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ABSTRACT
Compiler writers have crafted many heuristics over the years
to approximately solve NP-hard problems efficiently. Find-
ing a heuristic that performs well on a broad range of ap-
plications is a tedious and difficult process. This paper in-
troduces Meta Optimization, a methodology for automat-
ically fine-tuning compiler heuristics. Meta Optimization
uses machine-learning techniques to automatically search
the space of compiler heuristics. Our techniques reduce com-
piler design complexity by relieving compiler writers of the
tedium of heuristic tuning. Our machine-learning system
uses an evolutionary algorithm to automatically find effec-
tive compiler heuristics. We present promising experimental
results. In one mode of operation Meta Optimization creates
application-specific heuristics which often result in impres-
sive speedups. For hyperblock formation, one optimization
we present in this paper, we obtain an average speedup of
23% (up to 73%) for the applications in our suite. Further-
more, by evolving a compiler’s heuristic over several bench-
marks, we can create effective, general-purpose heuristics.
The best general-purpose heuristic our system found for hy-
perblock formation improved performance by an average of
25% on our training set, and 9% on a completely unrelated
test set. We demonstrate the efficacy of our techniques on
three different optimizations in this paper: hyperblock for-
mation, register allocation, and data prefetching.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Program-
ming; D.2.2 [Software Engineering]: Design Tools and
Techniques; I.2.6 [Artificial Intelligence]: Learning

General Terms
Design, Algorithms, Performance

Keywords
Machine Learning, Priority Functions, Genetic Program-
ming, Compiler Heuristics
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1. INTRODUCTION
Compiler writers have a difficult task. They are expected

to create effective and inexpensive solutions to NP-hard
problems such as register allocation and instruction schedul-
ing. Their solutions are expected to interact well with other
optimizations that the compiler performs. Because some
optimizations have competing and conflicting goals, adverse
interactions are inevitable. Getting all of the compiler passes
to mesh nicely is a daunting task.

The advent of intractably complex computer architectures
also complicates the compiler writer’s task. Since it is im-
possible to create a simple model that captures the intrica-
cies of modern architectures and compilers, compiler writers
rely on inaccurate abstractions. Such models are based upon
many assumptions, and thus may not even properly simulate
first-order effects.

Because compilers cannot afford to optimally solve NP-
hard problems, compiler writers devise clever heuristics that
quickly find good approximate solutions for a large class of
applications. Unfortunately, heuristics rely on a fair amount
of tweaking to achieve suitable performance. Trial-and-error
experimentation can help an engineer optimize the heuris-
tic for a given compiler and architecture. For instance, one
might be able to use iterative experimentation to figure out
how much to unroll loops for a given architecture (i.e., with-
out thrashing the instruction cache or incurring too much
register pressure).

After studying several compiler optimizations, we found
that many heuristics have a focal point. A single priority
or cost function often dictates the efficacy of a heuristic.
A priority function— a function of the factors that affect
a given problem— measures the relative importance of the
different options available to a compiler algorithm.

Take register allocation for example. When a graph col-
oring register allocator cannot successfully color an interfer-
ence graph, it spills a variable to memory and removes it
from the graph. The allocator then attempts to color the
reduced graph. When a graph is not colorable, choosing an
appropriate variable to spill is crucial. For many allocators,
this decision is bestowed upon a single priority function.
Based on relevant data (e.g., number of references, depth in
loop nest, etc.), the function assigns weights to all uncolored
variables and thereby determines which variable to spill.

Fine-tuning priority functions to achieve suitable perfor-
mance is a tedious process. Currently, compiler writers man-
ually experiment with different priority functions. For in-



stance, Bernstein et al. manually identified three priority
functions for choosing spill variables [3]. By applying the
three functions to a suite of benchmarks, they found that a
register allocator’s effectiveness is highly dependent on the
priority function the compiler uses.

The importance of priority functions is a key insight that
motivates Meta Optimization, a method by which a machine-
learning algorithm automatically searches the priority func-
tion solution space. More specifically, we use a learning al-
gorithm that iteratively searches for priority functions that
improve the execution time of compiled applications.

Our system can be used to cater a priority function to
a specific input program. This mode of operation is essen-
tially an advanced form of feedback directed optimization.
More importantly, it can be used to find a general-purpose
function that works well for a broad range of applications.
In this mode of operation, Meta Optimization can perform
the tedious work that is currently performed by engineers.
For each of the three case studies we describe in this paper,
we were able to at least match the performance of human-
generated priority functions. In some cases we achieved con-
siderable speedups.

