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Abstract

Seamless integration of digital parts libraries or electronic parts catalogs for e-procurement is impeded by semantic heterogeneity. The

utilization of ontologies as metadata descriptions of the information sources is a possible approach to providing an integrated view of multiple parts

libraries. However, in order to integrate ontologies, the mismatches between them should be resolved. In this paper, we propose meta-concepts with

which the ontology developers describe the domain concepts of parts libraries. The meta-concepts have explicit ontological semantics, so that they

help to identify domain concepts consistently and structure them systematically. Consequently, our method ensures that the mismatches between

parts library ontologies are confined to manageable mismatches which a software program can resolve automatically. Modeling ontologies of real

mold and die parts libraries is taken as an example task to show how to use the meta-concepts. We also demonstrate how easily a computer system

can merge the resultant well-established ontologies.

c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Automated integration of parts information in B2B

e-procurements is a complex task. The following subsections

give an overview about the problem domain and our

considerations about the problem and solution.

1.1. The problem domain

Generally, a product is designed and manufactured using

ready-made components or parts from multiple suppliers. So,

the product manufacturers want to locate suppliers easily and

effectively evaluate the complementary parts.

A number of recent developments in information technology

have opened up a vast potential for new electronic forms

of procurement. In particular, developments in information

technology provide hitherto unknown opportunities for buyers.

They have the possibility for searching for up-to-date parts

all over the world and for picking the most favorable
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offer. Electronic parts catalogs or digital parts libraries are

basic means for achieving this. They are the reference for

part selection and supplier selection, describing the parts

information which corresponds to an expertise on the criteria

for selecting a part and on the condition of part usage [1–

4]. However, in many cases the potential of the digital parts

library remains unharnessed. The worldwide search for parts

is impeded by the heterogeneity of the parts information

descriptions and different search strategies required by the

parts libraries [3]. Thus, the buyer has to access different

parts libraries from multiple suppliers and navigate through

their different search procedures. At the end, he or she has

to transform the parts information found into his/her own

language and compare them manually to pick the best part.

In order to utilize the potential of parts libraries, an

intermediary which is capable of providing an integrated view

of them is needed [4]. Providing an integrated view of multiple

information sources can be achieved by metadata integration

and interoperation [2,5]. The metadata of parts is usually

described as follows. Parts are gathered in parts categories that

are represented by classes. This set of classes is organized

according to a simple hierarchy (to which inheritance applies)

of classes. Each class is associated with a set of technical
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Fig. 1. A simple data model of a parts library for bearings [2].

properties. Figure 1 from [2] shows such knowledge description

of parts for mechanical ball bearings. The graphical notation

used is EXPRESS-G [6] where labeled solid boxes represent

parts classes, dashed boxes represent data types, thick lines

represent inheritance, and labeled solid lines ending with a

circle (that emphasizes the relationship direction) represent

properties.

Recently, several researchers recommended utilizing ontolo-

gies as the metadata descriptions of information sources [5,7].

Because ontologies are explicit and formal specifications of the

knowledge, especially implicit or hidden knowledge, of infor-

mation sources they help us with part of the integration problem

by disambiguating information items. However, ontologies

themselves could be heterogeneous. It is possible that on-

tologies would describe the knowledge of similar information

sources in different ways. For example, one supplier may clas-

sify Ball Bearing parts into Single Row Ball Bearing class and

Double Row Ball Bearing class as depicted in Fig. 1 according

to the type of raceway for balls, whereas the other may classify

them into Small Bore Ball Bearing class and Large Bore Ball

Bearing class according to the size of the bore diameter. These

differences, known as ‘mismatches’, are obstacles to integrating

and interoperating independently developed ontologies.

1.2. Ontology mismatches

The ontology mismatches can be subdivided into two cate-

gories, conceptualization mismatch and explication mismatch,

according to phases of ontology building [8,9]. The creation of

an ontology involves two sub-processes; conceptualizing a do-

main, and explicating the conceptualization.

During the conceptualization process decisions are made

about ontology concepts (classes and attributes), instances,

relations, functions and axioms that are distinguished in

the domain. Usually, the process also involves ordering the

classes in a hierarchical fashion and assigning attributes to

them. Thus, the conceptualization mismatch includes such

types as (1) categorization mismatch, (2) aggregation-level

mismatch, (3) structure mismatch, (4) attribute-assignment

mismatch, and (5) attribute-type mismatch [8]. A categorization

mismatch occurs when two conceptualizations distinguish

the same ontology concept but divide this concept into

different subconcepts. For example, this occurs when one

conceptualization structures its knowledge about animals

around classes mammals and birds, whereas the second

structures around classes carnivores and herbivores. An

aggregation-level mismatch occurs if two conceptualizations

both recognize the existence of an ontology concept, but define

concepts at different levels of abstraction. For example, it

occurs when one conceptualization distinguishes the persons

class, whereas the second distinguishes males and females but

does not have persons as their superclass. A structure mismatch

occurs when two conceptualizations distinguish the same set

of ontology concepts but differ in the way these concepts

are structured by means of relations. An attribute-assignment

mismatch occurs when two conceptualizations differ in the

way they assign an attribute to classes. An attribute-type

mismatch occurs when two conceptualizations distinguish the

same attribute but differ in their assumed instantiations.
In the end, the conceptualization of a domain is explicated

into an ontology. Explicating the conceptualization requires an

ontology language [10–12]. If we confine ourselves to a generic

form of logical expressions instead of a specific ontology

language, we can consider the definitions (which constitute the

ontologies) to be composed of a definiendum, a definiens, and

a concept of the domain. (In the following, the word ‘term’ is

used instead of definiendum for clarity.) Thus, the mismatches

pertaining to explication occur when two ontologies have

different definitions where their terms, their definiens, or their

ontological concepts are identical. The explication mismatch

includes such types as (1) concept and term mismatch, (2)

concept and definiens mismatch, (3) concept mismatch, (4) term

and definiens mismatch, (5) term mismatch, and (6) definiens

mismatch [8]. For example, a concept and term mismatch

occurs when one ontology contains the definition (in PROLOG

format) vessel(x) ← seagoing(x) ∧ large(x) (to define

the concept of a vessel) and the other ontology contains the

definition whale(x) ← seagoing(x) ∧ large(x) (to define

the concept of a whale). In this case, the two ontologies use

the same definiens (i.e., seagoing(x) ∧ large(x)) but differ

in both the concept they define and the term (i.e., vessel and

whale) linked to the definiens.

