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ABSlTtACT 

Control strategies in most compla p&lem-s0lving 

systems, though highly parameter&d, are not adaptive to 

the characteristics of the particular task being solved. If 

the characteristics of the task are atypical, a fiied control 

strategy may cause incorrect or inefficient mg. We 

present an approach for adapting the control strategy by 

introducing a meta-level control component into the 

problem-solving architecture. This meta-level control 

component is based on the paradigm of Fault 

Detection/Diagnosis. Our presentation will concentrate on 

modeling the problem-solving system and on the inference 

techniques necessary to use this model for diagnosis. We 

feel that meta-level control based on the Fault 

Detection/Diagnosis paradigm represents a new approach 

to introducing more sophisticated control into a problem- 

solving system. 

I INTRODUCTION 

This paper explores the use of meta-level control in 

a problem-solving system to adaptively change the 

system’s control parameters in order to make problem 

solving more robust and efficient. In many complex 

problem-solving systems the control strategies are highly 

parameterized. These parameters antrol decisions such as: 

1. what importance to attach to information 

generated by different sources of knowledge; 

2. what type of search to perform (e.g., breadth 

vs. depth first; data vs. goal directed); 

3. what type of predictions to generate from 

partial results; 

4. what criteria to use to @dge whether a 

solution is acceptable. 

These parameter settings, which are often determined in 

an ad hoc manner, are based on typical characteristics of 

the tasks being posed to the problem-solving system and 

the characteristics of the problem-solving system itself. 

Even though such a parameterization makes it relatively 

easy to change control strategies, the system is rarely 

allowed to change its own control parameters as the task 

or system characteristics change during p-g. Thus, 
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if the characteristics of a particular task are atypical or 

the system characteristics* change during execution, the 

resulting incorrect parameter settings may cause 

inefficient or incorrect processing. 

Our approach to adapting these problem solving 

control parameters is to introduce a meta-level control 

component into the problem-solving system architecture, 

based on an extension of the Fault **Detection/Diagnosis 

(FDD) paradigm [4, 51 to handle problem-solving control 

errors resulting from inappropriate parameter settings. 

The FDD system has three components: the Fault 

Detection module, the Fault Diagnosis module, and the 

Strategy Replanning module. See Figure 1 for a diagram 

of the system architecture. The Fault Detection module 

monitors the state of problem solving in order to detect 

when the problem-solving system’s behavior deviates from 

the expected behavior. The criteria for expected behavior 

are based on standards for acceptable problem solving 

performance and internal consistency in the problem- 

solving system data base. Examples of detection criteria 

are: 

1. a large number of highly rated proces&g goals 

not being achieved; 

2. tasks on the problem solving agenda being too 

low rated or the agenda being empty; 

3. low credibility of intermediate results or 

contradictory information being generated; I 

4. results not being produced in a timely fashion 

or no results being produced for problems 

where a solution is expected. 

If such a situation is encountered by the Fault Detection 

module, the Fault Diagnosis module is invoked to 

analyze why the situation occurred. The Diagnosis 

module, using a detailed model of the problem-solving 

system and the current state of problem solving, 

determines which control parameter settings were 
responsible for reaching the undesirable situation. A 

Strategy Replanning module is then invoked to adjust the 

parameters so that appropriate problem solving activities 

are performed. 

l Previous work has examined this approach in a distributed 
problem-solving environment where it is likeIy for pocessn 
communication channels, and sensors to be faulty [9]. ’ 

M We use the term fault in a very liberal sense to i.ncIude 

inappropriate parameter values. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 1: System Archlteeture. 

This approach to meta-level control, which involves 

adapting the control strategies, is a generalization and 

extension of earlier work by Hayes-Roth and Lesser on 

policy knowledge sources for Hearsay-II [8], the 

Hayes-Roths multi-level control structure for planning ml, 

and Wilensky’s work on meta-level control [l3]. It is, 

however, much different in character and emphasis from 

the work on meta-level control by Davis [3], Genesereth 

and Smith [6], and B. Smith [l2]. Though the general 

frameworks they posit for meta-level control can be used 

to build the type of meta-level control proposed here, 

their emphasis is different. Their work is oriented more 

towards how to layer control knowledge within a single 

uniform inference framework to accomplish each control 

decision rather than the type of knowfedge and inference 

required to introspect about the behavior and the 

performance of the system. It is this latter orientation 

which will be the focus of the remainder of this paper. 