While many researchers have used machine-learning tech-
niques and exhaustive search algorithms to improve an ap-
plication, none have used learning to search for priority func-
tions. Because Meta Optimization improves the effective-
ness of the compiler itself, in theory, we need only apply the
process once (rather than on a per-application basis).

The remainder of this paper is organized as follows. The
next section introduces priority functions. Section 3 de-
scribes genetic programming, a machine-learning technique
that is well suited to our problem. Section 4 discusses our
methodology. We apply our technique to three separate case
studies in Section 5, Section 6, and Section 7. Results of our
experiments are included in the case study sections. Sec-
tion 8 discusses related work, and finally Section 9 concludes.

2. PRIORITY FUNCTIONS
This section is intended to give the reader a feel for the

utility and ubiquity of priority functions. Put simply, pri-
ority functions prioritize the options available to a compiler
algorithm.

For example, in list scheduling, a priority function assigns
a weight to each instruction in the scheduler’s dependence
graph, dictating the order in which to schedule instructions.
A common and effective heuristic assigns priorities using
latency-weighted depths [10]. Essentially, this is the instruc-
tion’s depth in the dependence graph, taking into account
the latency of instructions on all paths to the root nodes:

P (i) =

�
latency(i) : if i is independent.

max
i depends on j

latency(i) + P (j) : otherwise.

The list scheduler proceeds by scheduling ready instructions
in priority order. In other words, if two instructions are
ready to be scheduled, the algorithm will favor the instruc-
tion with the higher priority. The scheduling algorithm
hinges upon the priority function. Apart from enforcing the
legality of the schedule, the scheduler entirely relies on the
priority function to make all of its decisions.

This description of list scheduling is a simplification. Pro-
duction compilers use sophisticated priority functions that

account for many competing factors (e.g., how a given sched-
ule may affect register allocation).

The remainder of the section lists a few other priority
functions that are amenable to the techniques we discuss in
this paper. We will explore three of the following priority
functions in detail later in the paper.

• Clustered scheduling: Özer et al. describe an ap-
proach to scheduling for architectures with clustered
register files [20]. They note that the choice of priority
function has a “strong effect on the schedule.” They
also investigate five different priority functions [20].

• Hyperblock formation: Later in this paper we use
the formation of predicated hyperblocks as a case study.

• Meld scheduling: Abraham et al. rely on a priority
function to schedule across region boundaries [1]. The
priority function is used to sort regions by the order in
which they should be visited.

• Modulo scheduling: In [22], Rau states that “there
is a limitless number of priority functions” that can
be devised for modulo scheduling. Rau describes the
tradeoffs involved when considering scheduling priori-
ties.

• Data Prefetching: Later in this paper we investigate
a priority function that determines whether or not to
prefetch an address.

• Register allocation: Many register allocation algo-
rithms use cost functions to determine which variables
to spill if spilling is required. We use register allocation
as a case study later in the paper.

This is not an exhaustive list of applications. Many im-
portant compiler optimizations employ cost functions of the
sort mentioned above. The next section introduces genetic
programming, which we use to automatically find effective
priority functions.

3. GENETIC PROGRAMMING
Of the many available machine-learning techniques, we

chose to employ genetic programming (GP) because its at-
tributes best fit the needs of our application. The following
list highlights the suitability of GP to our problem:

• GP is especially appropriate when the relationships
among relevant variables are poorly understood [13].
Such is the case with compiler heuristics, which often
feature uncertain tradeoffs. Today’s complex systems
also introduce uncertainty.

• GP is capable of searching high-dimensional spaces.
Many other learning algorithms are not as scalable.

• GP is a distributed algorithm. With the cost of com-
puting power at an all-time low, it is now economically
feasible to dedicate a cluster of machines to searching
a solution space.

• GP solutions are human readable. The ‘genomes’ on
which GP operates are parse trees which can easily
be converted to free-form arithmetic equations. Other
machine-learning representations, such as neural net-
works, are not as comprehensible.
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Figure 1: GP Genomes. Part (a) and (b) show examples of GP genomes. Part (c) provides an example of a random

crossover of the genomes in (a) and (b). Part (d) shows a mutation of the genome in part (a).
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Figure 2: Flow of genetic programming. Genetic pro-

gramming (GP) initially creates a population of expres-

sions. Each expression is then assigned a fitness, which

is a measure of how well it satisfies the end goal. In

our case, fitness is proportional to the execution time of

the compiled application(s). Until some user-defined cap

on the number of generations is reached, the algorithm

probabilistically chooses the best expressions for mat-

ing and continues. To guard against stagnation, some

expressions undergo mutation.

