle it.

5.2 Experimental Results
The experiments were again performed using the machine
learning environment YALE and the mySVM as underlying
learner. Two evaluations were performed, one splitting the
data into 5 batches of equal size and one splitting it into 15
batches of equal size. Both splits did not change the timely
order of the example and did not impose any artificial con-
cept drift.

The results of these two evaluations are shown in Table 2.
The results for the fixed time window approach correspond
to the results of the fixed size that performed best, i.e. they
are the result of an offline parameter optimization consider-
ing the performance on all batches. In practice, this optimal
fixed size is not known in advance at any particular point in
time before the last batch. Hence in a real application one
would have to guess this size in advance from experience,
while the adaptive time window approach and the batch
selection approach are able to adapt automatically online.
These optimal results for the fixed size approach are only
provided for comparison in order to show the performance
that this approach can maximally reach theoretically.

What do the results tell about the domain?
Since even the simple fixed window size approach signif-
icantly outperforms the full memory approach, one may
conclude that this domain exhibits real concept drift behav-
ior. Otherwise learning on all available training data should
allow a better generalization and lead to better results. A
closer inspection of the results and the adaptively chosen
window sizes suggests that the data of the early years, i.e.
the first business cycles, follow slightly other rules than
those of the latter years. The automatically chosen window
sizes tend to exclude only the first few batches.

What do the results tell about the concept drift
handling approaches?
Obviously the adaptive time window approach and the
batch selection approach handle this concept drift very
well. Only the fixed size time window approach can the-
oretically compete, if the optimal fixed time window size is

Therefore it is not surprising that their generalization performance
is not as good.

Table 3: Error of the fixed time window method with fixed
window sizes from 1...5 batches for splits of the business
cycle data into 5 and 15 batches, respectively.

No Fixed Fixed Fixed Fixed
Memory Size Size Size Size
(1 batch) 2 batches 3 batches 4 batches 5 batches

5
batches 27.20% 24.00% 26.40% 32.80% 32.80%

15
batches 28.77% 23.29% 20.55% 23.29% 23.97%

known in advance, which is usually not possible in a real-
world application. As shown in Table 3, using other fixed
window sizes, leads to significant drops in performance to
error levels, mostly well above those of the two adaptive
approaches.

The fact that the fixed size approach is competitive in this
domain may be due to the cyclic nature of the domain. A
well chosen time window length of several business cycles
seems to be sufficient for a good generalization result and to
sufficiently early drop the data of the first few years that sig-
nificantly reduce the performance of larger time windows
and the full memory approach, because they seem to obey
somewhat other rules than the latter years.

So, in conclusion for this domain, if a fixed window size
can be optimized offline, which is not possible in an on-
line application, or such a fixed window size can be well
guessed by a domain expert, the simple time window ap-
proach is quite competitive, For the online setting of this
real-world task, however, the two adaptive concept drift
adjustment techniques seem to be more appropriate, since
they do not rely on an offline optimization or a good expert
guess, but adapt to the current concept drift automatically.

5.3 Concept Drift Handling with Meta-Learning

Results for allowing the concept drift framework to choose
from different base learners, i.e. support vector machines
(SVMs), decision tree learners (Weka/J48), and nearest
neighbor learning and comparing the performance of the
approaches with base learner selection and meta-learning
will be presented in [Klinkenberg, 2005].

6 Summary and Conclusions

This paper proposed a meta-learning framework for
handling concept drift automatically selecting the most
promising base learner (along with its most promising
parametrization) and the best set of examples to learn from
at each step in time, so that the estimated generalization
error is minimized. This framework is expected to im-
prove the accuracy of the learning system by selecting the
most appropriate learner not globally once for all times but
for each step in time seperately (on a meta-level) and op-
tionally to speed-up the meta-level process by reducing the
search space at each step in time by meta-learning. Re-
stricting the meta-level search space may of course lead
to a decrease in accuracy. Experiments using real-world
data from the above mentioned domains with simulated and
real-world concept drifts, respectively, comparing the per-
formance of the approaches with and without base learner
selection and meta-learning are presented in a technical re-
port by the author to appear in November 2005 [Klinken-
berg, 2005].
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