We will illustrate the use of our approach to 

adaptive control by examining the knowledge and 

inference structure necessary to implement the Fault 

Diagnosis module for a problem-solving system based on a 

goal-directed Hearsay-II architecture, the Vehicle 

Monitoring Testbed (VMT) [ll]. The task of this system 

is to interpret acoustic signals produced by vehicles 

moving through a twodimensional area and generate a 

map of the environment, indicating what types of vehicles 

there are and what paths they took. Section II 

describes how we model the VMT system structure and 

function. Section III illustrates by way of example how 

this model is used by the Diagnosis module of the FDD 

system to diagnose a faulty parameter setting. Section IV 

describes the status of the system and directions for 

future research. 

II MODELING A PROBLEMSOLVING SYSTEM 

This section describes our model of the Vehicle 

Monitoring Testbed (VMT) problem-solving system and 

explains how this model can be used to understand why 

the system arrived at a particular state. The VMT 

system derives its results from the input data (see Figure 

2a) by incrementally constructing and aggregating 

intermediate level hypotheses until hypotheses that 

represent a complete map of the environment are 

generated. As part of the processing of the system, the 

creation of an intermediate hypothesis causes the 

generation of several types of goals. These goals are 

descriptions of the classes of higher level hypotheses that 

can potentially be generated given the existence of the 

newly created hypothesis [2]. Once a goal has been 

generated, the system attempts to satisfy the goal by 

scheduling and executing knowledge sources to produce 

the higher level hypotheses. This is the basic system 

cvcle. 

LOW-HYP-CREATED KSI-SCHEDULED 
HIGHER-HYPCREA’ IED 

\ \/\ 
PART B: THE AB.Sl-RACTED OBJECT MODEL 

HYPOTHESES -> 

gcamtc upcctatiw5 

DATA BLACKBOARD GOAL BLACKBOARD 
aI QUEUES 

PART A: PROCESSING Sl-RUcTuRE OF THE VMT SYSTEM 

plgorc 2: Moaellng the VMT Prohlemsolvtng System. 

This figure illustrales the state 

transition/abstracted object model C# the VMT 

system, a high level view 4 the system 

Structure, and the relmhip among them. 
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The system behavior thus consists of a series of 

events. Each event results in the creation of an object 

(e.g., hypothesis, goal, or knowledge source instantiation) . 

or the modification of the attributes of some existing 

objects. We can represent the system behavior by 

specifying either the events or the changes these events 

cause in the system in terms of their effects on the 

attributes of the system objects. We chose the latter as 

the basis for our representation and model the problem- 

solving system behavior by a state transition diagram (see 

Figure 2c). Each state represents a specific state of some 

object in the VMT system in terms of its attribute values. 

Each state is specified by a schema, which contains finks 

to other states in the model (such as states prececding it 

and following it), pointers to the descriptions of the 

system objects the state refers to (these descriptions of the 

VMT objects are called abstracted objects; see Figure 2b), 

and a constraint expression over the abstracted ob@ts’ 

attribute values. This constraint expression is evaluated 

during diagnosis to determine whether the state has been 

reached by the VMT system; i.e., whether there exist 

objects in the problem-solving system whose attribute 

values satisfy the constraint expression associated with the 

state. 

For example, the process of generating a hypothesis 

at a higher level of abstraction from one at a lower level 

of abstraction can be described as follows: the creation of 

a lower level hypothesis causes the creation of a goal to 

produce a specific result (i.e., the higher level hypothesis) 

that incorporates the lower level hypothesis. This causes 

the scheduling of a knowledge source instantiation (KU) 

which later executes and produces the higher level 
hypothesis. In our model this serie!s of events is 

represented as the sequence of states: LOW- 

HYP-CREATED, GOAGCREATED, KU-SCHEDULED, 

KSI-EXECUTES, and HIGHER-HYP-CREATED (see 

Figure 2). The state transition arcs, which co~cct the 

individual states in the model, represent causal 

relationships among the states. In some cases there may 

be more than one state transition arc coming in or out 

of a given state. For example, in Figure 3, states A, B, 

and C precede state D. The model needs to represent 

the exact relationship among the four states. If all three 

states A, B, and C are necessary before state D can be 

reached, then the relationship among the three states 

preceding state D is logical AND (Figure 3a). If any 

one of the states A, B, or C is sufficient to reach state 

D, then the relationship among the three states is logical 

OR (Figure 3b). 

