
Meta-Learning with Differentiable Convex Optimization

Kwonjoon Lee2 Subhransu Maji1,3 Avinash Ravichandran1 Stefano Soatto1,4

1Amazon Web Services 2UC San Diego 3UMass Amherst 4UCLA

kwl042@ucsd.edu {smmaji,ravinash,soattos}@amazon.com

Abstract

Many meta-learning approaches for few-shot learning

rely on simple base learners such as nearest-neighbor clas-

sifiers. However, even in the few-shot regime, discrimina-

tively trained linear predictors can offer better generaliza-

tion. We propose to use these predictors as base learners to

learn representations for few-shot learning and show they

offer better tradeoffs between feature size and performance

across a range of few-shot recognition benchmarks. Our

objective is to learn feature embeddings that generalize well

under a linear classification rule for novel categories. To

efficiently solve the objective, we exploit two properties of

linear classifiers: implicit differentiation of the optimality

conditions of the convex problem and the dual formulation

of the optimization problem. This allows us to use high-

dimensional embeddings with improved generalization at a

modest increase in computational overhead. Our approach,

named MetaOptNet, achieves state-of-the-art performance

on miniImageNet, tieredImageNet, CIFAR-FS, and FC100

few-shot learning benchmarks. Our code is available on-

line1.

1. Introduction

The ability to learn from a few examples is a hallmark

of human intelligence, yet it remains a challenge for mod-

ern machine learning systems. This problem has received

significant attention from the machine learning community

recently where few-shot learning is cast as a meta-learning

problem (e.g., [22, 8, 33, 28]). The goal is to minimize gen-

eralization error across a distribution of tasks with few train-

ing examples. Typically, these approaches are composed of

an embedding model that maps the input domain into a fea-

ture space and a base learner that maps the feature space

to task variables. The meta-learning objective is to learn

an embedding model such that the base learner generalizes

well across tasks.

While many choices for base learners exist, nearest-

neighbor classifiers and their variants (e.g., [28, 33]) are

1https://github.com/kjunelee/MetaOptNet

popular as the classification rule is simple and the approach

scales well in the low-data regime. However, discrimina-

tively trained linear classifiers often outperform nearest-

neighbor classifiers (e.g., [4, 16]) in the low-data regime

as they can exploit the negative examples which are often

more abundant to learn better class boundaries. Moreover,

they can effectively use high dimensional feature embed-

dings as model capacity can be controlled by appropriate

regularization such as weight sparsity or norm.

Hence, in this paper, we investigate linear classifiers as

the base learner for a meta-learning based approach for few-

shot learning. The approach is illustrated in Figure 1 where

a linear support vector machine (SVM) is used to learn a

classifier given a set of labeled training examples and the

generalization error is computed on a novel set of examples

from the same task. The key challenge is computational

since the meta-learning objective of minimizing the gener-

alization error across tasks requires training a linear classi-

fier in the inner loop of optimization (see Section 3). How-

ever, the objective of linear models is convex and can be

solved efficiently. We observe that two additional properties

arising from the convex nature that allows efficient meta-

learning: implicit differentiation of the optimization [2, 11]

and the low-rank nature of the classifier in the few-shot set-

ting. The first property allows the use of off-the-shelf con-

vex optimizers to estimate the optima and implicitly differ-

entiate the optimality or Karush-Kuhn-Tucker (KKT) con-

ditions to train embedding model. The second property

means that the number of optimization variables in the dual

formation is far smaller than the feature dimension for few-

shot learning.

To this end, we have incorporated a differentiable

quadratic programming (QP) solver [1] which allows end-

to-end learning of the embedding model with various linear

classifiers, e.g., multiclass support vector machines (SVMs)

[5] or linear regression, for few-shot classification tasks.

Making use of these properties, we show that our method

is practical and offers substantial gains over nearest neigh-

bor classifiers at a modest increase in computational costs

(see Table 3). Our method achieves state-of-the-art perfor-

mance on 5-way 1-shot and 5-shot classification for popu-

10657

!"

!"

ℒ𝑚𝑒𝑡𝑎
Embeddings of

Training Examples
Weights of

Linear Classifier

Score (logit)

for Each Class

Training Examples

Test Examples

SVM
Loss

Figure 1. Overview of our approach. Schematic illustration of our method MetaOptNet on an 1-shot 3-way classification task. The

meta-training objective is to learn the parameters φ of a feature embedding model fφ that generalizes well across tasks when used with

regularized linear classifiers (e.g., SVMs). A task is a tuple of a few-shot training set and a test set (see Section 3 for details).

lar few-shot benchmarks including miniImageNet [33, 22],

tieredImageNet [23], CIFAR-FS [3], and FC100 [20].

2. Related Work

Meta-learning studies what aspects of the learner (com-

monly referred to as bias or prior) effect generalization

across a distribution of tasks [26, 31, 32]. Meta-learning ap-

proaches for few-shot learning can be broadly categorized

these approaches into three groups. Gradient-based meth-

ods [22, 8] use gradient descent to adapt the embedding

model parameters (e.g., all layers of a deep network) given

training examples. Nearest-neighbor methods [33, 28] learn

a distance-based prediction rule over the embeddings. For

example, prototypical networks [28] represent each class by

the mean embedding of the examples, and the classification

rule is based on the distance to the nearest class mean. An-

other example is matching networks [33] that learns a ker-

nel density estimate of the class densities using the embed-

dings over training data (the model can also be interpreted

as a form of attention over training examples). Model-based

methods [18, 19] learn a parameterized predictor to estimate

model parameters, e.g., a recurrent network that predicts pa-

rameters analogous to a few steps of gradient descent in pa-

rameter space. While gradient-based methods are general,

they are prone to overfitting as the embedding dimension

grows [18, 25]. Nearest-neighbor approaches offer simplic-

ity and scale well in the few-shot setting. However, nearest-

neighbor methods have no mechanisms for feature selection

and are not very robust to noisy features.