1.3. Knowledge systematization

We should note one point from the discussion on the

ontology mismatches. The point is that all the conceptualization

mismatches must be present in some form in the explication

(i.e., ontology) [8]. For example, the categorization mismatch

occurs in the explication as a concept and definiens mismatch or

definiens mismatch. This means that the origin of the ontology

mismatches is the differences in the way the given domain

is interpreted (conceptualized), rather than the differences in

the way the conceptualization is specified (explicated) [9]. It

is the differences in the way the given domain is interpreted

that cause different ontology concepts and different relations.

The explication mismatches are defined on form, rather than on

content.
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Returning to the parts library domain, it is easily postulated

that, in order to integrate automatically heterogeneous parts

libraries, the knowledge of each parts library must be

interpreted in a consistent way, so that similar concepts are

distinguished and they are structured with similar relations.

Otherwise, the mismatches among the parts library ontologies

become hard to resolve by a computer system. For example,

in the case where one ontology classifies Ball Bearing parts

into such sub-categories as Small Bore Ball Bearing category

and Large Bore Ball Bearing category, the categories of other

ontologies that are similar to the two sub-categories cannot be

easily determined. This is because the classification criterion,

i.e. ‘the size of the bore diameter’, is vague, so that it could

be applied differently or would not be applied at all in other

ontologies.

Using an ontology language alone is not enough to

consistently conceptualize a given domain. For example, when

describing the knowledge “a red ball exists”, with a KL-ONE-

like language, a good choice may be to consider ball as a class

and red as a filler of color role such that ball ⊆ ∃color.red.

However, nothing prevents another modeler from adopting

a different choice: for instance, both ball and red may be

considered as classes, with no role at all.

In AI/KR and database communities, “form-oriented

researches” have been dominant as basic research to date. In

other words, researches concerning vessels have been done

paying little consideration to the contents. Research on “theory

of contents”, that is, research on “what and how to put it

in the vessel” has rarely been done. Although knowledge

representation formalisms such as predicate logic tell us how

to represent knowledge, they cannot tell us how to prepare the

knowledge [13–15]. Although the model-theoretic semantics

of a knowledge representation formalism provides us with

a powerful tool for sound reasoning by relating a model to

mathematical structure (i.e., abstract set-theoretic structure), it

offers no help in making the connection between the model and

the real world [16].

What is necessary is something we need before the stage of

knowledge representation, that is, knowledge systematization:

the way that we consistently distinguish the domain concepts

and that we systematically structure them. The knowledge

systematization should be principled in the sense that it

can answer such questions as “what are classes?”, “what

are roles?”, and “how should they be related?”. Explicit

conceptualization of ontological assumptions on concepts can

contribute to this by providing well-established what might be

termed “human-perceived meaning” to the meta-concepts such

as class and role in terms of which people describe phenomena

in a given domain. It is just as formal theory provides model-

theoretic semantics to the ontology language constructs.

This paper is organized as follows. The next section

reviews related works and compares our work with them.

Section 3 presents (meta-)ontologies of meta-concepts which

have explicit ontological semantics. Section 3.1 introduces

Guarino’s upper ontology as a foundational meta-ontology.

Section 3.2 discusses the main meta-ontology, Parts Library

Concept Ontology, for our knowledge systematization of parts

libraries. Section 4 discusses application of the Parts Library

Concept Ontology to modeling ontologies of real mold and die

parts libraries for B2B e-commerce. This section also discusses

how easily a computer system can merge the well-established

ontologies and provide an integrated interface.

2. Related works

Various ontology-based information integration methods

have been developed. There are different ways to employ

the ontologies, to represent knowledge, and to generate inter-

ontology mapping [7]. For ways of ontology employment, most

methods including our method follow the hybrid approach.

In the single ontology approach each information source is

related to the same global domain ontology. As a result, a new

information source cannot bring in any new or specific concept

without requiring change in the global ontology. In the multiple

ontologies approach, each information source has its own

ontology developed irrespective of other information sources.

In this case the inter-ontology mapping is very difficult to define

as the different ontologies may use different aggregations and

granularities of the ontology concepts. In the hybrid approach,

to overcome the drawback of single or multiple ontology

approaches, each information source has its own ontology

and all source ontologies are connected by some means to a

common shared ontology.

This section reviews three representative researches using a

hybrid approach particularly in terms of knowledge modeling

and inter-ontology mapping.

COIN [10] uses its own language, COINL (COIN

Language) as a knowledge representation formalism. COINL

was developed directly from Frame Logic [17]. Thus,

the ontological semantics, i.e. human-perceived meaning of

language construct is general or content-independent [14,15].

The language alone is not enough for identifying domain

concepts consistently and structuring them systematically; the

ontology modeler must decide what is a concept (i.e., class)

and what is a slot (i.e., attribute). As a result, ontologies

have different conceptualizations, and mismatches may occur

between arbitrary expressions. For example, mappings between

class expressions and attribute expressions or even between

a class expression and a compound expression that specifies

some instances of several classes may be needed. In the COIN

method, the mappings are manually specified and limited to

data value conversion between class attributes, which are the

instances of common types of a shared ontology, because

mappings between arbitrary expressions are hard to handle.