States are related not only by their causal 

connections but also by constraint relationships among the 

abstracted objects associated with them. The abstracted 

objects are represented as schemas consisting of 

attributevalue pairs. (The three parts of Figure 2 

illustrate how the State Model and the Abstracted Object 

Model and the actual objecfs in the VMT system relate 

to one another.) Each object contains information that 

allows the system to determine the values for that 

object’s attributes using objects whose attribute values are 

already known. Constraints among states can then be 

specified by states sharing the same object or via the 

relationships among the attributes of the objects attached 

to the states. For example, each HYP object (see Figure 

2b and 2c) has an attribute LEVEL. The relationships 

among the LEVEL attributes of the HYP objects 

attached to the states LOW-HYP-CREATED and 

HIGHER-HYP-CREATED is expressed by the following 

sets of constraints. The value of attribute LEVEL of 

object HYP attached to state LOW-HYP-CREATED is 

obtained by calling the function GET-LOWER-LEVEL 

with the value of attribute LEVEL of object HYP 

attached to state HIGHER-HYP-CREATED. Conversely, 

the value of attribute LEVEL of objxt HYP attached to 

state HIGHER-HYP-CREATED is obtained by calling the 

function GET-HIGHER-LEVEL with the value of 

attribute LEVEL of object HYP attached to state LOW- 

HYP-CREATED. 

The abstracted objects either point to existing 

objects in the VMT system or specify characteristics of 

objects that should exist in the system. The ability to 

represent not only objects that already exist in the 

problem-solving system but also objects whose existence is 

nece~~afy in order for the system to achieve a particular 

state allows the model to serve as the basis for a high 

level simulation of the underlying problem-solving system. 

This simulation is accomplished by propagating attribute 

values among the interrelated abstracted objects based on 

the causal relationship among the states. 

In addition to reasoning about system behavior in 

terms of sequences of states, we also need to reason 

qualitatively about how system object attribute values are 

computed from the attribute values of other objxts and 

from system control parameters. This requires modeling 

some of the internal computations performed by the 

problem-solving system. In order to model the 

problem-solving system at this level, we use a model 

very similar to the one used for modeling the behavior of 

the system. In this case, the states represent values of 

attributes of the system objects, values of controls 

parameters, and values of important intermediate states of 

the internal computation. The transition arcs represent 

how the value of a state is computed from the values 

ass&ated with the states that precede it. We are 

currently using a simple causal model in which the arcs 

are labelled as either having an increasing or decreasing 

PART A: S~arn related by AND PART B: Stata related by OR 

FIgure 3: Lqical Rclatlonshlps among States ln the 
Model. 
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effect on the value of the state that represents the result 

of the computation [l]. Two states are connected by an 

increasing arc if an increase in the value of one state 

causes an increase in the value of the other state. In 

some cases not shown in this paper, we also need to 

reason using the exact formula representation of the 

computation. 

The states in the model can thus represent different 

aspects of the underlying VMT system. One of the 

attributes in the state schema is the STATE-VALUE 

attribute. This attribute can represent one of several 

aspects of the problem-solving system. In some cases we 

are interested in whether a particular intermediate state 

has been reached; i.e., is there an object in the VMT 

system that matches the characteristics of the abstracted 

object associated with that state. In these cases the 

STATE-VALUE is true if the object does exist, and false 

otherwise. In other cases we need to reason about the 

value of some attribute of a particular object and relate 

it to the value of the corresponding attribute of another 

object. For example, we need to reason about the 

relatively low rating of a hypothesis with respect to 

another hypothesis. In these cases the STATE-VALUES 

represent the relationships among two or more objects in 

the VMT system. The values of the STATE-VALUES 

attributes are then low, high, or equivalent. 

