
Published as a conference paper at ICLR 2021

META-LEARNING SYMMETRIES BY REPARAMETERI-
ZATION

Allan Zhou, Tom Knowles, Chelsea Finn
Dept of Computer Science, Stanford University
{ayz,tknowles,cbfinn}@stanford.edu

ABSTRACT

Many successful deep learning architectures are equivariant to certain transfor-
mations in order to conserve parameters and improve generalization: most fa-
mously, convolution layers are equivariant to shifts of the input. This approach
only works when practitioners know the symmetries of the task and can manually
construct an architecture with the corresponding equivariances. Our goal is an
approach for learning equivariances from data, without needing to design custom
task-specific architectures. We present a method for learning and encoding equiv-
ariances into networks by learning corresponding parameter sharing patterns from
data. Our method can provably represent equivariance-inducing parameter shar-
ing for any finite group of symmetry transformations. Our experiments suggest
that it can automatically learn to encode equivariances to common transforma-
tions used in image processing tasks. We provide our experiment code at https:
//github.com/AllanYangZhou/metalearning-symmetries.

1 INTRODUCTION

In deep learning, the convolutional neural network (CNN) (LeCun et al., 1998) is a prime example
of exploiting equivariance to a symmetry transformation to conserve parameters and improve gen-
eralization. In image classification (Russakovsky et al., 2015; Krizhevsky et al., 2012) and audio
processing (Graves and Jaitly, 2014; Hannun et al., 2014) tasks, we may expect the layers of a deep
network to learn feature detectors that are translation equivariant: if we translate the input, the output
feature map is also translated. Convolution layers satisfy translation equivariance by definition, and
produce remarkable results on these tasks. The success of convolution’s “built in” inductive bias
suggests that we can similarly exploit other equivariances to solve machine learning problems.

However, there are substantial challenges with building in inductive biases. Identifying the correct
biases to build in is challenging, and even if we do know the correct biases, it is often difficult
to build them into a neural network. Practitioners commonly avoid this issue by “training in” de-
sired equivariances (usually the special case of invariances) using data augmentation. However, data
augmentation can be challenging in many problem settings and we would prefer to build the equiv-
ariance into the network itself. For example, robotics sim2real transfer approaches train agents that
are robust to varying conditions by varying the simulated environment dynamics (Song et al., 2020).
But this type of augmentation is not possible once the agent leaves the simulator and is trying to
learn or adapt to a new task in the real world. Additionally, building in incorrect biases may actually
be detrimental to final performance (Liu et al., 2018b).

In this work we aim for an approach that can automatically learn and encode equivariances into a
neural network. This would free practitioners from having to design custom equivariant architectures
for each task, and allow them to transfer any learned equivariances to new tasks. Neural network
layers can achieve various equivariances through parameter sharing patterns, such as the spatial
parameter sharing of standard convolutions. In this paper we reparameterize network layers to
learnably represent sharing patterns. We leverage meta-learning to learn the sharing patterns that
help a model generalize on new tasks.

The primary contribution of this paper is an approach to automatically learn equivariance-inducing
parameter sharing, instead of using custom designed equivariant architectures. We show theoreti-
cally that reparameterization can represent networks equivariant to any finite symmetry group. Our
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experiments show that meta-learning can recover various convolutional architectures from data, and
learn invariances to common data augmentation transformations.

2 RELATED WORK

A number of works have studied designing layers with equivariances to certain transformations such
as permutation, rotation, reflection, and scaling (Gens and Domingos, 2014; Cohen and Welling,
2016; Zaheer et al., 2017; Worrall et al., 2017; Cohen et al., 2019; Weiler and Cesa, 2019; Worrall
and Welling, 2019). These approaches focus on manually constructing layers analagous to standard
convolution, but for other symmetry groups. Rather than building symmetries into the architecture,
data augmentation (Beymer and Poggio, 1995; Niyogi et al., 1998) trains a network to satisfy them.
Diaconu and Worrall (2019) use a hybrid approach that pre-trains a basis of rotated filters in order to
define roto-translation equivariant convolution. Unlike these works, we aim to automatically build
in symmetries by acquiring them from data.

Our approach is motivated in part by theoretical work characterizing the nature of equivariant layers
for various symmetry groups. In particular, the analysis of our method as learning a certain kind
of convolution is inspired by Kondor and Trivedi (2018), who show that under certain conditions
all linear equivariant layers are (generalized) convolutions. Shawe-Taylor (1989) and Ravanbakhsh
et al. (2017) analyze the relationship between desired symmetries in a layer and symmetries of
the weight matrix. Ravanbakhsh et al. (2017) show that we can make a layer equivariant to the
permutation representation of any discrete group through a corresponding parameter sharing pattern
in the weight matrix. From this perspective, our reparameterization is a way of representing possible
parameter sharing patterns, and the training procedure aims to learn the correct parameter sharing
pattern that achieves a desired equivariance.

Prior work on automatically learning symmetries include methods for learning invariances in Gaus-
sian processes (van der Wilk et al., 2018) and learning symmetries of physical systems (Greydanus
et al., 2019; Cranmer et al., 2020). Another very recent line of work has shown that more general
Transformer (Vaswani et al., 2017) style architectures can match or outperform traditional CNNs on
image tasks, without baking in translation symmetry (Dosovitskiy et al., 2020). Their results sug-
gest that Transformer architectures can automatically learn symmetries and other inductive biases
from data, but typically only with very large training datasets. One can also consider automatic data
augmentation strategies (Cubuk et al., 2018; Lorraine et al., 2019) as a way of learning symmetries,
though the symmetries are not embedded into the network in a transferable way. Concurrent work by
Benton et al. (2020) aims to learn invariances from data by learning distributions over transforma-
tions of the input, similar to learned data augmentation. Our method aims to learn parameter sharing
of the layer weights which induces equivariance. Additionally, our objective for learning symme-
tries is driven directly by generalization error (in a meta-learning framework), while the objective in
Benton et al. (2020) adds a regularizer to the training loss to encourage symmetry learning.

Our work is related to neural architecture search (Zoph and Le, 2016; Brock et al., 2017; Liu et al.,
2018a; Elsken et al., 2018), which also aims to automate part of the model design process. Although
architecture search methods are varied, they are generally not designed to exploit symmetry or learn
equivariances. Evolutionary methods for learning both network weights and topology (Stanley and
Miikkulainen, 2002; Stanley et al., 2009) are also not motivated by symmetry considerations.