Our work is related to techniques for backpropagation

though optimization procedures. Domke [6] presented a

generic method based on unrolling gradient-descent for a

fixed number of steps and automatic differentiation to com-

pute gradients. However, the trace of the optimizer (i.e.,

the intermediate values) needs to be stored in order to com-

pute the gradients which can be prohibitive for large prob-

lems. The storage overhead issue was considered in more

detail by Maclaurin et al. [15] where they studied low pre-

cision representations of the optimization trace of deep net-

works. If the argmin of the optimization can be found an-

alytically, such as in unconstrained quadratic minimization

problems, then it is also possible to compute the gradients

analytically. This has been applied for learning in low-level

vision problems [30, 27]. A concurrent and closely related

work [3] uses this idea to learn few-shot models using ridge-

regression base learners which have closed-form solutions.

We refer readers to Gould et al. [11] which provides an ex-

cellent survey of techniques for differentiating argmin and

argmax problems.

Our approach advocates the use of linear classifiers

which can be formulated as convex learning problems. In

particular, the objective is a quadratic program (QP) which

can be efficiently solved to obtain its global optima using

gradient-based techniques. Moreover, the solution to con-

vex problems can be characterized by their Karush-Kuhn-

Tucker (KKT) conditions which allow us to backpropagate

through the learner using the implicit function theorem [12].

Specifically, we use the formulation of Amos and Kolter [1]

which provides efficient GPU routines for computing solu-

tions to QPs and their gradients. While they applied this

framework to learn representations for constraint satisfac-

tion problems, it is also well-suited for few-shot learning as

the problem sizes that arise are typically small.

While our experiments focus on linear classifiers with

hinge loss and ℓ2 regularization, our framework can be used

with other loss functions and non-linear kernels. For exam-

ple, the ridge regression learner used in [3] can be imple-

mented within our framework allowing a direct comparison.

10658

3. Meta-learning with Convex Base Learners

We first derive the meta-learning framework for few-shot

learning following prior work (e.g., [28, 22, 8]) and then

discuss how convex base learners, such as linear SVMs, can

be incorporated.

3.1. Problem formulation

Given the training set Dtrain = {(xt, yt)}
T
t=1, the goal

of the base learner A is to estimate parameters θ of the pre-

dictor y = f(x; θ) so that it generalizes well to the unseen

test set Dtest = {(xt, yt)}
Q
t=1. It is often assumed that the

training and test set are sampled from the same distribution

and the domain is mapped to a feature space using an em-

bedding model fφ parameterized by φ. For optimization-

based learners, the parameters are obtained by minimizing

the empirical loss over training data along with a regular-

ization that encourages simpler models. This can be written

as:

θ = A(Dtrain;φ) = argmin
θ

Lbase(Dtrain; θ, φ) +R(θ)

(1)

where Lbase is a loss function, such as the negative log-

likelihood of labels, and R(θ) is a regularization term. Reg-

ularization plays an important role in generalization when

training data is limited.

Meta-learning approaches for few-shot learning aim to

minimize the generalization error across a distribution of

tasks sampled from a task distribution. Concretely, this

can be thought of as learning over a collection of tasks:

T = {(Dtrain
i ,Dtest

i)}Ii=1, often referred to as a meta-

training set. The tuple (Dtrain
i ,Dtest

i) describes a training

and a test dataset, or a task. The objective is to learn an

embedding model φ that minimizes generalization (or test)

error across tasks given a base learner A. Formally, the

learning objective is:

min
φ

ET

[

Lmeta(Dtest; θ, φ),where θ = A(Dtrain;φ)
]

.

(2)

Figure 1 illustrates the training and testing for a single

task. Once the embedding model fφ is learned, its general-

ization is estimated on a set of held-out tasks (often referred

to as a meta-test set) S = {(Dtrain
j ,Dtest

j)}Jj=1 computed

as:

ES

[

Lmeta(Dtest; θ, φ),where θ = A(Dtrain;φ)
]

. (3)

Following prior work [22, 8], we call the stages of estimat-

ing the expectation in Equation 2 and 3 as meta-training and

meta-testing respectively. During meta-training, we keep an

additional held-out meta-validation set to choose the hyper-

parameters of the meta-learner and pick the best embedding

model.

3.2. Episodic sampling of tasks

Standard few-shot learning benchmarks such as miniIm-

ageNet [22] evaluate models in K-way, N -shot classifica-

tion tasks. Here K denotes the number of classes, and N

denotes the number of training examples per class. Few-

shot learning techniques are evaluated for small values of

N , typically N ∈ {1, 5}. In practice, these datasets do not

explicitly contain tuples (Dtrain
i ,Dtest

i), but each task for

meta-learning is constructed “on the fly” during the meta-

training stage, commonly described as an episode.

For example, in prior work [33, 22], a task (or episode)

Ti = (Dtrain
i ,Dtest

i) is sampled as follows. The overall

set of categories is Ctrain. For each episode, categories Ci

containing K categories from the Ctrain are first sampled

(with replacement); then training (support) set Dtrain
i =

{(xn, yn) | n = 1, . . . , N ×K, yn ∈ Ci} consisting of N

images per category is sampled; and finally, the test (query)

set Dtest
i = {(xn, yn) | n = 1, . . . , Q × K, yn ∈ Ci}

consisting of Q images per category is sampled.