BUSTER [11] uses the general-purpose Web ontology

language OIL [18] which is developed based on Description

Logic [19], so that it also has the drawbacks of the general

or content-independent language. The BUSTER method

overcomes the drawbacks by relying heavily on a shared

ontology. In the BUSTER method, the shared ontology is a

common global vocabulary that defines in advance all the terms

(i.e., concepts) which can be used as class attributes. Source

ontologies are built by defining domain classes that select and

restrict only the concepts defined in the shared ontology as
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their attributes, so that the shared ontology itself guarantees the

automated integration and interoperation of source ontologies.

The semantic correspondence between the attributes can be

determined easily and, based on such attribute correspondence,

classes of different ontologies can be mapped to each other

by automated subsumption reasoning. However, the BUSTER

method has a high cost for developing the shared ontology

because domain experts must find all the necessary concepts

and deeply consider the usage conditions in advance.

The PLIB approach [20], unlike COIN and BUSTER,

does not use a logic-based knowledge representation language.

Instead, it defines a proprietary data meta-model and an

ontology developer represents domain knowledge with only

the data meta-model. However, because the data meta-model

defines only a small number of primitives i.e., entity types, the

domain structure is too coarse for an ontology developer to

model the domain knowledge in a consistent way. Moreover,

the primitives have subjective meanings agreed upon by

only the developers of the meta-model, independently of an

explicit account of the underlying ontological assumptions. The

problems of deciding what is a class, what is an attribute, etc.

still remain as an unguided task. So, mismatches occur among

arbitrary concepts and inter-ontology mapping is complex. In

the PLIB approach, the mappings are manually specified as

with the COIN method.

Our method uses meta-concepts which have explicit

ontological semantics. The explicit ontological semantics

help ontology developers to identify parts library concepts

consistently and systematically structure them by reducing the

conceptualization differences. Although our method cannot

remove all the possible mismatches the remaining mismatches,

referring to the results of existing research on automated

ontology merging, are small enough to enable a computer

system to resolve automatically. The existing research showed

a good result of automation by using similarity measuring

techniques such as syntactic analysis, lexical analysis, structural

analysis, and extensional analysis [21]. Those techniques

assume that the ontologies to be merged have similar form

and structure so that the target ontology elements the similarity

of which is to be assessed can be legitimately determined.

Our method complements this with consistent structure of

ontologies. In our method, mismatches emerge only among the

concepts that belong to the same meta-concept and have the

same parent concepts.

3. Meta-ontology framework for knowledge systematiza-

tion

The goal of this paper is to provide a system of

meta-concepts in terms of which knowledge modelers

consistently distinguish domain concepts of parts libraries and

systematically structure them. The system is organized into

layered ontologies. Fig. 2 shows the hierarchical organization

of ontologies. Ontologies are arranged upside-down to stress

the analogy of physical construction.

An ontology in a layer plays the role of a meta-ontology

of those in an upper layer. That is, an ontology gives a

Fig. 2. Hierarchical organization of ontologies.

controlled vocabulary and structure for modeling consistently

and systematically ontologies of the upper layers. The Top-

Level Ontology stays at the bottom because it governs all

ontologies in the upper layers with the most fundamental

meta-concepts. Next is the Parts Library Concept Ontology

which is the basis of our knowledge systematization for

parts libraries because it provides effective meta-concepts for

modeling domain ontologies i.e., the Parts Library Ontologies

of the figure.

3.1. The Top-Level Ontology

Although the major objective of this paper is to establish

the Parts Library Concept Ontology for parts knowledge

systematization, we cannot avoid mentioning another ontology

which provides foundations for it. It is one of the so-called

upper ontologies or theories of ontology. Upper ontologies

give fundamental distinctions of concepts in the world and

theories of them based on formal consideration of such meta-

questions as “what is a proper taxonomy?”, “what is a

class/attribute?”, “what are is-a and part-of relations?”, “how

are an object and a process different?”, “what is identity?”,

“how is identity inherited?”, etc. [13–15]. They help us to

understand systematically the ontological characteristics of

domain concepts.
We use Guarino’s upper ontology [22] as the Top-

Level Ontology of our system of meta-ontologies. Guarino

classified concepts into the ontological distinctions such as

TYPE, QUASI-TYPE, MATERIAL ROLE, PHASED SORTAL,

CATEGORY, ATTRIBUTION and explicitly characterized them

with combination of the ontological natures such as rigidity,

identity, and dependence. Table 1 summarizes those ontological

distinctions and their ontological natures.
Identity is related to the notion of whether or not a concept

provides an identity condition (IC) [22]. The ICs enable

identification of an entity (or object) as an instance of a concept,

re-identification of the instance in all possible forms, and to

count it individually. For example, the person concept provides

an IC such as fingerprint. It is necessary to distinguish concepts

which supply ICs (in Table 1, denoted by +O) from concepts

which simply carry ICs (denoted by +I ). Concepts such as

student only carry ICs such as fingerprint which are inherited

from their parent concept person. An IC allegedly provided by

the student such as registration-number is a local IC which has

unambiguous meaning within a limited context and situation,

whereas fingerprint is a global IC which does not change across

time or context.
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Table 1

Top-level ontological distinctions and their ontological natures [22]

Ontological distinctions Example Ontological natures

Identity Rigidity (R) Dependence (D)

Supplying IC (O) Carrying IC (I )

CATEGORY
concrete entity,

− − +
+

abstract entity −

QUASI-TYPE
invertebrate animal,

− + +
+

herbivore −

TYPE person, cat + + +
+

−

PHASED SORTAL caterpillar, butterfly − + ∼ −

MATERIAL ROLE student, food − + ∼ +

ATTRIBUTION
values of qualities like

− −
∼ −

color, shape
¬

+

−

Rigidity is related to the notion of whether a concept is

essential to all the instances of it. The essentiality is strictly

related to the notion of necessity [22], so that, for example, a

rigid property is a property that is necessary for all instances

that are true in every possible world. We normally think of

person as rigid (denoted by +R) because, if x is an instance of

person, it must be an instance of person in every possible world.