Our method learns to exploit symmetries that are shared by a collection of tasks, a form of meta-
learning (Thrun and Pratt, 2012; Schmidhuber, 1987; Bengio et al., 1992; Hochreiter et al., 2001).
We extend gradient based meta-learning (Finn et al., 2017; Li et al., 2017; Antoniou et al., 2018)
to separately learn parameter sharing patterns (which enforce equivariance) and actual parameter
values. Separately representing network weights in terms of a sharing pattern and parameter values
is a form of reparameterization. Prior work has used weight reparameterization in order to “warp”
the loss surface (Lee and Choi, 2018; Flennerhag et al., 2019) and to learn good latent spaces (Rusu
et al., 2018) for optimization, rather than to encode equivariance. HyperNetworks (Ha et al., 2016;
Schmidhuber, 1992) generate network layer weights using a separate smaller network, which can
be viewed as a nonlinear reparameterization, albeit not one that encourages learning equivariances.
Modular meta-learning (Alet et al., 2018) is a related technique that aims to achieve combinatorial
generalization on new tasks by stacking meta-learned “modules,” each of which is a neural network.

2



Published as a conference paper at ICLR 2021

This can be seen as parameter sharing by re-using and combining modules, rather than using our
layerwise reparameterization.

3 PRELIMINARIES

In Sec. 3.1, we review gradient based meta-learning, which underlies our algorithm. Sections 3.2
and 3.3 build up a formal definition of equivariance and group convolution (Cohen and Welling,
2016), a generalization of standard convolution which defines equivariant operations for other
groups such as rotation and reflection. These concepts are important for a theoretical understanding
of our work as a method for learning group convolutions in Sec. 4.2.

3.1 GRADIENT BASED META-LEARNING

Our method is a gradient-based meta-learning algorithm that extends MAML (Finn et al., 2017),
which we briefly review here. Suppose we have some task distribution p(T ), where each task dataset
is split into training and validation datasets {Dtri ,Dvali }. For a model with parameters θ, loss L, and
learning rate α, the “inner loop” updates θ on the task’s training data: θ′ = θ−α∇θL(θ,Dtr). In the
“outer loop,” MAML meta-learns a good initialization θ by minimizing the loss of θ′ on the task’s
validation data, with updates of the form θ ← θ − η d

dθL(θ
′,Dval). Although MAML focuses on

meta-learning the inner loop initialization θ, one can extend this idea to meta-learning other things
such as the inner learning rate α. In our method, we meta-learn a parameter sharing pattern at each
layer that maximizes performance across the task distribution.

3.2 GROUPS AND GROUP ACTIONS

Symmetry and equivariance is usually studied in the context of groups and their actions on sets;
refer to Dummit and Foote (2004) for more comprehensive coverage. A group G is a set closed
under some associative binary operation, where there is an identity element and each element has an
inverse. Consider the group (Z,+) (the set of integers with addition): we can add any two integers
to obtain another, each integer has an additive inverse, and 0 is the additive identity.

Figure 1: Convolution as translating filters. Left:
Standard 1-D convolution slides a filter w along the
length of input x. This operation is translation equivari-
ant: translating x will translate y. Right: Standard con-
volution is equivalent to a fully connected layer with a
parameter sharing pattern: each row contains translated
copies of the filter. Other equivariant layers will have
their own sharing patterns.

A group G can act on a set X through some
action ρ : G → Aut(X) which maps each
g ∈ G to some transformation on X . ρ must
be a homomorphism, i.e. ρ(gh) = ρ(g)ρ(h)
for all g, h ∈ G, and Aut(X) is the set of au-
tomorphisms on X (bijective homomorphisms
from X to itself). As a shorthand we write
gx := ρ(g)(x) for any x ∈ X . Any group can
act on itself by letting X = G: for (Z,+), we
define the action gx = g + x for any g, x ∈ Z.

The action of a group G on a vector space
V is called a representation, which we denote
π : G → GL(V ). Recall GL(V ) is the set of
invertible linear maps on V . Assume the vec-
tors v ∈ V are discrete, with components v[i].
If we already have G’s action on the indices, a
natural corresponding representation is defined
(π(g)v)[i] := v[g−1i]. As a concrete example,
consider the representation of G = (Z,+) for infinite length vectors. The indices are also integers,
so the group is acting on itself as defined above. Then (π(g)v)[i] = v[g−1i] = v[i − g] for any
g, i ∈ Z. Hence this representation of Z shifts vectors by translating their indices by g spaces.

3.3 EQUIVARIANCE AND CONVOLUTION

A function (like a neural network layer) is equivariant to some transformation if transforming the
function’s input is the same as transforming its output. To be more precise, we must define what
those transformations of the input and output are. Consider a neural network layer φ : Rn → Rm.
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Assume we have two representations π1, π2 of group G on Rn and Rm, respectively. For each
g ∈ G, π1(g) transforms the input vectors, while π2(g) transforms the output vectors. The layer
φ is G-equivariant with respect to these transformations if φ(π1(g)v) = π2(g)φ(v), for any g ∈
G, v ∈ Rn. If we choose π2 ≡ id we get φ(π1(g)v) = φ(v), showing that invariance is a type of
equivariance.

Deep networks contain many layers, but function composition preserves equivariance. So if we
achieve equivariance in each individual layer, the whole network will be equivariant. Pointwise
nonlinearities such as ReLU and sigmoid are already equivariant to any permutation of the input and
output indices, which includes translation, reflection, and rotation. Hence we are primarily focused
on enforcing equivariance in the linear layers.

Prior work (Kondor and Trivedi, 2018) has shown that a linear layer φ is equivariant to the action
of some group if and only if it is a group convolution, which generalizes standard convolutions to
arbitrary groups. For a specific G, we call the corresponding group convolution “G-convolution” to
distinguish it from standard convolution. Intuitively, G-convolution transforms a filter according
to each g ∈ G, then computes a dot product between the transformed filter and the input. In
standard convolution, the filter transformations correspond to translation (Fig. 1). G-equivariant
layers convolve an input v ∈ Rn with a filter ψ ∈ Rn. Assume the group G = {g1, · · · , gm} is
finite:

φ(v)[j] = (v ? ψ)[j] =
∑
i

v[i](π(gj)ψ)[i] =
∑
i

v[i]ψ[g−1j i] (1)

In this work, we present a method that represents and learns parameter sharing patterns for existing
layers, such as fully connected layers. These sharing patterns can force the layer to implement
various group convolutions, and hence equivariant layers.

4 ENCODING AND LEARNING EQUIVARIANCE

To learn equivariances automatically, our method introduces a flexible representation that can encode
possible equivariances, and an algorithm for learning which equivariances to encode. Here we
describe this method, which we call Meta-learning Symmetries by Reparameterization (MSR).