We emphasize that we need to sample without replace-

ment, i.e., Dtrain
i ∩ Dtest

i = Ø, to optimize the gener-

alization error. In the same manner, meta-validation set

and meta-test set are constructed on the fly from Cval and

Ctest, respectively. In order to measure the embedding

model’s generalization to unseen categories, Ctrain, Cval,

and Ctest are chosen to be mutually disjoint.

3.3. Convex base learners

The choice of the base learner A has a significant im-

pact on Equation 2. The base learner that computes θ =
A(Dtrain;φ) has to be efficient since the expectation has to

be computed over a distribution of tasks. Moreover, to esti-

mate parameters φ of the embedding model the gradients of

the task test error Lmeta(Dtest; θ, φ) with respect to φ have

to be efficiently computed. This has motivated simple base

learners such as nearest class mean [28] for which the pa-

rameters of the base learner θ are easy to compute and the

objective is differentiable.

We consider base learners based on multi-class linear

classifiers (e.g., support vector machines (SVMs) [5, 34],

logistic regression, and ridge regression) where the base-

learner’s objective is convex. For example, a K-class linear

SVM can be written as θ = {wk}
K
k=1. The Crammer and

Singer [5] formulation of the multi-class SVM is:

θ = A(Dtrain;φ) = argmin
{wk}

min
{ξi}

1

2

∑

k

||wk||
2
2 + C

∑

n

ξn

subject to

wyn
· fφ(xn)−wk · fφ(xn) ≥ 1− δyn,k − ξn, ∀n, k

(4)

where Dtrain = {(xn, yn)}, C is the regularization param-

eter and δ·,· is the Kronecker delta function.

10659

Gradients of the SVM objective. From Figure 1, we see

that in order to make our system end-to-end trainable, we

require that the solution of the SVM solver should be dif-

ferentiable with respect to its input, i.e., we should be able

to compute { ∂θ
∂fφ(xn)

}N×K
n=1 . The objective of SVM is con-

vex and has a unique optimum. This allows for the use of

implicit function theorem (e.g., [12, 7, 2]) on the optimality

(KKT) conditions to obtain the necessary gradients. For the

sake of completeness, we derive the form of the theorem for

convex optimization problems as stated in [2]. Consider the

following convex optimization problem:

minimize f0(θ, z)

subject to f(θ, z) � 0

h(θ, z) = 0.

(5)

where the vector θ ∈ R
d is the optimization variable of the

problem, the vector z ∈ R
e is the input parameter of the

optimization problem, which is {fφ(xn)} in our case. We

can optimize the objective by solving for the saddle point

(θ̃, λ̃, ν̃) of the following Lagrangian:

L(θ, λ, ν, z) = f0(θ, z) + λT f(θ, z) + νTh(θ, z). (6)

In other words, we can obtain the optimum of the objective

function by solving g(θ̃, λ̃, ν̃, z) = 0 where

g(θ, λ, ν, z) =

∇θL(θ, λ, ν, z)
diag(λ)f(θ, z)

h(θ, z)

 . (7)

Given a function f(x) : Rn → R
m, denote Dxf(x) as

its Jacobian ∈ R
m×n.

Theorem 1 (From Barratt [2]) Suppose g(θ̃, λ̃, ν̃, z) = 0.

Then, when all derivatives exist,

Dz θ̃ = −Dθg(θ̃, λ̃, ν̃, z)
−1Dzg(θ̃, λ̃, ν̃, z). (8)

This result is obtained by applying the implicit function

theorem to the KKT conditions. Thus, once we compute the

optimal solution θ̃, we can obtain a closed-form expression

for the gradient of θ̃ with respect to the input data. This

obviates the need for backpropagating through the entire

optimization trajectory since the solution does not depend

on the trajectory or initialization due to its uniqueness. This

also saves memory, an advantage that convex problems have

over generic optimization problems.

Time complexity. The forward pass (i.e., computation of

Equation 4) using our approach requires the solution to the

QP solver whose complexity scales as O(d3) where d is

the number of optimization variables. This time is domi-

nated by factorizing the KKT matrix required for primal-

dual interior point method. Backward pass requires the so-

lution to Equation 8 in Theorem 1, whose complexity is

O(d2) given the factorization already computed in the for-

ward pass. Both forward pass and backward pass can be

expensive when the dimension of embedding fφ is large.

Dual formulation. The dual formulation of the objective

in Equation 4 allows us to address the poor dependence on

the embedding dimension and can be written as follows. Let

wk(α
k) =

∑

n

αk
nfφ(xn) ∀ k. (9)

We can instead optimize in the dual space:

max
{αk}

[

−
1

2

∑

k

||wk(α
k)||22 +

∑

n

αyn

n

]

subject to

αyn

n ≤ C, αk
n ≤ 0 ∀k 6= yn,

∑

k

αk
n = 0 ∀n.

(10)

This results in a quadratic program (QP) over the dual

variables {αk}Kk=1. We note that the size of the optimiza-

tion variable is the number of training examples times the

number of classes. This is often much smaller than the size

of the feature dimension for few-shot learning. We solve

the dual QP of Equation 10 using [1] which implements a

differentiable GPU-based QP solver. In practice (as seen

in Table 3) the time taken by the QP solver is comparable

to the time taken to compute features using the ResNet-12

architectures so the overall speed per iteration is not signif-

icantly different from those based on simple base learners

such as nearest class prototype (mean) used in Prototypical

Networks [28].