The student concept, on the other hand, is normally not rigid

because we can imagine an entity moving in and out of student

while being the same individual. Concepts that are not rigid

can be anti-rigid or semi-rigid. Anti-rigid concepts (denoted

by ∼R) are those such as student and food, all the instances

of which are true at least in one possible world but false in a

different possible world. Semi-rigid concepts (denoted by ¬R)

are concepts that are neither rigid nor anti-rigid. They can be

true or false even in one possible world.

Dependence is related to the notion of whether or not the

instances of a concept require the instances of other concepts in

order to exist [22]. For instance, to be a student, a student needs

a school.

Concepts belonging to CATEGORY are characterized as

being rigid but neither supplying nor carrying ICs. They divide

the domain into useful segments. Since they cannot have

definite membership conditions like ICs, they are normally the

highest level concepts in an ontology. QUASI-TYPE concepts

are rigid and carry ICs. They often represent high level

organizations by grouping entities based on combinations of

properties that do not affect the ICs of entities. TYPE concepts

are rigid and supply the global ICs. They play an important

organizational role in a taxonomy (subsumption hierarchy).

Assuming that each TYPE concept has a distinct set of global

ICs, a taxonomy of them is always a tree. When a TYPE concept

specializes another TYPE concept, it adds further global ICs to

those inherited from the subsuming concept. PHASED SORTAL

concepts are anti-rigid and independent. They do not supply

global ICs but they supply local ICs. They account for entities

which naturally change some of their identity criteria over

discrete phases. For example, an entity may at one time be a

caterpillar and at another time be a butterfly. PHASED SORTAL

concepts must be subsumed by a TYPE concept to inherit the

global ICs, because it must be possible to determine that they

are the same entity at these two phases. MATERIAL ROLE

concepts are anti-rigid and always dependent. They represent

roles that are constrained to concepts. ATTRIBUTION concepts

are either semi-rigid, or anti-rigid and independent. We assume

they are anti-rigid and independent. They represent values of

qualities of a concept itself such as color and shape.

3.2. The parts library concept ontology

In order to describe domain knowledge we need meta-

concepts that play the role of a vocabulary. For example,

in order to describe parts knowledge we need the “parts

class” meta-concept and “parts property” meta-concept just

as in Fig. 1. For consistent knowledge systematization, the

meta-concepts should have a well-established human-perceived

meaning to inform the knowledge modeler what exactly is the

parts class and what are the appropriate parts properties.

To achieve this, we introduce seven meta-concepts and

relate them to the ontological distinctions of Guarino’s

upper ontology. They inherit the ontological semantics from

the related ontological distinctions. We call the system

of meta-concepts Parts Library Concept Ontology and we

call the meta-concept the knowledge modeling primitive.

Fig. 3 shows the knowledge modeling primitives and their

structure. The figure follows the UML notation rule. The

domain concepts that are modeled using the PARTS FAMILY

CATEGORY, PARTS FAMILY, and PARTS MODEL primitives

constitute a main taxonomy. The PARTS FAMILY and PARTS

MODEL concepts are composed of the ATTRIBUTE and

META-ATTRIBUTE concepts. The ATTRIBUTE concepts of a

subsuming concept are inherited by the subsumed concepts

through the subsumption relation.

To model the domain concepts that represent classes of

parts, we introduce the knowledge modeling primitive, PARTS

FAMILY, and relate it to the TYPE ontological distinction.

Therefore, the PARTS FAMILY concept should be rigid and able
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Fig. 3. Knowledge modeling primitives and their structure.

to supply its own global ICs. In other words, the meaning of

the PARTS FAMILY concept must not change across suppliers

and time. It should also be able to define properties to identify

entities as instances of it and to distinguish them individually

(see below for defining such properties). This ontological

semantics of PARTS FAMILY coincides well with the human-

perceived meaning in the sense that in order to pick a part from

different parts libraries a buyer first finds similar parts classes to

search not by their names but by their classification criteria and

properties. Such ontological semantics of the PARTS FAMILY

primitive help a knowledge modeler to consistently identify

appropriate parts classes and to structure them systematically.
According to Guarino’s theory of upper ontology, a TYPE

concept supplies a global IC that is defined as a relation Γ

satisfying the following formula: Φ (x) ∧ Φ (y) ∧ x = y ↔

Γ (x, y), where Φ denotes a TYPE concept [22]. Thus, a PARTS

FAMILY concept, by some means, should supply the global IC

because it is a TYPE concept. For the case of a parts library,

the identifying relation Γ of a PARTS FAMILY concept can

be formulated by using technical properties [23]. For example,

the identifying relation of the Ball Bearing concept can be

formulated as follows:

Γ (x, y) ≡ axial strength(x) = axial strength(y) and

radial strength(x) = radial strength(y) and

thickness(x) = thickness(y) and

inner diameter(x) = inner diameter(y) and

outer diameter(x) = outer diameter(y)

However, not every property can be used as the basis for the

identifying relation. The properties that can be used as the basis

for the identifying relation must be anti-rigid and dependent

concepts. In order to identify and distinguish the instances

by using these properties regardless of suppliers and time the

properties should be essential at least in that PARTS FAMILY

concept. If the properties are not necessary to all instances one

parts library may define them whereas another parts library

may not define them. For example, such properties as color

and weight of the bearing parts are not essential, so that we

cannot expect to identify and distinguish an individual part by

using these properties. Also, the property should be dependent

on its field of application, i.e. the PARTS FAMILY concept. If

a property is independent of its PARTS FAMILY concept the

instances of the concept can have any value of the property.

For example, measuring unit property is independent of bearing

concept, so that the property cannot help to identify an entity

as an instance of the PARTS FAMILY concept. In our method,

the properties that can be used as the basis of the identifying

relation are modeled using the ATTRIBUTE primitive. The

ATTRIBUTE primitive corresponds to the MATERIAL ROLE

ontological distinction.

According to Guarino’s theory, the MATERIAL ROLE

concepts carry ICs by inheriting them from a subsuming

concept. Thus, an ATTRIBUTE concept should have a

subsuming concept to inherit the ICs because it is a MATERIAL

ROLE concept. This coincides well with the fact as follows.