4.1 LEARNABLE PARAMETER SHARING

As Fig. 1 shows, a fully connected layer can implement standard convolution if its weight matrix is
constrained with a particular sharing pattern, where each row contains a translated copy of the same
underlying filter parameters. This idea generalizes to equivariant layers for other transformations
like rotation and reflection, but the sharing pattern depends on the transformation. Since we do not
know the sharing pattern a priori, we “reparameterize” fully connected weight matrices to represent
them in a general and flexible fashion. A fully connected layer φ : Rn → Rm with weight matrix
W ∈ Rm×n is defined for input x by φ(x) = Wx. We can optionally incorporate biases by
appending a dimension with value “1” to the input x. We factorizeW as the product of a “symmetry
matrix” U and a vector v of k “filter parameters”:

vec(W ) = Uv, v ∈ Rk, U ∈ Rmn×k (2)

For fully connected layers, we reshape1 the vector vec(W ) ∈ Rmn into a weight matrixW ∈ Rm×n.
Intuitively, U encodes the pattern by which the weights W will “share” the filter parameters v.
Crucially, we can now separate the problem of learning the sharing pattern (learning U ) from the
problem of learning the filter parameters v. In Sec. 4.3, we discuss how to learn U from data.

The symmetry matrix for each layer has mnk entries, which can become too expensive in larger
layers. Kronecker factorization is a common approach for approximating a very large matrix with
smaller ones (Martens and Grosse, 2015; Park and Oliva, 2019). In Appendix A we describe how
we apply Kronecker approximation to Eq. 2, and analyze memory and computation efficiency.

In practice, there are certain equivariances that are expensive to meta-learn, but that we know to
be useful: for example, standard 2D convolutions for image data. However, there may be still
other symmetries of the data (i.e., rotation, scaling, reflection, etc.) that we still wish to learn

1We will use the atypical convention that vec stacks matrix entries row-wise, not column-wise.
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Figure 2: We reparameterize the weights of each layer in terms of a symmetry matrixU that can enforce equiv-
ariant sharing patterns of the filter parameters v. Here we show a U that enforces permutation equivariance.
More technically, the layer implements group convolution on the permutation group S2: U ’s block submatrices
π(e), π(g) define the action of each permutation on filter v. Note that U need not be binary in general.

Figure 3: For each task, the inner loop updates the
filter parameters v to the task using the inner loop loss.
Note that the symmetry matrixU does not change in the
inner loop, and is only updated by the outer loop.

Algorithm 1: MSR: Meta-Training
input: {Tj}Nj=1 ∼ p(T ): Meta-training tasks
input: {U,v}: Randomly initialized symmetry

matrices and filters.
input: α, η: Inner and outer loop step sizes.
while not done do

sample minibatch {Ti}ni=1 ∼ {Tj}Nj=1;
forall Ti ∈ {Ti}ni=1 do
{Dtr

i ,Dval
i } ← Ti ; // task data

δδδi ← ∇vL(U,v,Dtr
i );

v′ ← v − αδδδi ; // inner step
/* outer gradient */

Gi ← d
dU
L(U,v′,Dval

i );
/* outer step */
U← U− η

∑
i

Gi;

automatically. This suggests a “hybrid” approach, where we bake-in equivariances we know to be
useful, and learn the others. Indeed, we can directly reparameterize a standard convolution layer by
reshaping vec(W ) into a convolution filter bank rather than a weight matrix. By doing so we bake
in translational equivariance, but we can still learn things like rotation equivariance from data.

4.2 PARAMETER SHARING AND GROUP CONVOLUTION

By properly choosing the symmetry matrix U of Eq. 2, we can force the layer to implement arbitrary
group convolutions (Eq. 1) by filter v. Recall that group convolutions generalize standard convolu-
tion to define operations that are equivariant to other transformations, such as rotation. Hence by
choosing U properly we can enforce various equivariances, which will be preserved regardless of
the value of v.

Proposition 1 SupposeG is a finite group {g1, . . . , gm}. There exists a UG ∈ Rmn×n such that for
any v ∈ Rn, the layer with weights vec(W ) = UGv implements G-convolution on input x ∈ Rn.
Moreover, with this fixed choice of UG, any G-convolution can be represented by a weight matrix
vec(W ) = UGv for some v ∈ Rn.

Intuitively, U can store the symmetry transformations π(g) for each g ∈ G, thus capturing how the
filters should transform during G-convolution. For example, Fig. 2 shows how U can implement
convolution on the permutation group S2. We present a proof in Appendix B.

Subject to having a correct UG, v is precisely the convolution filter in a G-convolution. This will
motivate the notion of separately learning the convolution filter v and the symmetry structure U in
the inner and outer loops of a meta-learning process, respectively.
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Synthetic Problems MSE (lower is better)
Small train dataset Large train dataset

Method k = 1 k = 2 k = 5 k = 1 k = 2 k = 5
MAML-FC 3.4± .60 2.1± .35 1.0± .10 3.4± .49 2.0± .27 1.1± .11
MAML-LC 2.9± .53 1.8± .24 .87± .08 2.9± .42 1.6± .23 .89± .08
MAML-Conv .00± .00 .43± .09 .41± .04 .00± .00 .53± .08 .49± .04
MTSR-FC (Ours) 3.2± .49 1.4± .17 .86± .06 .12± .03 .07± .02 .07± .01
MSR-Joint-FC (Ours) .25± .16 .12± .04 .21± .03 .01± .00 .08± .02 .12± .02
MSR-FC (Ours) .07± .02 .07± .02 .16± .02 .00± .00 .05± .01 .09± .01

Table 1: Meta-test MSE of different methods on synthetic data with (partial) translation symmetry. “Small” vs
“large” train dataset refers to the number of examples per training task. Among methods with non-convolutional
architectures, MSR-FC is closest to matching actual convolution (MAML-Conv) performance on translation
equivariant (k = 1) data. On data with less symmetry (k = 2, 5), MSR-FC outperforms MAML-Conv and
other MAML approaches. MSR-Joint is an ablation of MSR where both U and v of Eq. 2 are updated on
task train data, rather than just v. MTSR is an ablation of MSR where we train the reparameterization using
multi-task learning, rather than meta-learning. Results are shown with 95% confidence intervals over test tasks.

4.3 META-LEARNING EQUIVARIANCES

Meta-learning generally applies when we want to learn and exploit some shared structure in a dis-
tribution of tasks p(T ). In this case, we assume the task distribution has some common underlying
symmetry: i.e., models trained for each task should satisfy some set of shared equivariances. We
extend gradient based meta-learning to automatically learn those equivariances.