Concurrent to our work, Bertinetto et al. [3] employed

ridge regression as the base learner which has a closed-form

solution. Although ridge regression may not be best suited

for classification problems, their work showed that training

models by minimizing squared error with respect to one-hot

labels works well in practice. The resulting optimization for

ridge regression is also a QP and can be implemented within

our framework as:

max
{αk}

[

−
1

2

∑

k

||wk(α
k)||22 −

λ

2

∑

k

||αk||22 +
∑

n

αyn

n

]

(11)

where wk is defined as Equation 9. A comparison of lin-

ear SVM and ridge regression in Section 4 shows a slight

advantage of the linear SVM formation.

3.4. Metalearning objective

To measure the performance of the model we evaluate

the negative log-likelihood of the test data sampled from

10660

the same task. Hence, we can re-express the meta-learning

objective of Equation 2 as:

Lmeta(Dtest; θ, φ, γ) =
∑

(x,y)∈Dtest

[−γwy · fφ(x) + log
∑

k

exp(γwk · fφ(x))]

(12)

where θ = A(Dtrain;φ) = {wk}
K
k=1 and γ is a learnable

scale parameter. Prior work in few-shot learning [20, 3, 10]

suggest that adjusting the prediction score by a learnable

scale parameter γ provides better performance under near-

est class mean and ridge regression base learners.

We empirically find that inserting γ is beneficial for the

meta-learning with SVM base learner as well. While other

choices of test loss, such as hinge loss, are possible, log-

likelihood worked the best in our experiments.

4. Experiments

We first describe the network architecture and optimiza-

tion details used in our experiments (Section 4.1). We then

present results on standard few-shot classification bench-

marks including derivatives of ImageNet (Section 4.2) and

CIFAR (Section 4.3), followed by a detailed analysis of the

impact of various base learners on accuracy and speed us-

ing the same embedding network and training setup (Sec-

tion 4.4-4.6).

4.1. Implementation details

Meta-learning setup. We use a ResNet-12 network follow-

ing [20, 18] in our experiments. Let Rk denote a residual

block that consists of three {3×3 convolution with k filters,

batch normalization, Leaky ReLU(0.1)}; let MP denote a

2×2 max pooling. We use DropBlock regularization [9],

a form of structured Dropout. Let DB(k, b) denote

a DropBlock layer with keep rate=k and block size=b.

The network architecture for ImageNet derivatives is:

R64-MP-DB(0.9,1)-R160-MP-DB(0.9,1)-R320-

MP-DB(0.9,5)-R640-MP-DB(0.9,5), while the

network architecture used for CIFAR derivatives is:

R64-MP-DB(0.9,1)-R160-MP-DB(0.9,1)-R320-

MP-DB(0.9,2)-R640-MP-DB(0.9,2). We do not

apply a global average pooling after the last residual block.

As an optimizer, we use SGD with Nesterov momen-

tum of 0.9 and weight decay of 0.0005. Each mini-batch

consists of 8 episodes. The model was meta-trained for 60

epochs, with each epoch consisting of 1000 episodes. The

learning rate was initially set to 0.1, and then changed to

0.006, 0.0012, and 0.00024 at epochs 20, 40 and 50, re-

spectively, following the practice of [10].

During meta-training, we adopt horizontal flip, random

crop, and color (brightness, contrast, and saturation) jitter

data augmentation as in [10, 21]. For experiments on mini-

ImageNet with ResNet-12, we use label smoothing with

ǫ = 0.1. Unlike [28] where they used higher way clas-

sification for meta-training than meta-testing, we use a 5-

way classification in both stages following recent works

[10, 20]. Each class contains 6 test (query) samples dur-

ing meta-training and 15 test samples during meta-testing.

Our meta-trained model was chosen based on 5-way 5-shot

test accuracy on the meta-validation set.

Meta-training shot. For prototypical networks, we match

the meta-training shot to meta-testing shot following the

usual practice [28, 10]. For SVM and ridge regression, we

observe that keeping meta-training shot higher than meta-

testing shot leads to better test accuracies as shown in Fig-

ure 2. Hence, during meta-training, we set training shot to

15 for miniImageNet with ResNet-12; 5 for miniImageNet

with 4-layer CNN (in Table 3); 10 for tieredImageNet; 5 for

CIFAR-FS; and 15 for FC100.

Base-learner setup. For linear classifier training, we use

the quadratic programming (QP) solver OptNet [1]. Regu-

larization parameter C of SVM was set to 0.1. Regulariza-

tion parameter λ of ridge regression was set to 50.0. For the

nearest class mean (prototypical networks), we use squared

Euclidean distance normalized with respect to the feature

dimension.

Early stopping. Although we can run the optimizer un-

til convergence, in practice we found that running the QP

solver for a fixed number of iterations (just three) works

well in practice. Early stopping acts an additional regular-

izer and even leads to a slightly better performance.

4.2. Experiments on ImageNet derivatives

The miniImageNet dataset [33] is a standard benchmark

for few-shot image classification benchmark, consisting of

100 randomly chosen classes from ILSVRC-2012 [24].

These classes are randomly split into 64, 16 and 20 classes

for meta-training, meta-validation, and meta-testing respec-

tively. Each class contains 600 images of size 84×84. Since

the class splits were not released in the original publica-

tion [33], we use the commonly-used split proposed in [22].