The model is organized into clusters of states 

(Figure 4 illustrates three such clusters). Each cluster 

GLHYP-- VX,HYP-m VT-ANSWEX.HYP-EXISTS 

, GOALSATISRED stat- 

/’ \ \ / PART A: (A Part of the) Answer Dctivrtioa MO&J 
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/ KSI-SCHEDULED HIGHER-HYtiCREATU) 

GOAMXEATED / KSI-ExEcurEs 
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/’  

I 

I 

/ 

PART 6: KS1 Schcduiing Mock4 
I 

I 
I 

/ 
I 

KSI-SCHEDULED 
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PART C: KS1 Exautiw hfdd 

a---- 
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duuct Linl: 

F’lgun 4: System Behavior Model Clusters. 

represents an aspect of the system behavior at some level 

of detail. The representation is hierarchical in that only 

certain events are represented at any one level of the 

hierarchy. For example, the Answer Derivation Mudel 

represents only the answer hypotheses and their support 

structure in terms of intermediate hypotheses; vehicle 

track (VT) preceded by vehicle location (VL) preceded by 

group location (GL). It does not represent any of the 

knowledge sources scheduled and executed in the process. 

This information is represented in clusters at a lower 

level of the model hierarchy. Because of this hierarchical 

representation two states may be contiguous in one cluster 

while in fact a number of other states occur in between 

which are represented by a cluster at a lower level of 

the model hierarchy. Equivalent states in clusters at 

different levels of abstraction are connected via cluster 

links. Objects may be shared across the different clusters. 

This hierarchical structure allows fast focusing into the 

problem area during diagnosis by avoiding detailed 

analysis until the part of the model that is relevant has 

been identified. 

The system model represents a subset of all the 

possible system behaviors, which we think is sufficient fo! 

detecting and diagnosing a significant number of faults; 

We call this model the system behavior model (SBM). 

The SBM is used by both the Fault Detection module 

and the Fault Diagnosis module. The Detection module 

identifies a specific undesirable situation in the monitored 

system; i.e., a specific abstracted object along with an 

associated state. This state-object pair constitutes the 

symptom detected by th e Detection module, which is 

passed on to the Diagnosis module. Diagnosis is 

accomplished by constructing a representation of the 

current system state, constructing a model of how this 

state was reached and comparing this with the correct 

system behavior as represented by the model. Any points 

of departure from this expected behavior are traced to 

the states at the lowest level in the SBM. These states 

are marked as primitive. A primitive state that is found 

to be false during diagnosis constitutes a reportable 

failure. 

The current system state representation is 

constructed using information from the SBM and the 

VMT system data structures. The construction begins 

with locating the symptom state in the SBM. The 

predecessor states of this state are then found, along with 

their abstracted objects descriptions. First, the attributes 

of these abstracted objects are evaluated, using the 

constraint relationships between the existing abstracted 

objext and the one being evaluated. once these 

attributes have been evaluated, the Diagnosis module 

looks for the corresponding objects in the VMT system. 

If such objects are found, they are linked to the 

abstracted object. Finally, for each abstracted object the 

corresponding state is created and the STATE-VALUE 

l The system model could be extended to represent the de 
level of the VMT system. However we have not found it 
==-y to represent the VMT system at such a low level 
of detaiI in order to effectively reaso~l abwt iti behavior. 
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attribute is evaluated. Depending on the type of state 

and its value, the type of reasoning may now change. 

The next paragraph describes the different types of 

reasoning. 

The underlying mechanism for all the different 

types of diagnostic reasoning is bidirectional constraint 

propagation, which begins at one or more state-object 

pairs in the SBM whose values have already been 

determined. This constraint propagation m*es possible 

sophisticated diagnostic reasoning. In the next section we 

show how the system model supports four different types 

of reasoning necessary to diagnose inappropriate parameter 

settings: 

1. Backward cuusul tracing: given a particular state 

and its value the system can go back through 

the model and explain, in terms of the model 

states, why that state was reached. 

2. Comptua!ive reasoning : the system can compare 

two different objects and explain why they 

were different, in terms of the model states. 

3. Unknown value derivation: the system can 

determine a value of an unknown state in the 

system model by finding the value which is 

consistent with the known values of the 

surrounding model states. 

4. Resoiving inco?uistencies : having found two 

inconsistent objects, the Diagnosis module can 

decide which one is correct by comparing both 

objects to a model of an ideal or expected 

objzct. 

III AN EXAMPLE OF FAULT DIAGNOSIS 

The following example (see Figure 5a) represents a 

scenario in the VMT system in which the system is 

receiving data from two input sources; sensors, A and B. 