Many of the attributes people think of are role attributes. For

example, the height, depth, width, and thickness attributes are

role concepts which are played by a genuine concept, length.

In our method, these genuine attributes (i.e., subsumers of

ATTRIBUTE concepts) are modeled as a BASIC ATTRIBUTE

concept. The BASIC ATTRIBUTE concept supplies the ICs

and an ATTRIBUTE concept carries them by inheriting them.

However, in real situations, especially in the parts library

domain, it is not only difficult but also unnecessary to explicitly

define the ICs of a BASIC ATTRIBUTE concept. This is

because those concepts like length usually have intuitive

meaning definable only with a simple name and some meta-

characteristics such as value format and unit. The BASIC

ATTRIBUTE concepts are rigid because they must be essential

to every concept in which they are used as subsumers of the

concepts’ ATTRIBUTEs. So, the BASIC ATTRIBUTE primitive

can be thought to correspond to the QUASI-TYPE ontological

distinction.

The ATTRIBUTE concepts which are used to define the

global ICs of a PARTS FAMILY concept are insufficient.

Suppose different suppliers sell the same parts, where the word

“same” means that the parts are interchangeable. This implies

that they have the same values for the global ATTRIBUTEs.

However, a buyer wants to know more about other properties

in addition to the global ATTRIBUTEs to finally pick a part and

the suppliers want to differentiate their products using these

properties. For example, some suppliers may assign the ball

diameter property or number of ball property to the ball bearing

class in order to stress superiority of their parts in resistibility

to axial load. However, those properties are only supplementary

to the axial strength property which is already used as a global

ATTRIBUTE.

In order to model such additional property knowledge, we

introduce the PARTS MODEL knowledge modeling primitive.

A concept that is modeled using the PARTS MODEL primitive

defines the additional properties as its local ATTRIBUTEs.

Although the PARTS MODEL concept represents a parts

class like a PARTS FAMILY concept, the concept should

be discriminated from the PARTS FAMILY concept. This

is because some properties (i.e., the local ATTRIBUTEs)
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have unambiguous meaning only within that PARTS MODEL

concept (i.e., within the supplier). The PARTS MODEL

primitive, therefore, corresponds to the PHASED SORTAL

ontological distinction. A PARTS MODEL concept should be

a subconcept of a PARTS FAMILY concept because it must

inherit the global ICs to determine that two part instances from

different parts libraries are the “same” entity in spite of different

local ATTRIBUTEs.

We also need to organize the parts knowledge into segments

in the same way as people confine themselves to a clear context

to communicate some concepts to each other. The segments

should be explicitly modeled as ontology concepts in parts

library ontologies because without them the description of

parts knowledge would be verbose. For example, the fastener

concept that denotes such parts as bolt, nut, and washer

provides a useful segment knowledge of the given domain.

The manufactured parts concept of Fig. 1 is another example.

Although we cannot define any explicit membership conditions

for the segment concepts, they are rigid in the sense that we

can determine whether an entity belongs to the segment or

not. Therefore, they correspond to the CATEGORY ontological

distinction.

Since these concepts cannot be subsumed by other rigid

concepts such as the PARTS FAMILY concept and PARTS

MODEL concept (otherwise they would have an IC), they

only appear in the uppermost levels of the taxonomy of

ontologies. In our method, these segment concepts clarify

the meaning of the PARTS FAMILY concepts and the BASIC

ATTRIBUTE concepts. The segment concepts for the PARTS

FAMILY concepts are modeled using the PARTS FAMILY

CATEGORY primitive, and the segmenting concepts for

BASIC ATTRIBUTE concepts are modeled using the BASIC

ATTRIBUTE CATEGORY primitive.

Finally, we need a primitive to represent meta-characteristics

of concepts. Examples of the meta-characteristics may be

unique code, textual description, value range and measuring

unit. The values of meta-characteristics are qualities of a

concept which are present in every instance of the concept

and have the same value. In our method, these meta-

characteristics are modeled using the META-ATTRIBUTE

primitive. The META-ATTRIBUTE primitive corresponds to the

ATTRIBUTION ontological distinction.

4. Application to mold and die parts library

We can now go into the detailed discussion on systematiza-

tion of parts knowledge and its usefulness in automated infor-

mation integration. Modeling ontologies of real mold and die

parts libraries [24,25] for B2B e-commerce is taken as an ex-

ample task to show how to use the Parts Library Concept On-

tology for knowledge systematization of parts knowledge. We

also analyze briefly an existing ontology of a commercial mold

and die parts library to discuss the problems of the ad hoc parts

knowledge descriptions. A Web-based parts library mediation

system is implemented to show how easily a computer system

can merge the well-established ontologies which are modeled

using the Parts Library Concept Ontology.

4.1. Modeling parts library ontologies

We have built a set of ontologies to integrate automatically

different mold and die parts libraries [26]. Fig. 4 schematically

shows an excerpt from the resultant ontologies. Before

modeling the ontologies of each supplier’s parts library (source

ontologies), a shared ontology is modeled; our method also

follows the hybrid approach like most related work.

In some methods using a hybrid approach like BUSTER the

shared ontology is a common global vocabulary that defines

in advance all the terms (i.e., concepts) which are necessary

to represent domain knowledge. Source ontologies are built by

using only the terms defined in the shared ontology. The shared

ontology plays the role of a rigid standard. However, in our

method, the shared ontology provides only high-level segment

concepts such as manufactured parts of Fig. 1 and basic parts

class and attribute concepts such as Bearing and inner diameter

as a starting point for modeling source ontologies. Those high-

level segment concepts and basic parts class concepts guide the

source ontologies to have similar aggregation and granularity.

Our method assumes that each source ontology may add any

new parts classes or attributes and even any new segment

concepts. Our method does not assume that source ontologies

are only restrictions of the common shared ontology.