Suppose we have anL-layer network. We collect each layer’s symmetry matrix and filter parameters:
U,v ← {U1, · · · , UL}, {v1, · · · , vL}. Since we aim to learn equivariances that are shared across
p(T ),the symmetry matrices should not change with the task. Hence, for any Ti ∼ p(T ) the inner
loop fixes U and only updates v using the task training data:

v′ ← v − α∇vL(U,v,Dtri ) (3)

where L is simply the supervised learning loss, and α is the inner loop step size. During meta-
training, the outer loop updates U by computing the loss on the task’s validation data using v′:

U← U− η d

dU
L(U,v′,Dvali ) (4)

We illustrate the inner and outer loop updates in Fig. 3. Note that in addition to meta-learning the
symmetry matrices, we can also still meta-learn the filter initialization v as in prior work. In practice
we also take outer updates averaged over mini-batches of tasks, as we describe in Alg. 1.

After meta-training is complete, we freeze the symmetry matrices U. On a new test task Tk ∼ p(T ),
we use the inner loop (Eq. 3) to update only the filter v. The frozen U enforces meta-learned
parameter sharing in each layer, which improves generalization by reducing the number of task-
specific inner loop parameters. For example, the sharing pattern of standard convolution makes the
weight matrix constant along any diagonal, reducing the number of per-task parameters (see Fig. 1).

5 CAN WE RECOVER CONVOLUTIONAL STRUCTURE?

We now introduce a series of synthetic meta-learning problems, where each problem contains regres-
sion tasks that are guaranteed to have some symmetries, such as translation, rotation, or reflection.
We combine meta-learning methods with general architectures not designed with these symmetries
in mind to see whether each method can automatically meta-learn these equivariances.

5.1 LEARNING (PARTIAL) TRANSLATION SYMMETRY

Our first batch of synthetic problems contains tasks with translational symmetry: we generate out-
puts by feeding random input vectors through a 1-D locally connected (LC) layer with filter size
3 and no bias. Each task corresponds to different values of the LC filter, and the meta-learner
must minimize mean squared error (MSE) after observing a single input-output pair. For each
problem we constrain the LC filter weights with a rank k ∈ {1, 2, 5} factorization, resulting in
partial translation symmetry (Elsayed et al., 2020). In the case where rank k = 1, the LC layer
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is equivalent to convolution (ignoring the biases) and thus generates exactly translation equivari-
ant task data. We apply both MSR and MAML to this problem using a single fully connected
layer (MSR-FC and MAML-FC), so these models have no translation equivariance built in and
must meta-learn it to solve the tasks efficiently. For comparison, we also train convolutional and
locally connected models with MAML (MAML-Conv and MAML-LC). Since MAML-Conv has
built in translation equivariance, we expect it to at least perform well on the rank k = 1 problem.

Figure 4: After observing transla-
tion equivariant data, MSR enforces
convolutional parameter sharing on the
weight matrix. An example weight
matrix is shown above.

We also ran two ablations of MSR that use the same reparam-
eterization (Eq. 2) but vary the training procedure. In MSR-
Joint, we allow U and v to be jointly updated in the inner loop,
instead of only updating v in the inner loop. Hence MSR-
Joint is trained identically to MAML, but with reparameter-
ized weights. MTSR is an ablation of MSR that trains using
multi-task learning instead of meta-learning. Given data from
training task Ti, MTSR jointly optimizes U (shared symme-
try matrix) and v(i) (task specific filter parameters) using the
MSE loss. For a new test task we freeze the optimized U and
optimize a newly initialized filter v using the test task’s train-
ing data, then evaluate MSE on held out data. Even though
the true filter that generates the data has width 3, for MSR and
MTSR we initialize the learned filter v to be the same size as
the input, per Prop. 1. In principle, these methods should auto-
matically meta-learn that the true filter is sparse, and to ignore
the extra dimensions in v. Appendix D.1 further explains the experimental setup.

Table 1 shows how each method performs on each of the synthetic problems, with columns denoting
the rank k of the problem’s data. The “small vs large train dataset” results differ only in that the
latter contains 5 or 10 times more examples per training task, depending on k. On fully translation
equivariant data (k = 1), MAML-Conv performs best due to its architecture having built in trans-
lation equivariance. MSR-FC is the only non-convolutional architecture to perform comparably to
MAML-Conv for k = 1. Fig. 4 shows that MSR-FC has learned to produce weight matrices with
convolutional parameter sharing structure, indicating it has “learned convolution” from the data.
Appendix C.1 visualizes the meta-learned U , which we find implements convolution as Sec. 4.2
predicted. Meanwhile, MAML-FC and MAML-LC perform significantly worse as they are unable
to meta-learn this structure. On partially symmetric data (k = 2, k = 5), MSR-FC performs well
due to its ability to flexibly meta-learn even partial symmetries. MAML-Conv performs worse here
since the convolution assumption is overly restrictive, while MAML-FC and MAML-LC are not
able to meta-learn much structure. MSR-Joint-FC performs comparably to or worse than MSR-FC
across the board. Note that following prior work (Li et al., 2017), all methods use meta-learned inner
learning rates on parameters that change in the inner loop. For MSR-Joint-FC we observe that the
meta-learned inner loop learning rates corresponding to U are significantly smaller than the inner
learning rates corresponding to v, suggesting that U is changing relatively little in the inner loop
(see Appendix Table 4). MTSR-FC performs significantly worse than MSR-FC with small training
datasets, but performs comparably with large datasets. This indicates that although our reparame-
terization can be trained by either multi-task learning or meta-learning, the meta-learning approach
(Alg. 1) is more efficient at learning from less data.

5.2 LEARNING EQUIVARIANCE TO ROTATIONS AND FLIPS

Rotation/Flip Equivariance MSE
Method Rot Rot+Flip
MAML-Conv .504 .507
MSR-Conv (Ours) .004 .001

Table 2: MSR learns rotation and flip
equivariant parameter sharing on top of
a standard convolution model, and thus
achieves much better generalization error
on meta-test tasks compared to MAML on
rotation and flip equivariant data.

We also created synthetic problems with 2-D synthetic im-
age inputs and outputs, in order to study rotation and flip
equivariance. We generate task data by passing randomly
generated inputs through a single layer E(2)-equivariant
steerable CNN (Weiler and Cesa, 2019) configured to be
equivariant to combinations of translations, discrete rota-
tions by increments of 45◦, and reflections. Hence our
synthetic task data contains rotation and reflection in ad-
dition to translation symmetry. Each task corresponds to
different values of the data-generating network’s weights.
We apply MSR and MAML to a single standard con-
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volution layer, which guarantees translation equivariance.
Each method must still meta-learn rotation and reflection (flip) equivariance from the data. Table 2
shows that MSR easily learns rotation and rotation+reflection equivariance on top of the convolu-
tional model’s built in translational equivariance. Appendix C.2 visualizes the filters MSR produces,
which we see are rotated and/or flipped versions of the same filter.