The two sensors overlap, so some data are sensed by 

both, but because the system is more confident about 

sensor B the sensor weight parameters are set such that 

the data generated by that source are valued more than 

the data generated by sensor A. This results in the 

data from sensor B being rated high and the data 

produced by sensor A in the same area being rated low. 

In the example scenario the supposedly reliable source of 

data for the particular task (sensor B) does not in fact 

generate reliable data because it is malfunctioning. It is 

instead generating very short noise segments that cannot 

be incorporated into a single vehicle track. BecaUSe 

sensor B’s sensor weight parameter has such a high 

value, these short noise segments are very highly rated. 

The goal of the diagnosis is to recog&e that sensor B is 

malfunctioning and change the sensor weight parameters 

so that the systems begins to process data generated by 

sensor A. 

A vehicle is moving through the monitored area, 

from left to right, generating signals at locations 1 

through 8 (see Figure 5a). Sensor A sensesall 

PART A: Diagram of the signals generated by 

the moving vehicle (locations I through 8) and 

the sensor layout. The sensors send the sensed 

SigMlS to the processing lwde. 

NO“r 

pm B: After some time. the system ger~ates 

a vehicle track (VT) hypothesis connecting 

/oca.tiorrr I through 4 sensed 6~ SEIVSOR A. It 

also generates several short track scgment~ 

which are the result of the ~&SC generated b 

the faulty SENSOR B. 

Figure 5: Faclk sanrrto. 

locations but, becuse of the sensor-weight parameter, 

locations 5 through 8 are rated low. Sensor B, because 

it is malfunctioning, is not sensing the vehicle SigndS 

but rather is generating very highly rated noise segments. 

The VMT system generates a vehicle track (VT) 

hypothesis connecting locations 1 through 4 based on 

the strong data from sensor A (see Figure 5b). As a 

result of sensor A’s data being weighted low in the area 

where SigdS 5 through 8 appear, sensor B 

malfunctioning, and sensor BS sensor weight parameter 

being high, the knowledge source instantiation (ICSI) that 

would extend the partial track to include the location in 

time 5 is rated low.’ Because the short segments of 

noise generated by sensor B are rated high, they cause 

the scheduling of knowlege sources which are highly 

rated. The system queue ha- a number of these highly 

rated KSIs that delay the execution of the low rated 

K!%s which would extend the true vehicle track 

hypothesis. As a result, the system spends all its time 

forming short segments from the noise signals and the 

true vehicle track remains unextended. 

b A KS1 rating is a function of, among other things, the input 

data. 
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This situation can generate a number of symptoms. 

Due to lack of space we will illustrate the diagnosis by 

pursuing only one of the symptoms. The symptom we 

pursue here is a highly rated goal, VMT-GOAL#l, which 

represents the system’s intent to extend the existing 

vehicle track hypothesis connecting locations 1 through 4 

to include location 5 (see Figure 5b). This goal has 

remained unsatisfied for a long time and has therefore 

been selected by the Fault Detection module as a 

representative symptom. Diagnosis begins with the arrival 

of the symptom from the Detection module. A symptom 

consists of a stateobject pair; the unachieved state is 

GOAL-SATISFIED and the abstracted object is GOAL- 

OBJECT, which points to the object VMT-GOAL#l in 

the VMT system. 

v-r-IIYP-Exlsn VT-HYP-Eixsn 
GOALSATISFED 

\ 
PART A (A Par-~ of the) Anrwcr Dcrivaticm Mcdcl \ 

LOW-HYP-CREATED / I 

Fii, the SBM cluster that contains the state 

GOAL-SATISFIED and its associated abstracted objects 

must be located. This is the Answer Derivatbn Model 

cluster. The relevant. objects and states in this cluster are 

evaluted, using the constraint expressions in the SBM and 

the already evaluated attributes of the symptom state and 

its object. The values of the states in this cluster can be 

either true or false depending on whether objects of the 

desired characteristics exist in the VMT system or not. 

In this case the state GOAL-SATISFIED is false because 

the associated object (VMT-GOAL#l) has not been 

satisfied in the VMT system (i.e., there is no vehicle 

track hypothesis connecting locations 1 through 5). We 

continue backward causal tracing through the SBM model 

to the state preceeding the GOALSATISFIED state: the 

state VT-HYP-EXISTS and its associated object, VT-HYP. 