In the shared ontology, the Guide Component for Inner Die

concept is modeled as a PARTS FAMILY CATEGORY concept

at the uppermost level of the taxonomy. Although we cannot

define explicit membership conditions like ICs, the Guide

Component for Inner Die concept provides a clear boundary

in which entities legitimately belong. Also, the Guide Post

Unit concept is modeled as a PARTS FAMILY concept. Makers

of press die sets purchase a module which is composed of a

guide post, guide post holders, guide bushing. Although many

suppliers supply several variations of the module in which the

dimensions and some features differ, we can identify a concept

that denotes such a module with a general definition, ‘a module

which supports and guides the die set’. The meaning of the

Guide Post Unit concept does not change across suppliers or

time (i.e., is rigid), and the properties corresponding to such

rigid meaning and essential to all the instances can be defined

(i.e., supplying global ICs).

Usually, suppliers’ parts libraries are implemented with

very specific and detailed parts classes such as the LBGMP,

LBGFP, MYAK, and MYCK (bottom boxes in Fig. 4) without

a rigorous upper-level taxonomic structure, because they are

convenient for receiving the purchase order or for internally

managing the production and delivery. According to our

method, those specific parts class concepts are modeled as

the PARTS MODEL concepts at the lowermost levels of

taxonomy in the source ontologies. In those specific parts

classes, there are properties defined only by the supplier and

only in accordance with the supplier’s wishes. Such properties

usually correspond to non-principal geometric appearances or

non-principal functionalities, so that they are not essential to

the instances of the parts class. The properties, therefore, play

the role of the local ATTRIBUTEs. Dowel Pin Hole Diameter,

Stopper Fastening Bolt Diameter, Post End Rounding Radius,
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Fig. 4. Parts library ontologies modeled using the meta-ontology (portion).

and Post Fastening Bolt Diameter are modeled as local

ATTRIBUTEs.

The absence of rigorous taxonomic structure usual suppliers’

parts libraries means much parts knowledge is implicit. In

other words, such knowledge as what the classification criteria

of parts classes is, how the attributes are assigned, what the

meaning of each attribute is, whether a subsumption relation

exists between the parts classes, etc. is hidden. However,

in order to integrate and interoperate the source ontologies,

such implicit or hidden knowledge should be interpreted and

explicated.

The implicit or hidden knowledge is explicated by

specializing the basic concepts of the shared ontology into sub-

concepts in each source ontology. The sub-concepts are further

specialized and finally subsume the specific parts classes.

For example, in source ontology A, the Guide Post Unit

concept of the shared ontology is specialized into the Ball

Guide Unit concept. Because the basic concept, the Guide

Post Unit concept, is a PARTS FAMILY concept and the

specific parts class concepts, LBGMP and LBGFP, are PARTS

MODEL concepts, the newly defined concept Ball Guide Unit

is modeled as a PARTS FAMILY concept. Therefore, it must be

rigid, and must have global ATTRIBUTEs. The specialization

is conducted according to the method of guiding the die

set in order that the newly defined concepts are rigid and

supply global ATTRIBUTEs. Since the specialization criterion

is concerned with the principal functionalities and usage

conditions, the meaning of it does not change across suppliers

and time. The Ball Retainer Length property is modeled as

a global ATTRIBUTE because it is necessary to all instances

regardless of suppliers in the sense that the length of the ball

retainer exposes the ability of the Ball Guide Unit such as the

guiding range.

On the other hand, source ontology B explicates the hidden

knowledge in a different manner from source ontology A.

However, conforming to the ontological semantics of the

PARTS FAMILY primitive leads to comparable results. For

example, although source ontology B specializes the Guide

Post Unit concept of the shared ontology into the Ball

Guide Press-Fitting Post Unit concept and the Ball Guide

Replaceable Post Unit concept, it also uses the method of

guiding the die set as the primary specialization criterion. No

other specialization criteria for the Guide Post Unit concept

could satisfy the ontological semantics of the PARTS FAMILY

concept. Consequently, the Ball Guide Press-Fitting Post Unit

concept is comparable with the Press-Fitting Type Guide Pin

Unit concept of ontology A, and the Ball Guide Replaceable

Post Unit concept is legitimately determined as a subconcept of

the Ball Guide Unit concept.

Without the sophisticated treatment of parts knowledge as

suggested by our method we cannot have well-established parts

library ontologies. We can easily find ad hoc descriptions of

parts knowledge which hinder the automated integration of

different parts libraries.

For example, an e-marketplace company in Korea defines

an ontology of a mold and die parts library [27] for B2B e-

commerce. The e-marketplace company categorizes the die set

parts into two parts classes according to the material of the

parts: Castiron Die Set and Steel Die Set. This classification is

not appropriate for automated integration. Because the material

concept itself does not supply its own ICs, the two parts classes

eventually have the same global attributes, which in turn makes

it difficult for a computer system to determine of which parts

class a die set part is an instance. As a similar example, the

company defines a parts class, Precision Ejector Pin. This is

also incorrect because this parts class cannot add further global

ICs to those inherited from its parent class, Ejector Pin. In

these cases, it is difficult for a computer system to know which

supplier’s parts classes exactly correspond to the e-marketplace

company’s parts classes by using ICs, i.e. ATTRIBUTEs. As

another example, the company defines the property Bushing

Fastening Method in a parts class Ball Guide Post Set For Die
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Set. According to our ontological method, this is also incorrect.

Based on the ordinary meaning that a ball guide post set part is

one in which the principal functionality is to guide the outer die

set, the method of assembling its components is not essential.

The above discussion can be summarized as follows. Al-

though our method based on the meta-concepts, i.e., knowledge

modeling primitives having explicit ontological semantics, can-

not eliminate all possible mismatches among source ontolo-

gies, it confines the mismatches to manageable mismatches by

reducing the differences in the way a domain is interpreted.