6 CAN WE LEARN INVARIANCES FROM AUGMENTED DATA?

Algorithm 2: Augmentation Meta-Training

input: {Ti}Ni=1: Meta-training tasks
input: META-TRAIN: Any meta-learner
input: AUGMENT: Data augmenter
forall Ti ∈ {Ti}Ni=1 do
{Dtri ,Dvali } ← Ti ; // task data
split

D̂vali ← AUGMENT
(
Dval

)
;

T̂i ← {Dtr, D̂vali }
META-TRAIN

(
{T̂i}Ni=1

)

Practitioners commonly use data augmentation
to train their models to have certain invariances.
Since invariance is a special case of equivari-
ance, we can also view data augmentation as
a way of learning equivariant models. The
downside is that we need augmented data for
each task. While augmentation is often possible
during meta-training, there are many situations
where it is impractical at meta-test time. For
example, in robotics we may meta-train a robot
in simulation and then deploy (meta-test) in the
real world, a kind of sim2real transfer strategy
(Song et al., 2020). During meta-training we
can augment data using the simulated environ-
ment, but we cannot do the same at meta-test time in the real world. Can we instead use MSR
to learn equivariances from data augmentation at training time, and encode those learned equivari-
ances into the network itself? This way, the network would preserve learned equivariances on new
meta-test tasks without needing any additional data augmentation.

Alg. 2 describes our approach for meta-learning invariances from data augmentation, which wraps
around any meta-learning algorithm using generic data augmentation procedures. Recall that each
task is split into training and validation data Ti = {Dtri ,Dvali }. We use the data augmentation
procedure to only modify the validation data, producing a new validation dataset D̂vali for each task.
We re-assemble each modified task T̂i ← {Dtri , D̂vali }. So for each task, the meta-learner observes
unaugmented training data, but must generalize to augmented validation data. This forces the model
to be invariant to the augmentation transforms without actually seeing any augmented training data.

We apply this augmentation strategy to Omniglot (Lake et al., 2015) and MiniImagenet (Vinyals
et al., 2016) few shot classification to create the Aug-Omniglot and Aug-MiniImagenet benchmarks.
Our data augmentation function contains a combination of random rotations, flips, and resizes
(rescaling), which we only apply to task validation data as described above. The problem is set
up analogous to (Finn et al., 2017): for each task, the model must classify images into one of either
5 or 20 classes (n-way) and receives either 1 or 5 examples of each class in the task training data
(k-shot). Unlike Finn et al. (2017) our Aug-Omniglot and Aug-MiniImagenet benchmarks contain
transformed task validation data.

We tried combining Alg. 2 with our MSR method and three other meta-learning algorithms: MAML
(Finn et al., 2017), ANIL (Raghu et al., 2019), and Prototypical Networks (ProtoNets) (Snell et al.,
2017). While the latter three methods all have the potential to learn equivariant features through
Alg. 2, we hypothesize that since MSR enforces learned equivariance through its symmetry matrices
it should outperform these feature-metalearning methods. We also paired MAML with a model that
has built in equivariance to the group D8 (45◦-increment rotation and reflections) using the E2-CNN
library (Weiler and Cesa, 2019). We call this baseline “MAML+D8”. Appendix D.3 describes the
experimental setup and methods implementations in more detail.

Table 3 shows each method’s meta-test accuracies on both benchmarks. Across different settings
MSR performs either comparably to the best method, or the best. MAML and ANIL perform sim-
ilarly to each other, and usually worse than MSR, suggesting that learning equivariant or invariant
features is not as helpful as learning equivariant layer structures. ProtoNets perform well on the eas-
ier Aug-Omniglot benchmark, but evidently struggle with learning a transformation invariant metric
space on the harder Aug-MiniImagenet problems. MSR even outperforms the architecture with built
in rotation and reflection symmetry (MAML+D8) across the board. MSR’s advantage may be due
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Aug-Omniglot Aug-MiniImagenet
5 way 20 way 5 way

Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAML 87.3± 0.5 93.6± 0.3 67.0± 0.4 79.9± 0.3 42.5± 1.1 61.5± 1.0
MAML (Big) 89.3± 0.4 94.8± 0.3 69.6± 0.4 83.2± 0.3 37.2± 1.1 63.2± 1.0
ANIL 86.4± 0.5 93.2± 0.3 67.5± 3.5 79.8± 0.3 43.0± 1.1 62.3± 1.0
ProtoNets 92.9± 0.4 97.4± 0.2 85.1± 0.3 94.3± 0.2 34.6± 0.5 54.5± 0.6
MAML + D8 94.6± 0.4 96.4± 0.3 82.6± 0.3 85.1± 0.3 44.9± 1.2 56.8± 1.1
MSR (Ours) 95.3± 0.3 97.7± 0.2 84.3± 0.2 92.6± 0.2 45.5± 1.1 65.2± 1.0

Table 3: Meta-test accuracies on Aug-Omniglot and Aug-MiniImagenet few-shot classification. These bench-
marks test generalization to augmented validation data from un-augmented training data. MSR performs com-
parably to or better than other methods under this augmented regime. Results are shown with 95% confidence
intervals over test tasks.

to the additional presence of scaling transformations in the image data; we are not aware of archi-
tectures that build in rotation, reflection, and scaling equivariance at the time of writing. Note that
MSR’s reparameterization increases the number of meta-learned parameters at each layer, so MSR
models contain more total parameters than corresponding MAML models. The “MAML (Big)”
results show MAML performance with very large models containing more total parameters than
the corresponding MSR models. The results show that MSR also outperforms these larger MAML
models despite having fewer total parameters.

7 DISCUSSION AND FUTURE WORK

We introduce a method for automatically meta-learning equivariances in neural network models,
by encoding learned equivariance-inducing parameter sharing patterns in each layer. On new tasks,
these sharing patterns reduce the number of task-specific parameters and improve generalization.
Our experiments show that this method can improve few-shot generalization on task distributions
with shared underlying symmetries. We also introduce a strategy for meta-training invariances into
networks using data augmentation, and show that it works well with our method. By encoding equiv-
ariances into the network as a parameter sharing pattern, our method has the benefit of preserving
learned equivariances on new tasks so it can learn more efficiently.