The attribute values of this object are determined from 

the attribute values of the object VMT-GOAL#l using 

the constraint relationships described in the previous 

section. The state VT-HYP-EXISTS evaluates to false, 

since no VT hypothesis of the desired characteristics exists 

in the VMT system. The reasoning continues backwards 

through the SBM attempting to find the first state that 

evaluates to true (i.e., the last point where desired system 

behavior stopped). Because a vehicle track can be 

formed from a shorter vehicle track or a set of vehicle 

locations (VL) the state VT-HYFEXISTS is preceeded 

by the states VT-HYP-EXISTS or VCHYP-EXISTS. 

The objects associated with these states are VT-HYP and 

VL-HYP respectively. Again, we Look for the associated 

objects in the VMT system in order to evaluate the 

states. In this case the objects are track fragments 

containing locations 1 through 5, or the locations 1 

through 5 themselves, which could lead to the desired 

hypothesis. This brings us to another instantiation of the 

state VT-HYP-EXISTS and object VT-HYP, this time 

with the hypothesis connecting locations 1 through 4. 

E3ecause such a hypothesis does exist in the VMT system, 

this state evaluates to true. This is where the 

generation of the vehicle track that would satisfy the goal 

VMT-GOAL#l stopped. The evaluated model is in Figure 

6a. 

/ 
PART B, KS1 Scheduling Model 

I 

I 
I 

KSI.SCHEDULED 
Ksr-ExEcuxEs 

----- 3 
PART C: KS1 ticcuriw Mdd 

TRUE STATE 

El 

FALSE STATE 

Figure 6: Evaluated System Model. 

At this point we cannot continue reasoning using 

the Answer Derivatbn Mudef cluster because it does not 

represent the events occurring in between the last true 

state (VT-HYP-EXISTS; VT hypothesis connecting 

locations 1 through 4) and the first false state (V’I-HYP- 

EXISTS; VT hypothesis extending the hypothesis l-4 

through location 5). Anytime such a truestate/falsestate 

pair is found, we must find the cluster which represents 

the states occurring between those two states. The 

cluster pointed to by the VT-HYP-EXISTS state is the 

KSI Scheduling Model cluster shown in Figure 4b. 

We continue determining the types of objects and 

evaluating the states. The result is the evaluated model 

in Figure 6b. We find another gap in the expected 

processing: the KS1 that would produce the desired 

hypothesis was scheduled but did not execute. Again, 

following the cluster links, we switch to a cluster that 

describes in more detail what occurs in between the true 

state (KSI-SCHEDULED) and the false state (K!31- 

EXECUTE!S). This is the cluster KSI Execution Modcf in 

Figure 4c. We eventually arrive the state KSI-RATED- 

MAX. This state represents the fact that a KS1 must be 

“The state VT-HYPEXBTS represents aU track h 

!I- 
h-up 

to sqne fixed track length. Therefore it is a re exive state, 
*Comparative reasoning contains many complexities which we 

poixihg back to itself. 
cannot go into in tls paper. 
of the types of re awning 

For more detailed descriptien 
mentioned in this paper set [lOl 
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rated the highest of all the KsIs on the queue in order 

to execute. This state is false since the KS1 that could 

extend the l-4 VT hypothesis is rated low with respect to 

the other KSIs on the queue. The evaluated model is in 

Figure 6c. 

The state KSI-RATED-MAX is a different type of 

state. Unlike the states mentioned so far, which 

represent the existence of some object in the VMT 

system, the state KSI-RATEIMfAX represents a 

relationship among a group of objects; in this case, the 

relationship among the knowledge source instantiations on 

the scheduling queue. Whenever this type of a state is 

reached, the system switches to compurative remming.* 

This involves comparing some attributes of two objects in 

the system: one that achieved a desired state (in this 

case, the KS1 that is maximally rated) and one that did 

not (in this case the low rated KS1 that would extend 

the VT hypothesis 14 to include location 5). The 

system builds a model of how those objects were created 

and attempts to discover what differences along the object 

creation paths were responsible for the different 
outcomes. Two slots in the state schema are important 