The tieredImageNet benchmark [23] is a larger subset

of ILSVRC-2012 [24], composed of 608 classes grouped

into 34 high-level categories. These are divided into 20 cat-

egories for meta-training, 6 categories for meta-validation,

and 8 categories for meta-testing. This corresponds to 351,

97 and 160 classes for meta-training, meta-validation, and

meta-testing respectively. This dataset aims to minimize the

semantic similarity between the splits. All images are of

size 84× 84.

Results. Table 1 summarizes the results on the 5-way mini-

ImageNet and tieredImageNet. Our method achieves state-

of-the-art performance on 5-way miniImageNet and tiered-

ImageNet benchmarks. Note that LEO [25] make use of

encoder and relation network in addition to the WRN-28-10

backbone network to produce sample-dependent initializa-

10661

Table 1. Comparison to prior work on miniImageNet and tieredImageNet. Average few-shot classification accuracies (%) with 95%

confidence intervals on miniImageNet and tieredImageNet meta-test splits. a-b-c-d denotes a 4-layer convolutional network with a, b, c,

and d filters in each layer. ∗Results from [22]. †Used the union of meta-training set and meta-validation set to meta-train the meta-learner.

“RR” stands for ridge regression.

miniImageNet 5-way tieredImageNet 5-way

model backbone 1-shot 5-shot 1-shot 5-shot

Meta-Learning LSTM∗ [22] 64-64-64-64 43.44 ± 0.77 60.60 ± 0.71 - -

Matching Networks∗ [33] 64-64-64-64 43.56 ± 0.84 55.31 ± 0.73 - -

MAML [8] 32-32-32-32 48.70 ± 1.84 63.11 ± 0.92 51.67 ± 1.81 70.30 ± 1.75

Prototypical Networks∗† [28] 64-64-64-64 49.42 ± 0.78 68.20 ± 0.66 53.31 ± 0.89 72.69 ± 0.74

Relation Networks∗ [29] 64-96-128-256 50.44 ± 0.82 65.32 ± 0.70 54.48 ± 0.93 71.32 ± 0.78

R2D2 [3] 96-192-384-512 51.2 ± 0.6 68.8 ± 0.1 - -

Transductive Prop Nets [14] 64-64-64-64 55.51 ± 0.86 69.86 ± 0.65 59.91 ± 0.94 73.30 ± 0.75

SNAIL [18] ResNet-12 55.71 ± 0.99 68.88 ± 0.92 - -

Dynamic Few-shot [10] 64-64-128-128 56.20 ± 0.86 73.00 ± 0.64 - -

AdaResNet [19] ResNet-12 56.88 ± 0.62 71.94 ± 0.57 - -

TADAM [20] ResNet-12 58.50 ± 0.30 76.70 ± 0.30 - -

Activation to Parameter† [21] WRN-28-10 59.60 ± 0.41 73.74 ± 0.19 - -

LEO† [25] WRN-28-10 61.76 ± 0.08 77.59 ± 0.12 66.33 ± 0.05 81.44 ± 0.09

MetaOptNet-RR (ours) ResNet-12 61.41 ± 0.61 77.88 ± 0.46 65.36 ± 0.71 81.34 ± 0.52

MetaOptNet-SVM (ours) ResNet-12 62.64 ± 0.61 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53

MetaOptNet-SVM-trainval (ours)† ResNet-12 64.09 ± 0.62 80.00 ± 0.45 65.81 ± 0.74 81.75 ± 0.53

tion of gradient descent. TADAM [20] employs a task em-

bedding network (TEN) block for each convolutional layer

– which predicts element-wise scale and shift vectors.

We also note that [25, 21] pretrain the WRN-28-10 fea-

ture extractor [36] to jointly classify all 64 classes in mini-

ImageNet meta-training set; then freeze the network during

the meta-training. [20] make use of a similar strategy of

using standard classification: they co-train the feature em-

bedding on few-shot classification task (5-way) and stan-

dard classification task (64-way). In contrast, our system is

meta-trained end-to-end, explicitly training the feature ex-

tractor to work well on few-shot learning tasks with regular-

ized linear classifiers. This strategy allows us to clearly see

the effect of meta-learning. Our method is arguably simpler

and achieves strong performance.

4.3. Experiments on CIFAR derivatives

The CIFAR-FS dataset [3] is a recently proposed few-

shot image classification benchmark, consisting of all 100

classes from CIFAR-100 [13]. The classes are randomly

split into 64, 16 and 20 for meta-training, meta-validation,

and meta-testing respectively. Each class contains 600 im-

ages of size 32× 32.

The FC100 dataset [20] is another dataset derived from

CIFAR-100 [13], containing 100 classes which are grouped

into 20 superclasses. These classes are partitioned into 60
classes from 12 superclasses for meta-training, 20 classes

from 4 superclasses for meta-validation, and 20 classes

from 4 superclasses for meta-testing. The goal is to min-

imize semantic overlap between classes similar to the goal

1 5 10 15
Meta-training shot

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

miniImageNet 5-way

MetaOptNetSVM1shot
MetaOptNetSVM5shot
Prototypical Networks1shot
Prototypical Networks5shot

1 5 10 15
Meta-training shot

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

tieredImageNet 5-way

1 5 10 15
Meta-training shot

70

72

74

76

78

80

82

84

Ac
cu

ra
cy

 (%
)

CIFAR-FS 5-way

1 5 10 15
Meta-training shot

37.5
40.0
42.5
45.0
47.5
50.0
52.5
55.0

Ac
cu

ra
cy

 (%
)

FC100 5-way

Figure 2. Test accuracies (%) on miniImageNet meta-test set

with varying meta-training shot. The error bar denotes 95 %

confidence interval. Ridge regression base learner (MetaOptNet-

RR) converges in 1 iteration; SVM base learner (MetaOptNet-

SVM) was run for 3 iterations.

of tieredImageNet. Each class contains 600 images of size

32× 32.