Since the meta-concepts provide rigorous constraints on iden-

tifying and structuring domain concepts, the “significant” mis-

takes such as the Castiron Die Set and Steel Die Set can be

avoided in advance. Even when source ontologies are developed

independently, comparable domain concepts are distinguished

and represented using the same knowledge modeling primi-

tives. These distinguished concepts are structured in a consis-

tent way: similar parts classes are subsumed by the same parent

concept; similar attributes are assigned to similar parts classes.

On the contrary, when ontologies are developed arbitrarily, as

the e-marketplace company did in the above example, the inter-

ontology mappings become complicated because mismatches

emerge among arbitrary expressions.

4.2. Integrating parts libraries

We have developed a Web-based parts library mediation

system [28] that automatically merges the source ontologies

and generates an integrated interface for the distributed parts

libraries. In the following subsections, we discuss the ontology

merging algorithm based on an abstract set-theoretic structure

of the parts library ontologies. We also present details of the

system implementation.

4.2.1. Ontology merging algorithm

According to our knowledge systematization of parts

libraries, the main taxonomic structure of the shared ontology

is constituted by the rigid concepts such as PARTS FAMILY

concepts. The shared ontology, therefore, may be defined as a

simplified 4-tuple:

O R ≡
{

F R, AR, SubR, ApplicR
}

, where

• F R is a set of PARTS FAMILY concepts defined in the shared

ontology.

• AR is a set of ATTRIBUTE concepts defined in the shared

ontology.

• SubR = F R → 2F R
is the subsumption function,

which associates each PARTS FAMILY concept with directly

subsumed PARTS FAMILY concepts. 2F R
denotes the power

set of F R .

• ApplicF R = F R → 2AR
is the function that associates

each PARTS FAMILY concept with its global ATTRIBUTE

concepts.

The concepts specific to a supplier are modeled in a source

ontology by specializing the most similar concept, i.e. the

smallest subsumer, which is defined in the shared ontology or

in the source ontology itself. The source ontology, therefore, is

defined as a simplified 9-tuple:

O S ≡ {F S, AS, M S, SubS, Sub RS, SubM S, SubM RS,

ApplicF S, ApplicM S}, where

• F S is a set of PARTS FAMILY concepts defined in the source

ontology.

• AS is a set of ATTRIBUTE concepts defined in the source

ontology.

• M S is a set of PARTS MODEL concepts defined in the source

ontology.

• SubS = F S → 2F S
is the subsumption function, which

associates each PARTS FAMILY concept of the source

ontology with directly subsumed PARTS FAMILY concepts

of the source ontology.

• Sub RS = F R → 2F S
is the subsumption function,

which associates each PARTS FAMILY concept of the shared

ontology with directly subsumed PARTS FAMILY concepts

of the source ontology.

• SubM S = F S → 2M S
is the subsumption function

that associates each PARTS FAMILY concept of the source

ontology with directly subsumed PARTS MODEL concepts

of the source ontology.

• SubM RS = F R → 2M S
is the subsumption function

that associates each PARTS FAMILY concept of the shared

ontology with directly subsumed PARTS MODEL concepts

of the source ontology.

• ApplicF S = F S → 2AS∪AR
is the function that associates

each PARTS FAMILY concept of the source ontology with

its global ATTRIBUTE concepts.

• ApplicM S = M S → 2AS
is the function that associates each

PARTS MODEL concept of the source ontology with its local

ATTRIBUTE concepts.

The parts library mediation system (see Section 4.2.2 for

implementation details) starts the ontology merging process

with the source ontologies which are individually connected to

the shared ontology. The connections are made through two

subsumption relations, Sub RS and SubM RS . Fig. 4 shows

well such connection of ontologies. We call such ontology

connection initially connected ontology, and this can be defined

as a simplified 7-tuple:

O P I ≡ {F P I , AP I , M P I , SubP I , SubM P I , ApplicF P I ,

ApplicM P I }, where

• F P I = F R ∪(i |1≤i≤n) F Si .

• AP I = AR ∪(i |1≤i≤n) ASi .

• M P I = ∪(i |1≤i≤n) M Si .

• SubP I (f) =

{

SubR (f)∪(i |1≤i≤n) Sub RSi (f) ,

if f ∈ F R ∧(i |1≤i≤n) f 6∈ F Si

SubSi (f) , if f 6∈ F R ∧ f ∈ F Si .

• SubM P I (f) =

{

∪(i |1≤i≤n) SubM RSi (f) ,

if f ∈ F R ∧(i |1≤i≤n) f 6∈ F Si

SubM Si (f) , if f 6∈ F R ∧ f ∈ F Si .

• ApplicF P I (f) =
{

ApplicF R (f) , if f ∈ F R

ApplicF Si (f) , if f 6∈ F R ∧ f ∈ F Si .

• ApplicM P I (m) = ApplicM Si (m) , if m ∈ M Si .
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Therefore, the initially connected ontology has a single

tree structure. However, in the set F P I and M P I , the parts

classes that represent the same class can exist at several levels

of the tree because the parts classes come from different

source ontologies. Also, some subsumption relations between

parts classes may not be explicitly defined in the relation

specifications, SubP I (f) and SubM P I (f). So, an algorithm is

needed to join the same parts classes into a single parts class

and to establish the missing subsumption relations.

The same parts classes and the missing subsumption

relations are easily identified because semantically similar

parts classes are distinguished and represented using the same

knowledge modeling primitives, they are subsumed by the same

parent concept, and similar attributes are assigned to them. In

the example of Fig. 4, Press-Fitting Type Guide Pin Unit of

ontology A and Ball Guide Press-Fitting Post Unit of ontology

B are the same parts classes because they belong to the same

knowledge modeling primitive, they have the same parent parts

class, and they have the same ATTRIBUTEs. The Ball Guide

Press-Fitting Post Unit of ontology B is a subsumee of the

Ball Guide Unit of ontology A because the former has all

ATTRIBUTEs of the latter and has other ATTRIBUTEs that the

latter does not have.