here: the ACTUALVALUE! slot, which repraents the 

value of the attribute of interest, and the RELATIVE- 

VALUE slot, which represents the relationship among 

the ACTUAL-VALUES of the two objects in the parallel 

investigation. In this type of reasoning the states do not 

represent the existence or non-existence of some ob+t 

but rather the relationship among the values of a 

particular attribute of some object (for example the 

rating of a knowledge source or a hypothesis) as 

compared to the corresponding attribute of the other 

object in the parallel investigation. In this case the 

relevant attribute is the RATING attribute of the KS1 

object. The two objects being investigated here are the 

two KSIs (the low rated KS1 to create a hypothtsis 

connecting locations 1 through 5 and the KS1 which is 

rated the highest on the scheduling queue). We 

investigate, in parallel, how the ratings of the two KSIs 

were derived in an attempt to identify what caused the 

lower rating of the KS1 that would extend the 14 track. 

We first switch to a cluster where the attribute of 

interest (IN-RATING) is represented by a state. This 

is the KS1 and Hy~hesis Rating Model in Figure 7. 

Because we are investigating two objezts we must 

instantiate two copies of this cluster. One copy wilI 

represent the creation of the low rated KS1 that would 

extend the VT hypothesis through location five (we will 

call this the low hi path). The other will represent the 

creation of the highest rated KS1 on the queue (we will 

call this the high ksi path). We begin with the state 

KSI-RATING. Because the rating of the KS1 of interest 

is lower than the highest rated KS1 we assign the value 

low to the RELATIVE-VALUE attribute of the state 

representing the relationship among the two values. We 

go back through the SBM and find that what 

determines a KS1 rating is the DATA-COMPOlUENT- 

RATING of the ICSI. We compare the data components 

of the two KSIs and again find that the DATA- 

COMPONENT-RATING of the low-rated KS1 is lower 

than the corresponding DATA-COMPONENT’-RATING of 

the high-rated KSI. We continue evaluating the model 

for the derivation of the KS1 rating for both K.SIs, via 

the KS1 data components at various levels of abstraction 

(vehicle location, VL, preceeded by group location, GL, 

preceeded by signal location, SL) arriving finally at a 

point that represents how the sensor weights and the 

strength of the data signal determine the value of the 

sensed signal for each sensor. 

Because the signal location rating on the low Rsi 

path is lower than the signal location rating on the high 

ksi path, the value of the state SL-HYP-RATING for 

the low-rated KS1 is low. We reason that in order for 
this value to be lower than the corresponding value in 

the high ksi path, the two .objects that influence this value 

(sensed-value by sensor A and sensed-value by sensor B) 

must be rated lower than the corresponding objects on 

the other path. When we enumerate the relationships 

among the two pairs of sensed-values we get four 

relationships: 

KS,.MGG 
RE~TWEVALUE: LOW 

DATA-CbPOkNT-RAmG 

,tCl-UALVAL~: INCONSlSIFKT 

PART A: THE LOW KS1 PATH PART B: n-(E HIGH KS1 PATH 

Ffgun 7: Parallel Investigation of two KSI Rating 

DerlvatIon Paths. 
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1. 

2. 

3. 

4. 

In this 

Sensed-value for sensor A on the low ksi path 

< sensed-value for sensor B on the high ksi 

path- 

Sensed-value for sensor A on the low ksi path 

> sensed-value for sensor A on the high ksi 

prh. 

Sensed-value for sensor B on the low ksi path 

= sensed-value for sensor A on the high ksi 

path. (They are both 0 because no signal was 

sensed at that place by the other sensor.) 

Sensed-value for sensor B on the low ksi path 

< sensed-value for sensor B on the high ksi 

path- 

case the RELATIVE-VALUE attribute of the 

state SENSED-VALUE for SENSOR A can have two 

values, depending on which of the corresponding sensed 

mlues in the other path we compare the state to: the 

values are low for case 1 above and high for case 2 

above. Because we are trying to determine why the SG 

HYP-RATING is lower, we follow paths to any states 

that contain a lower relationship. In this case, both the 

state SENSED-VALUE of SENSOR A and the SENSED 

VALUE of SENSOR B contain a lower relationship so 

both are followed in parallel. 