Results. Table 2 summarizes the results on the 5-way

classification tasks where our method MetaOptNet-SVM

achieves the state-of-the-art performance. On the harder

FC100 dataset, the gap between various base learners is

more significant, which highlights the advantage of com-

plex base learners in the few-shot learning setting.

10662

Table 2. Comparison to prior work on CIFAR-FS and FC100. Average few-shot classification accuracies (%) with 95% confidence

intervals on CIFAR-FS and FC100. a-b-c-d denotes a 4-layer convolutional network with a, b, c, and d filters in each layer. ∗CIFAR-FS

results from [3]. †FC100 result from [20]. ¶Used the union of meta-training set and meta-validation set to meta-train the meta-learner.

“RR” stands for ridge regression.

CIFAR-FS 5-way FC100 5-way

model backbone 1-shot 5-shot 1-shot 5-shot

MAML∗ [8] 32-32-32-32 58.9 ± 1.9 71.5 ± 1.0 - -

Prototypical Networks∗† [28] 64-64-64-64 55.5 ± 0.7 72.0 ± 0.6 35.3 ± 0.6 48.6 ± 0.6

Relation Networks∗ [29] 64-96-128-256 55.0 ± 1.0 69.3 ± 0.8 - -

R2D2 [3] 96-192-384-512 65.3 ± 0.2 79.4 ± 0.1 - -

TADAM [20] ResNet-12 - - 40.1 ± 0.4 56.1 ± 0.4

ProtoNets (our backbone) [28] ResNet-12 72.2 ± 0.7 83.5 ± 0.5 37.5 ± 0.6 52.5 ± 0.6

MetaOptNet-RR (ours) ResNet-12 72.6 ± 0.7 84.3 ± 0.5 40.5 ± 0.6 55.3 ± 0.6

MetaOptNet-SVM (ours) ResNet-12 72.0 ± 0.7 84.2 ± 0.5 41.1 ± 0.6 55.5 ± 0.6

MetaOptNet-SVM-trainval (ours)¶ ResNet-12 72.8 ± 0.7 85.0 ± 0.5 47.2 ± 0.6 62.5 ± 0.6

Table 3. Effect of the base learner and embedding network architecture. Average few-shot classification accuracy (%) and forward

inference time (ms) per episode on miniImageNet and tieredImageNet with varying base learner and backbone architecture. The former

group of results used the standard 4-layer convolutional network with 64 filters per layer used in [33, 28], whereas the latter used a 12-layer

ResNet without the global average pooling. “RR” stands for ridge regression.

miniImageNet 5-way tieredImageNet 5-way

1-shot 5-shot 1-shot 5-shot

model acc. (%) time (ms) acc. (%) time (ms) acc. (%) time (ms) acc. (%) time (ms)

4-layer conv (feature dimension=1600)

Prototypical Networks [17, 28] 53.47±0.63 6±0.01 70.68±0.49 7±0.02 54.28±0.67 6±0.03 71.42±0.61 7±0.02

MetaOptNet-RR (ours) 53.23±0.59 20±0.03 69.51±0.48 27±0.05 54.63±0.67 21±0.05 72.11±0.59 28±0.06

MetaOptNet-SVM (ours) 52.87±0.57 28±0.02 68.76±0.48 37±0.05 54.71±0.67 28±0.07 71.79±0.59 38±0.08

ResNet-12 (feature dimension=16000)

Prototypical Networks [17, 28] 59.25±0.64 60±17 75.60±0.48 66±17 61.74±0.77 61±17 80.00±0.55 66±18

MetaOptNet-RR (ours) 61.41±0.61 68±17 77.88±0.46 75±17 65.36±0.71 69±17 81.34±0.52 77±17

MetaOptNet-SVM (ours) 62.64±0.61 78±17 78.63±0.46 89±17 65.99±0.72 78±17 81.56±0.53 90±17

4.4. Comparisons between base learners

Table 3 shows the results where we vary the base learner

for two different embedding architectures. When we use

a standard 4-layer convolutional network where the feature

dimension is low (1600), we do not observe a substantial

benefit of adopting discriminative classifiers for few-shot

learning. Indeed, nearest class mean classifier [17] is proven

to work well under a low-dimensional feature as shown

in Prototypical Networks [28]. However, when the em-

bedding dimensional is much higher (16000), SVMs yield

better few-shot accuracy than other base learners. Thus,

regularized linear classifiers provide robustness when high-

dimensional features are available.

The added benefits come at a modest increase in com-

putational cost. For ResNet-12, compared to nearest class

mean classifier, the additional overhead is around 13% for

the ridge regression base learner and around 30-50% for

the SVM base learner. As seen in from Figure 2, the per-

formance of our model on both 1-shot and 5-shot regimes

generally increases with increasing meta-training shot. This

makes the approach more practical as we can meta-train the

embedding once with a high shot for all meta-testing shots.

As noted in the FC100 experiment, SVM base learner

seems to be beneficial when the semantic overlap between

test and train is smaller. We hypothesize that the class em-

beddings are more significantly more compact for training

data than test data (e.g., see [35]); hence flexibility in the

base learner allows robustness to noisy embeddings and im-

proves generalization.