The ontology merging algorithm is implemented by

iteratively applying the following two steps to a parent node

and its direct child nodes, in which the parent node is replaced

with one of its child nodes in the next iteration. (1) If there exist

the same parts classes in the child nodes, delete all the same

parts class nodes except one, and move the deleted child nodes’

child nodes under the undeleted node. And then, (2) if there

exist subsumption relations between the remaining child nodes,

create new subsumption relations between them, and delete the

current subsumption relation between the parent node and the

child nodes. The two steps are applied iteratively because the

same parts classes and the missing subsumption relations could

exist at several levels of the tree. The iteration process is the

same as the well-known pre-order tree search algorithm. The

required computing resources such as memory size and CPU

power for the algorithm are already known as sufficiently small

to be implementable on a personal computer.

The above discussion can be summarized as follows. The

ontology merging algorithm is based on the assessment of

semantic correspondence between parts classes, and the as-

sessment for parts classes, in turn, can be simplified to an

assessment of the semantic correspondence between the AT-

TRIBUTEs defined in each parts class. Although the prototype

system (see Section 4.2.2 for implementation details) assumes

that the source ontologies to be merged have the same name,

i.e., symbol, for the same ATTRIBUTEs, this is not a serious de-

fect because the aim of the prototype implementation is to show

how easily a computer system can merge the well-established

ontologies which are modeled using our ontological method.

Once the target ontology elements are legitimately identified

with the help of similar conceptualization and consistent struc-

ture of the ontologies, the correspondence between them can be

easily determined by using the syntactic, lexical, and structural

analysis techniques for similarity measuring [21].

4.2.2. Web-based parts library mediation system

Fig. 5 shows the architecture of the Web-based parts

library mediation system. This system consists of a mediator,

wrappers for each parts library, and a registry. The mediator

implements the above described ontology merging algorithm.

It remotely accesses the source ontologies by using the access

path information that is registered in the registry, and merges

them into a single ontology whenever a user starts a new Web

server session of the mediator. Using the dynamically merged

ontology, the mediator generates an integrated interface to the

distributed parts libraries. The source ontologies were encoded

using the XML schema definition language, XML Schema

1.1 [29]. They are stored in each local machine of suppliers

and exposed as a regular XML file on the Web. When a user

asks the mediator to search for parts, the mediator requests

the parts search to each wrapper. The search results from each

parts library are conveyed to the mediator and gathered in the

integrated interface. The wrapper implements the parts search

functionality of each parts library as Web Services [30].

The mediation system has been implemented on a personal

computer with Microsoft R© Windows XP as the operating

system, Microsoft R© Internet Information Services (IIS) v5.1 as

the Web server, and Microsoft R©.NET Framework SDK v1.1 as

the programming tool kit.

The mediator, called the Parts Library Mediator, consists of

two tabbed pages. One page is for viewing the ontology, and the

other is for viewing the retrieved data.

Fig. 6 is the ontology view page, which shows the

dynamically merged ontology. In this figure, we can see that

the two PARTS FAMILY concepts, Ball Guide Replaceable

Post Unit and Ball Guide Press Fitting Post Unit, of source

ontology B are joined with corresponding ontology A’s PARTS

FAMILY concepts and re-structured. The ontology view page

also provides the means to specify the parts search conditions.

The search conditions are made of specific values of each

ATTRIBUTE. When the user requests the mediator to search

for parts by clicking the Search in the Selected PF button, the

mediator searches for parts from the selected PARTS FAMILY

concept to all subsumed PARTS FAMILY concepts and PARTS

MODEL concepts. In this case, only the global ATTRIBUTE

values are used as the search conditions. When the Search in the

Selected PM button is clicked, the mediator searches for parts

only in the selected PARTS MODEL concept. Both the global

ATTRIBUTE values and the local ATTRIBUTE values are used

as the search conditions.

Fig. 7 shows the retrieved data view page, which displays

the instances that belong to the Ball Guide Unit parts class

and its sub-classes and satisfy the search conditions depicted in

Fig. 6. In the Parts Family Instance Data Table, only the global

ATTRIBUTEs’ values of PARTS FAMILY concepts’ instances

are displayed. When the user selects a row from this table

(i.e., when an instance of the PARTS FAMILY concept is

selected), the retrieved data view page displays the instance data

of the PARTS MODEL concepts which are subsumed under the

PARTS FAMILY concept in the separated Parts Model Instance

Data Tables. The Parts Model Instance Data Tables display the

values of local ATTRIBUTEs. Since a PARTS FAMILY concept
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Fig. 5. Architecture of the parts library mediation system.

Fig. 6. Ontology view page of Parts Library Mediator.

can subsume many different PARTS MODEL concepts several

Parts Model Instance Data Tables may be created. Also, since

an instance of a PARTS FAMILY concept can appear as many

different forms in each PARTS MODEL concept, several PARTS
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Fig. 7. Retrieved data view page of Parts Library Mediator.

MODEL instances can be listed in each Parts Model Instance

Data Table. Consequently, all properties of a real part can be

inspected using the values of the global ATTRIBUTEs displayed

in the Parts Family Instance Data Table together with the values

of the local ATTRIBUTEs displayed in the Parts Model Instance

Data Table.

5. Conclusion

We have discussed knowledge systematization based on

content-oriented meta-ontologies for automated integration

of parts libraries. The Parts Library Concept Ontology

is introduced to reduce the differences in the way the

parts knowledge is interpreted by providing an appropriate

structure with appropriate vocabulary, i.e. knowledge modeling

primitives. Guarino’s theory of upper ontology contributes by

giving explicit conceptualization of ontological assumptions to

the knowledge modeling primitives. The Parts Library Concept

Ontology helps ontology modelers to distinguish parts library

concepts consistently and structure them systematically, so that

ontology mismatches are confined to manageable mismatches.

We applied the method for knowledge systematization to

modeling the ontologies of real mold and die parts libraries,

and demonstrated the usefulness of the method in automated

integration of parts libraries using a prototype parts library

mediation system.
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