Machine learning thus far has benefited from exploiting human knowledge of problem symmetries,
and we believe this work presents a step towards learning and exploiting symmetries automatically.
This work leads to numerous directions for future investigation. In addition to generalization ben-
efits, standard convolution is practical since it exploits the parameter sharing structure to improve
computational efficiency, relative to a fully connected layer of the same input/output dimensions.
While MSR we can improve computational efficiency by reparameterizing standard convolution
layers, it does not exploit learned structure to further optimize its computation. Can we automati-
cally learn or find efficient implementations of these more structured operations? Additionally, MSR
is focused on learning finite symmetry groups, while approximating infinite ones (e.g., learning 45◦-
increment rotation symmetry as an approximation to continuous rotation symmetry). Unfortunately,
the number of parameters increases with the resolution of the approximation, so further research
would be useful in discovering more scalable methods of approximating and learning continuous
symmetries. Finally, our method is best for learning symmetries which are shared across a distribu-
tion of tasks. Further research on quickly discovering symmetries which are particular to a single
task would make deep learning methods significantly more useful on many difficult real world prob-
lems.
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A APPROXIMATION AND TRACTABILITY

A.1 FULLY CONNECTED

From Eq. 2 we see that for a layer with m output units, n input units, and k filter parameters the
symmetry matrix U has mnk entries. This is too expensive for larger layers, so in practice, we need
a factorized reparameterization to reduce memory and compute requirements when k is larger.

For fully connected layers, we use a Kronecker factorization to scalably reparameterize each layer.
First, we assume that the filter parameters v ∈ Rkl can be arranged in a matrix V ∈ Rk×l. Then we
reparameterize each layer’s weight matrix W similar to Eq. 2, but assume the symmetry matrix is
the Kronecker product of two smaller matrices:

vec(W ) = (U1 ⊗ U2)vec(V ), U1 ∈ Rn×l, U2 ∈ Rm×k (5)

Since we only store the two Kronecker factors U1 and U2, we reduce the memory requirements of
U from mnkl to mk + nl. In our experiments we generally choose V ∈ Rm×n so U1 ∈ Rn×n and
U2 ∈ Rm×m. Then the actual memory cost of each reparameterized layer (including both U and
v) is m2 + n2 +mn, compared to mn for a standard fully connected layer. So in the case where
m ≈ n, MSR increases memory cost by roughly a constant factor of 3.

After approximation MSR also increases computation time (forward and backward passes) by
roughly a constant factor of 3 compared to MAML. A standard fully connected layer requires a
single matrix-matrix multiply Y = WX in the forward pass (here Y and X are matrices since
inputs and outputs are in batches). Applying the Kronecker-vec trick to Eq. 5 gives:

W = U1V U
T
2 ⇐⇒ vec(W ) = (U1 ⊗ U2)vec(V ) (6)

So rather than actually forming the (possibly large) symmetry matrix U1 ⊗ U2, we can directly
construct W simply using 2 additional matrix-matrix multiplies W = U1V U

T
2 . Again assuming

V ∈ Rm×n and m ≈ n, each matrix in the preceding expression is approximately the same size as
W .

A.2 2D CONVOLUTION

When reparameterizing 2-D convolutions, we need to produce a filter (a rank-4 tensor W ∈
RCo×Ci×H×W ). We assume the filter parameters are stored in a rank 3 tensor V ∈ Rp×q×s,
and factorize the symmetry matrix U into three separate matrices U1 ∈ RCo×p, U2 ∈ RCi×q and
U3 ∈ RHW×s. A similar Kronecker product approximation gives:

W̃ = V ×1 U1 ×2 U2 ×3 U3, W̃ ∈ RCo×Ci×HW (7)

W = reshape(W̃ ), W ∈ RCi×Ci×H×W (8)

where ×n represents n-mode tensor multiplication (Kolda and Bader, 2009). Just as in the fully
connected case, this convolution reparameterization is equivalent to a Kronecker factorization of the
symmetry matrix U .

An analysis of the memory and computation requirements of reparameterized convolution layers
proceeds similarly to the above analysis for the fully connected case. As we describe below, in our
augmented experiments using convolutional models each MSR outer step takes roughly 30%−40%
longer than a MAML outer step.

In practice, for any experiment where we reparameterize a standard 2-D convolution with weights
W ∈ RCo×Ci×H×W , we choose p = Co, q = Ci, and s = HW . Equivalently, we choose V ∈
RCo×Ci×HW . Although not necessary, this choice conveniently makes the matrices U1, U2 and U3

into square matrices, which we can initialize to identity matrices at the start of meta-learning.

B PROOF OF PROPOSITION 1

To show the connection with the existing literature, we first present a slightly generalised definition
of G-convolution that is more common in the existing literature. We instead model an input signal
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as a function f : X → R on some underlying space X . We then consider a finite group G =
{g1, . . . , gn} of symmetries acting transitively on X , over which we desire G-equivariance. Many
(but not all) of the groups discussed in (Weiler and Cesa, 2019) are finite groups of this form.

It is proven by (Kondor and Trivedi, 2018) that a function φ is equivariant to G if and only if it is a
G-convolution on this space. In the domain of finite groups, we can consider a slight simplification
of this notion: a finite “G cross-correlation” of f with a filter ψ : X → R. This is defined by (Cohen
and Welling, 2016) as:

[φ(f)](g) = (f ? ψ)(g) =
∑
x∈X

f(x)ψ(g−1x).2 (9)

Figure 5: The theoretical con-
volutional weight symmetry
matrix for the group 〈g〉 ∼=
C4, where g is a Nπ

2 -radian
rotation of a 3x3 image (N ∈
{0, 1, 2, 3}. Notice that the
image is flattened into a
length 9 vector. The matrix
π(g) describes the action of a
Nπ
2 radian rotation on this im-

age.

We can now connect this notion with the linear layer, as described
in our paper. First, in order for a fully connected layer’s weight
matrix W to act on function f , we must first assume that f has
finite support {x1, . . . , xs}—i.e. f(x) is only non-zero at these s
points within X . This means that f can be represented as a “dual”
vector f ∈ Rs given by f i = f(xi), on which W can act.3

We aim to show a certain value of UG ∈ Rns×s allows arbitrary
G cross-correlations—and only G cross-correlations—to be repre-
sented by fully connected layers with weight matrices of the form

vec(W ) = UGv, (10)
where v ∈ Rs is any arbitrary vector of appropriate dimension. The
reshape specifically gives W ∈ Rn×s, which transforms the vector
f ∈ Rs.

With this in mind, we first use that the action of the group can be
represented as a matrix transformation on this vector space, using
the matrix representation π:

[π(g)f ]i = f(g−1xi) (11)
where notably π(g) ∈ Rs×s.