10663

1 2 3
Iterations

60.5

61.0

61.5

62.0

62.5

63.0

Ac
cu

ra
cy

 (%
)

miniImageNet 5-way 1-shot

MetaOptNetSVM
MetaOptNetRR

1 2 3
Iterations

77.25

77.50

77.75

78.00

78.25

78.50

78.75

79.00

Ac
cu

ra
cy

 (%
)

miniImageNet 5-way 5-shot

MetaOptNetSVM
MetaOptNetRR

Figure 3. Test accuracies (%) on miniImageNet meta-test set

with varying iterations of QP solver. The error bar denotes 95%

confidence interval. “RR” stands for ridge regression.

4.5. Reducing metaoverfitting

Augmenting meta-training set. Despite sampling tasks, at

the end of meta-training MetaOptNet-SVM with ResNet-

12 achieves nearly 100% test accuracy on all the meta-

training datasets except the tieredImageNet. To alleviate

overfitting, similarly to [25, 21], we use the union of the

meta-training and meta-validation sets to meta-train the em-

bedding, keeping the hyperparameters, such as the number

of epochs, identical to the previous setting. In particular,

we terminate the meta-training after 21 epochs for mini-

ImageNet, 52 epochs for tieredImageNet, 21 epochs for

CIFAR-FS, and 21 epochs for FC100. Tables 1 and 2 show

the results with the augmented meta-training sets, denoted

as MetaOptNet-SVM-trainval. On minImageNet, CIFAR-

FS, and FC100 datasets, we observe improvements in test

accuracies. On tieredImageNet dataset, the difference is

negligible. We suspect that this is because our system has

not yet entered the regime of overfitting (In fact, we ob-

serve ∼94% test accuracy on tieredImageNet meta-training

set). Our results suggest that meta-learning embedding with

more meta-training “classes” helps reduce overfitting to the

meta-training set.

Various regularization techniques. Table 4 shows the ef-

fect of regularization methods on MetaOptNet-SVM with

ResNet-12. We note that early works on few-shot learning

[28, 8] did not employ any of these techniques. We observe

that without the use of regularization, the performance of

ResNet-12 reduces to the one of the 4-layer convolutional

network with 64 filters per layer shown in Table 3. This

shows the importance of regularization for meta-learners.

We expect that performances of few-shot learning systems

would be further improved by introducing novel regulariza-

tion methods.

4.6. Efficiency of dual optimization

To see whether the dual optimization is indeed effective

and efficient, we measure accuracies on meta-test set with

varying iteration of the QP solver. Each iteration of QP

solver [1] involves computing updates for primal and dual

variables via LU decomposition of KKT matrix. The results

are shown in Figure 3. The QP solver reaches the optima of

ridge regression objective in just one iteration. Alternatively

Data

Aug.

Weight

Decay

Drop

Block

Label

Smt.

Larger

Data
1-shot 5-shot

51.13 70.88

X 55.80 75.76

X 56.65 73.72

X X 60.33 76.61

X X X 61.11 77.40

X X X X 62.64 78.63

X X X X X 64.09 80.00

Table 4. Ablation study. Various regularization techniques

improves test accuracy regularization techniques improves test

accuracy (%) on 5-way miniImageNet benchmark. We use

MetaOptNet-SVM with ResNet-12 for results. ‘Data Aug.’, ‘La-

bel Smt.’, and ‘Larger Data’ stand for data augmentation, label

smoothing on the meta-learning objective, and merged dataset of

meta-training split and meta-test split, respectively.

one can use its closed-form solution as used in [3]. Also, we

observe that for 1-shot tasks, the QP SVM solver reaches

optimal accuracies in 1 iteration, although we observed that

the KKT conditions are not exactly satisfied yet. For 5-shot

tasks, even if we run QP SVM solver for 1 iteration, we

achieve better accuracies than other base learners. When the

iteration of SVM solver is limited to 1 iteration, 1 episode

takes 69 ± 17 ms for an 1-shot task, and 80 ± 17 ms for a 5-

shot task, which is on par with the computational cost of the

ridge regression solver (Table 3). These experiments show

that solving dual objectives for SVM and ridge regression

is very effective under few-shot settings.

5. Conclusion

In this paper, we presented a meta-learning approach

with convex base learners for few-shot learning. The dual

formulation and KKT conditions can be exploited to en-

able computational and memory efficient meta-learning that

is especially well-suited for few-shot learning problems.

Linear classifiers offer better generalization than nearest-

neighbor classifiers at a modest increase in computational

costs (as seen in Table 3). Our experiments suggest that

regularized linear models allow significantly higher embed-

ding dimensions with reduced overfitting. For future work,

we aim to explore other convex base-learners such as kernel

SVMs. This would allow the ability to incrementally in-

crease model capacity as more training data becomes avail-

able for a task.

Acknowledgements. The authors thank Yifan Xu, Jimmy

Yan, Weijian Xu, Justin Lazarow, and Vijay Mahadevan for

valuable discussions. Also, we appreciate the anonymous

reviewers for their helpful and constructive comments and

suggestions. Finally, we would like to thank Chuyi Sun for

help with Figure 1.

10664

References

[1] Brandon Amos and J. Zico Kolter. OptNet: Differentiable

optimization as a layer in neural networks. In ICML, 2017.

1, 2, 4, 5, 8

[2] Shane Barratt. On the Differentiability of the Solution to

Convex Optimization Problems. arXiv:1804.05098, 2018.