We have two paths to follow now: investigating 

why the SENSEDVALUE for SENSOR A was low with 

respect to SENSED-VALUE for SENSOR B in the high 

ksi path investigation and investigating why the SENSED 

VALUE for SENSOR B was low, again with respect to 

SENSED-VALUE for SENSOR B in the high ksi path 

investigation. We fii follow the path from state 

SENSED-VALUE for SENSOR A backwards. We reason 

that the senmr weight was low, the data signal was low, 

or both. We then find that value for SENSOR- 

WEIGHT for SENSOR A is indeed low compared to the 

SENSOR-WEIGHT for SENSOR B. Because this state is 

a primitive state (no transition or cluster arcs connect it 

to any other part of the model), we can report this 

finding as one fault responsible for the low KS1 rating 

that led to the original symptom. We have found one 

problem that explains the low KS1 rating but the 

investigation is not complete. We still need to fiid the 

value for the state DATA-SIGNAL and follow the path 

of LOW SENSEDVALUE by SENSOR B. This latter path 

also leads to the state DATA-SIGNAL since it is one of 

the predecesso r states of the state SENSED-VALUE for 

SENSOR B. 

Since there is no way of knowing what the actual 

data signal was, we must employ the tinown value 

derivation type of reasoning where an unknown value is 

determined by examining the values of the neighboring 

states. This type of reasoning is necessary anytime the 

state value cannot be determined from the problem- 

solving system-s data base. In this type of reasoning the 

ACTUAL-VALUE (or STATE-VALUE) attributes of the 

states represent the value that is derived by looking at 

the surrounding states. Depending on the types of values 

represented by those states, this value can be either the 

value the states agree on or inconsistent if contradictory 

values can be determined from the surrounding states. 

The unknown state is DATA-SIGNAL. We attempt to 

derive the value for this state, which represents the actual 

value of the data signal in the environment, by 

examining the ACTUALVALUE slots in its surrounding 

states: SENSOR-WEIGHT for both sensors and SENSED 

VALUE for both sensors. In fact we cannot fiid a 

consistent assignment for all these states. According to 

sensor A the value sensed is low; according to sensor B, 

no value is sensed at all. The value for the state 

DATA-SIGNAL is therefore INCONSISTENT. In a case 

where an inconsistency is discovered among two objects in 

the VMT system we have to use incons%ency resolving 

reasoning in which we compare the two objects (in this 

case the two disagreeing sensors) with a model of the 

expected behavior of that object (a sensor) and try to 

determine which one is correct. In this case we compare 

the characteristics of each of the two sensors with the 

characteristics of an ideal sensor which mu- 
correlated data. We determine that data from sensor A 

is welI correlated (all data fits into one track) whereas 

data from sensor B is only correlated for at most 2 

location track segments. We therefore conclude that 

sensor B is faulty. 

We have now found both reasons for the initial 

symptom (unsatisfied goal): the faulty sensor B in 

conjunction with the low SENSOR-WEIGHT parameter 

for sensor A. 

IS’ STATUS ANDFUTURE RESEARCH 

The basic model and the constraint propagation 

mechanisms have been implemented. We are currently 

extending the system to handle the comparative reasoning. 

Currently the system behavior model represents only the 

system behavior. It does not make an attempt to 

represent the reasons for the expected behavior in terms 

of the system architecture (e.g., a goal represents the 

intent to produce a hypothesis in the goal’s area) or in 

terms of the assumptions about the domain (e.g., the 

characteristics of goals based on hypotheses that led to 

them). We believe that such deeper models of both the 

architecture and the domain would increase the PDD 

system’s expertise by allowing it to detect more subtle 

errors (e.g., redundant satisfaction of goals) and to detect 

a wide range of faulty assumptons about the task domain. 

An example of the latter case is having a model of how 

the goal characteristics depend on the hypothesis 

characteristics, for example, the maximum acceleration of 

a vehicle and its turning radius. We also believe that 

such a deeper model of the problem-solving system could 

serve as a knowledge-base that the system could use to 

automatically generate the complex criteria necessaq for 

fault detection and the knowledge needed to implement 

the Strategy Replanning module. 
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We feel that meta-level control based on the Fault 

Detection/Diagnosis paradigm represents a new approach 

to introducing more sophisticated control into a problem- 

solving system. In addition, the system can be of great 

help in debugging complex problem-solving systems. It 

also presents interesting issues in modeling and reasoning 

about a problem-solving system. 
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