We consider UG ∈ Rns×s, and v ∈ Rs. Since v ∈ Rs, we can
also treat v as a the “dual” vector of a function v̂ : X → R with
support {x1, . . . , xs}, described by v̂(xi) = vi. We can interpret v̂
as a convolutional filter, just like ψ in Eq. 9. W then acts on v just as it acts on f , namely:

[π(g)v]i = v̂(g−1xi). (12)

Now, we define UG by stacking the matrix representations of gi ∈ G:

UG =

π(g1)...
π(gn)

 (13)

which implies the following value of W :

W = reshape(UGv) = reshape





π(g1)v

...

π(gn)v




=

 π(g1)v
...

π(gn)v

 (14)

2This definition avoids notions such as lifting of X to G and the possibility of more general group repre-
sentations, for the sake of simplicity. We recommend Kondor and Trivedi (2018) for a more complete theory
of G-convolutions.

3This is using the natural linear algebraic dual of the free vector space on {x1, . . . , xs}.
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Meta-learned LRs on synthetic problems
Variable Small train dataset Large train dataset

k = 1 k = 2 k = 5 k = 1 k = 2 k = 5
U −0.017 −0.011 −0.052 −0.009 −0.021 −0.039
v +0.241 +0.326 +0.401 +0.241 +0.307 +0.312

Table 4: In the ablation “MSR-Joint-FC” of Sec. 4 we jointly updated U and v in the inner loop with meta-
learned inner loop learning rates for each. This is in contrast with standard MSR, where only v is updated in
the inner loop (also with a meta-learned learning rate), and U is only updated in the outer loop. The inner
learning rates were initialized at 0.02 for all variables. The table shows the inner loop learning rates at the end
of training. The relative magnitudes suggest that v is being updated significantly more than U in the inner loop.

This then grants that the output of the fully connected layer with weights W is:

(Wf)i =

s∑
j=1

(π(gi)v)jf j . (15)

Using that f has finite support {x1, . . . , xs}, and that (π(gi)v)j = v̂(g−1i xj), we have that:

(Wf)i =

s∑
j=1

v̂(g−1i xj)f(xj) =
∑
x∈X

v̂(g−1i x)f(x). (16)

Lastly, we can interpret WGf as a function φG(f) mapping each gi ∈ G to its ith component:

[φG(f)](gi) = (Wf)i =
∑
x∈X

v̂(g−1i x)f(x) (17)

which is precisely the cross-correlation as described in Eq. 9 with filter ψ = v̂. This implies that
φG must be equivariant with respect to G. Moreover, all such G-equivariant functions are G cross-
correlations parameterized by v, so with UG fixed as in Eq.-13, we have that W = UGv can
represent all G-equivariant functions.

This means that if v is chosen to have the same dimension as the input, and the weight symmetry
matrix is sufficiently large, any equivariance to a finite group can be meta-learned using this ap-
proach. Moreover, in this case the symmetry matrix has a very natural and interpretable structure,
containing a representation of the group in block submatrices—this structure is seen in practice in
our synthetic experiments. Lastly, notice that v corresponds (dually) to the convolutional filter, jus-
tifying the notion that we learn the convolutional filter in the inner loop, and the group action in the
outer group.

In the above proof, we’ve used the original definition of group convolution (Cohen and Welling,
2016) for the sake of simplicity. It is useful to note that a slight generalization of the proof applies for
more general equivariance between representations, as defined in equation (3.3)—(i.e. the case when
π(g) is an arbitrary linear transformation, and not necessarily of the form π(g)f(x) = f(g−1x).)
This is subject to a unitarity condition on the group representation (Worrall and Welling, 2019).

Without any modification to the method, arbitrary linear approximations to group convolution can
be learnt when the representation is not a permutation of the indices. For example, non axis-aligned
rotations can be easily approximated through both bilinear and bicubic interpolation, whereby the
value of a pixel x after rotation is a linear interpolation of the 4 or 16 pixels nearest to the “true”
value of this pixel before rotation g−1x. Practically, this allows us to approximate equivariance to
45 degree rotations of 2D images, for which there don’t exist representations of the form in Eq. 12.

C FURTHER SYNTHETIC EXPERIMENT RESULTS

C.1 VISUALIZING TRANSLATION EQUIVARIANT SYMMETRY MATRICES

Fig. 6 visualizes the actual symmetry matrix U that MSR-FC meta-learns from translation equiv-
ariant data. Each column is one of the submatrices π(i) corresponding to the action of the discrete
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Figure 6: The submatrices of the meta-learned symmetry matrix of MSR-FC on the translation
equivariant problem (Sec. 5.1). Intensity corresponds to each entry’s absolute value. We see that the
symmetry matrix has been meta-learned to implement standard convolution: each π(i) translates the
size filter v ∈ R3 by i spaces. Note that in actuality the submatrices are stacked on top of each other
in U as in Eq. 13, but we display them side-by-side for visualization.

Synthetic problem data quantity
k = 1 k = 2 k = 5 Rot Rot+flip

No. train tasks 400 800 800 8000 8000
No. test tasks 100 200 200 2000 2000
Examples/train task (Small) 2 2 4 20 20
Examples/train task (Large) 20 20 20 - -
Train examples/test task 1 1 1 1 1

Table 5: The amount of training and test data provided to each method in the synthetic experiments of Table
1 and Table 2. The last row indicates that on the test tasks,, all methods were expected to solve each problem
using a single example from that task.

translation group element i ∈ Z on the filter v. In other words, MSR automatically meta-learned
U to contain these submatrices π(i) such that each π(i) translates the filter by i spaces, effectively
meta-learning standard convolution! In the actual symmetry matrix the submatrices are stacked on
top of each other as in Eq. 13, but we display each submatrix side-by-side for easy visualization.
The figure is also cropped for space: there are a total of 68 submatrices but we show only the first
20, and each submatrix is cropped from 70× 3 to 22× 3.

C.2 VISUALIZING ROTATION AND FLIP EQUIVARIANT FILTERS

In Sec. 5.2 we ran three experiments reparameterizing convolution layers to meta-learn 90◦ rotation,
45◦ rotation, and 45◦ rotation+flip equivariance, respectively. Figure 7 shows that MSR produces
rotated and flipped versions of filters in order to make the convolution layers equivariant to the
corresponding rotation or flip transformations.

D EXPERIMENTAL DETAILS

Throughout this work we implemented all gradient based meta-learning algorithms in PyTorch using
the Higher (Grefenstette et al., 2019) library.

D.1 TRANSLATION SYMMETRY SYNTHETIC PROBLEMS

For the (partial) translation symmetry problems we generated regression data using a single locally
connected layer. Each task corresponds to different weights of the data generating network, whose
entries we sample independently from a standard normal distribution. For rank k locally connected
filters we sampled k width-3 filters and then set the filter value at each spatial location to be a random
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linear combination of those k filters. Table 5 shows how many distinct training and test tasks we
generated data for. For each particular task, we generated data points by randomly sampling the
entries of the input vector from a standard normal distribution, passing the input vector into the data
generating network, and saving the input and output as a pair.