1, 4

[3] Luca Bertinetto, João F. Henriques, Philip H. S. Torr, and

Andrea Vedaldi. Meta-learning with differentiable closed-

form solvers. In ICLR, 2019. 2, 4, 5, 6, 7, 8

[4] Rich Caruana, Nikos Karampatziakis, and Ainur Yesse-

nalina. An empirical evaluation of supervised learning in

high dimensions. In ICML, 2008. 1

[5] Koby Crammer and Yoram Singer. On the algorithmic im-

plementation of multiclass kernel-based vector machines. J.

Mach. Learn. Res., 2:265–292, Mar. 2002. 1, 3

[6] Justin Domke. Generic methods for optimization-based

modeling. In AISTATS, 2012. 2

[7] Asen L. Dontchev and R. Tyrrell Rockafellar. Implicit func-

tions and solution mappings. Springer Monogr. Math., 2009.

4

[8] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-

agnostic meta-learning for fast adaptation of deep networks.

In ICML, 2017. 1, 2, 3, 6, 7, 8

[9] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V. Le. Dropblock:

A regularization method for convolutional networks. In

NeurIPS, 2018. 5

[10] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot

visual learning without forgetting. In CVPR, 2018. 5, 6

[11] Stephen Gould, Basura Fernando, Anoop Cherian, Peter

Anderson, Rodrigo Santa Cruz, and Edison Guo. On

differentiating parameterized argmin and argmax problems

with application to bi-level optimization. arXiv preprint

arXiv:1607.05447, 2016. 1, 2

[12] Steven G. Krantz and Harold R. Parks. The implicit function

theorem: history, theory, and applications. Springer Science

& Business Media, 2012. 2, 4

[13] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-

100 (canadian institute for advanced research). 6

[14] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, and Yi

Yang. Transductive propagation network for few-shot learn-

ing. In ICLR, 2019. 6

[15] Dougal Maclaurin, David Duvenaud, and Ryan Adams.

Gradient-based hyperparameter optimization through re-

versible learning. In ICML, 2015. 2

[16] Tomasz Malisiewicz, Abhinav Gupta, and Alexei A. Efros.

Ensemble of exemplar-svms for object detection and beyond.

In ICCV, 2011. 1

[17] Thomas Mensink, Jakob Verbeek, Florent Perronnin, and

Gabriella Csurka. Distance-based image classification: Gen-

eralizing to new classes at near-zero cost. IEEE Trans. Pat-

tern Anal. Mach. Intell., 35(11):2624–2637, Nov. 2013. 7

[18] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter

Abbeel. A simple neural attentive meta-learner. In ICLR,

2018. 2, 5, 6

[19] Tsendsuren Munkhdalai, Xingdi Yuan, Soroush Mehri, and

Adam Trischler. Rapid adaptation with conditionally shifted

neurons. In ICML, 2018. 2, 6

[20] Boris N. Oreshkin, Pau Rodrı́guez, and Alexandre Lacoste.

Tadam: Task dependent adaptive metric for improved few-

shot learning. In NeurIPS, 2018. 2, 5, 6, 7

[21] Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan L. Yuille.

Few-shot image recognition by predicting parameters from

activations. In CVPR, 2018. 5, 6, 8

[22] Sachin Ravi and Hugo Larochelle. Optimization as a model

for few-shot learning. In ICLR, 2017. 1, 2, 3, 5, 6

[23] Mengye Ren, Sachin Ravi, Eleni Triantafillou, Jake Snell,

Kevin Swersky, Josh B. Tenenbaum, Hugo Larochelle, and

Richard S. Zemel. Meta-learning for semi-supervised few-

shot classification. In ICLR, 2018. 2, 5

[24] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. Imagenet large scale visual recognition challenge.

Int. J. Comput. Vision, 115(3):211–252, Dec. 2015. 5

[25] Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol

Vinyals, Razvan Pascanu, Simon Osindero, and Raia Had-

sell. Meta-learning with latent embedding optimization. In

ICLR, 2019. 2, 5, 6, 8

[26] Jurgen Schmidhuber. Evolutionary principles in self-

referential learning. on learning now to learn: The meta-

meta-meta...-hook. Diploma thesis, Technische Universitat

Munchen, Germany, 14 May 1987. 2

[27] Uwe Schmidt and Stefan Roth. Shrinkage fields for effective

image restoration. In CVPR, 2014. 2

[28] Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototyp-

ical networks for few-shot learning. In NIPS, 2017. 1, 2, 3,

4, 5, 6, 7, 8

[29] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip

H. S. Torr, and Timothy M. Hospedales. Learning to com-

pare: Relation network for few-shot learning. In CVPR,

2018. 6, 7

[30] Marshall F. Tappen, Ce Liu, Edward H. Adelson, and

William T. Freeman. Learning gaussian conditional random

fields for low-level vision. In CVPR, 2007. 2

[31] Sebastian Thrun. Lifelong Learning Algorithms, pages 181–

209. Springer US, Boston, MA, 1998. 2

[32] Ricardo Vilalta and Youssef Drissi. A perspective view

and survey of meta-learning. Artificial Intelligence Review,

18(2):77–95, Jun 2002. 2

[33] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray

Kavukcuoglu, and Daan Wierstra. Matching networks for

one shot learning. In NIPS, 2016. 1, 2, 3, 5, 6, 7

[34] Jason Weston and Chris Watkins. Support Vector Machines

for Multiclass Pattern Recognition. In European Symposium

On Artificial Neural Networks, 1999. 3

[35] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson.

How transferable are features in deep neural networks? In

NIPS, 2014. 7

[36] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-

works. In BMVC, 2016. 6

10665