MSR and MAML training: During meta-training we trained each method for 1, 000 outer steps on
task batches of size 32, enough for the training loss to converge for every method in every problem.
We used the Adam (Kingma and Ba, 2014) optimizer in the outer loop with learning rate .0005.
Like most meta-learning methods, MAML and MSR split each task’s examples into a support set
(task training data) and a query set (task validation data). On training tasks MAML and MSR used
3 SGD steps on the support data before computing the meta-training objective on the query data,
while using 9 SGD steps on the support data of test tasks. We also used meta-learned per-layer
learning rates initialized to 0.02. At meta-test time we evaluated average performance and error bars
on held-out tasks.

MTSR training: We reparameterize fully connected layers into symmetry matrix U and filter v,
similar to MSR. MTSR maintains single shared U , but initializes a separate filter v(i) for each
training task Ti. Given example data Di from Ti, we jointly optimize {U, v(i)} using the loss
L(U, v(i),Di). In practice each update step updates U and all {v(i)} in parallel using the full batch
of training tasks. Given a test task we initialize a new filter v alongside our already trained U . We
then update v on training examples from the test task before evaluating on held out examples from
the test task. We use 500 gradient steps for each task at both training and test time, again using the
Adam optimizer with learning rate 0.001.

We ran all experiments on a single machine with a single NVidia RTX 2080Ti GPU. Our MSR-FC
experiments took about 9.5 (outer loop) steps per second, while our MSR-Conv experiments took
about 2.8 (outer loop) steps per second.

D.2 ROTATION+FLIP SYMMETRY SYNTHETIC PROBLEMS

The setup of the rotation and rotation+flip symmetry problems is very similar to that of the transla-
tion symmetry problems. Here we generated regression data using a single E(2)-steerable (Weiler
and Cesa, 2019) layer. Each task again corresponds to a particular setting of the weights of this
data generating network, whose entries are sampled from a standard normal distribution for each
task. We generate examples for each task similarly to above, and Table 5 shows the quantity of data
available for training and test tasks.

MAML and MSR training setups here are similar to the translation setups, but we reparameterize
the filter of a standard convolution layer to build in translation symmetry and focus on learning
rotation/flip symmetry. Unlike the translation experiments, here we use 1 SGD step in the inner loop
for both train and test tasks, and initialize the learned learning rates to 0.1.

D.3 AUGMENTATION EXPERIMENTS

To create Aug-Omniglot and Aug-MiniImagenet, we extended the Omniglot and MiniImagenet
benchmarks from TorchMeta (Deleu et al., 2019). Each task in these benchmarks is split into support
(train) and query (validation) datasets. For the augmented benchmarks we applied data augmenta-
tion to only the query dataset of each task, which consisted of randomly resized crops, reflections,
and rotations by up to 30◦. Using the torchvision library, the augmentation function is:

# Data a u g m e n t a t i o n a p p l i e d t o ONLY t h e query s e t .
s i z e = 28 # Omniglo t image s i z e . 84 f o r Min i Imagene t .
augmen t fn = Compose (

RandomResizedCrop ( 2 8 , s c a l e = ( 0 . 8 , 1 . 0 ) ) ,
R a n d o m V e r t i c a l F l i p ( p = 0 . 5 ) ,
R a n d o m H o r i z o n t a l F l i p ( p = 0 . 5 ) ,
RandomRotat ion ( 3 0 , r e s a m p l e =Image . BILINEAR ) ,

)

For the augmented Omniglot and MiniImagenet 1-shot experiments, MAML used exactly the same
convolutional architecture (same number of layers, number of channels, filter sizes, etc.) as prior
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work on Omniglot and MiniImagenet (Vinyals et al., 2016; Finn et al., 2017). For MSR we repa-
rameterize each layer’s weight matrix or convolutional filter using the Kronecker approximation
(Appendix A) such that the reparameterized layer has the same number of input and output neurons
as the corresponding layer in the MAML model.

For MiniImagenet 5-shot, we experimented with increasing architecture size via more channels
and/or larger filters, which yielded better accuracies on meta-validation tasks. For MSR, MAML,
and ANIL we increased the number of output channels from 32 to 128 and increased the kernel
size from 3 to 5 in the first 3 convolution layers. We then inserted a 1 × 1 convolution layer with
64 output channels right before the linear output layer. For the ProtoNet architecture we similarly
increased the output channels at each layer from 32 to 128, but found that keeping the kernel size at
3 worked best.

For “MAML (Big)” experiments we increased the architecture size of the MAML model to exceed
the number of meta-parameters (symmetry matrices + filter parameters) in the corresponding MSR
model. For MiniImagenet 5-Shot we inserted an additional linear layer with 3840 output units before
the final linear layer. For MiniImagenet 1-Shot we increased the number of output channels at each
of the 3 convolution layers from 32 to 64, then inserted an additional linear layer with 1920 output
units before the final linear layer. For the Omniglot experiments we increased the number of output
channels at each of the 3 convolution layers to 150.

For all experiments and gradient based methods we trained for 60, 000 (outer) steps using the Adam
optimizer with learning rate .0005 for MiniImagenet 5-shot and .001 for all other experiments. In
the inner loop we used SGD with meta-learned per-layer learning rates initialized to 0.4 for Om-
niglot and .05 for MiniImagenet. We meta-trained using a single inner loop step in all experiments,
and used 3 inner loop steps at meta-test time. Although MAML originally meta-trained with 5 in-
ner loop steps on MiniImagenet, we found that this destabilized meta-training on our augmented
version. We hypothesize that this is due to the discrepancy between support and query data in our
augmented problems. During meta-training we used a task batch size of 32 for Omniglot and 10
for MiniImagenet. At meta-test time we evaluated average performance and error bars using 1000
held-out meta-test tasks.

We ran all experiments on a machine with a single NVidia Titan RTX GPU. For our Aug-Omniglot,
we ran two experiments at simultaneously on the same machine, which likely slowed each invididual
experiment down. Our MSR method took about 0.6 steps per second, whereas the MAML baseline
took about 0.86 steps per second. For Aug-Miniimagenet we ran one experiment per machine. MSR
took 4.2 steps per second, while MAML took 5.6 steps per second on these experiments.
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Figure 7: MSR produced convolution filters, after meta-learning 90◦ rotation, 45◦ rotation, and
45◦ rotation+flip equivariance in the Sec. 5.2 experiments. Notice that MSR learns to achieve the
corresponding equivariance by producing rotated/flipped versions of the same filter.
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