Like other evolutionary algorithms, GP is loosely pat-
terned on Darwinian evolution. GP maintains a popula-
tion of parse trees [13]. In our case, each parse tree is an
expression that represents a priority function. As with natu-
ral selection, expressions are chosen for reproduction (called
crossover) according to their level of fitness. Expressions
that best solve the problem are most likely to have progeny.
The algorithm also randomly mutates some expressions to
innovate a possibly stagnant population.

Figure 2 shows the general flow of genetic programming in
the context of our system. The algorithm begins by creat-
ing a population of initial expressions. The baseline heuris-
tic over which we try to improve is included in the initial
population; the remainder of the initial expressions are ran-
domly generated. The algorithm then determines each ex-

pression’s level of fitness. In our case, compilers that pro-
duce the fastest code are fittest. Once the algorithm reaches
a user-defined limit on the number of generations, the pro-
cess stops; otherwise, the algorithm proceeds by probabilis-
tically choosing the best expressions for mating. Some of the
offspring undergo mutation, and the algorithm continues.

Unlike other evolutionary algorithms, which use fixed-
length binary genomes, GP’s expressions are variable in
length and free-form. Figure 1 provides several examples
of genetic programming genomes (expressions). Variable-
length genomes do not artificially constrain evolution by
setting a maximum genome size. However, without special
consideration, genomes grow exponentially during crossover
and mutation.

Our system rewards parsimony by selecting the smaller
of two otherwise equally fit expressions [13]. Parsimonious
expressions are aligned with our philosophy of using GP as
a tool for compiler writers and architects to identify impor-
tant heuristic features and the relationships among them.
Without enforcing parsimony, expressions quickly become
unintelligible.

In Figure 1, part (c) provides an example of crossover,
the method by which two expressions reproduce. Here the
two expressions in (a) and (b) produce offspring. Crossover
works by selecting a random node in each parent, and then
swapping the subtrees rooted at those nodes1. In theory,
crossover works by propagating ‘good’ subexpressions. Good
subexpressions increase an expression’s fitness.

Because GP favors fit expressions, expressions with favor-
able building blocks are more likely selected for crossover,
further disseminating the blocks. Our system uses tourna-
ment selection to choose expressions for crossover. Tourna-
ment selection chooses N expressions at random from the
population and selects the one with the highest fitness [13].
N is referred to as the tournament size. Small values of
N reduce selection pressure; expressions are only compared
against the other N − 1 expressions in the tournament.

Finally, part (d) shows a mutated version of the expression
in (a). Here, a randomly generated expression supplants a
randomly chosen node in the expression. For details on the
mutation operators we implemented, see [2].

1
Selection algorithms must use caution when selecting random tree nodes. If

we consider a full binary tree, then leaf nodes comprise over 50% of the tree.
Thus, a naive selection algorithm will choose leaf nodes over half of the time.
We employ depth-fair crossover, which equally weighs each level of the tree [12].



Real-Valued Function Representation

Real1 + Real2 (add Real1 Real2)
Real1 − Real2 (sub Real1 Real2)
Real1 · Real2 (mul Real1 Real2)�

Real1/Real2 : if Real2 �= 0
0 : if Real2 = 0

(div Real1 Real2)
√

Real1 (sqrt Real1)�
Real1 : ifBool1
Real2 : if notBool1

(tern Bool1 Real1 Real2)�
Real1 · Real2 : ifBool1

Real2 : if notBool1
(cmul Bool1 Real1 Real2)

Returns real constant K (rconst K)
Returns real value of arg from en-
vironment

(rarg arg)

Boolean-Valued Function Representation

Bool1 and Bool2 (and Bool1 Bool2)
Bool1 or Bool2 (or Bool1 Bool2)
not Bool1 (not Bool1)
Real1 < Real2 (lt Real1 Real2)
Real1 > Real2 (gt Real1 Real2)
Real1 = Real2 (eq Real1 Real2)
Returns Boolean constant (bconst {true, false})
Returns Boolean value of arg
from environment

(barg arg)

Table 1: GP primitives. Our GP system uses the prim-

itives and syntax shown in this table. The top segment

represents the real-valued functions, which all return a

real value. Likewise, the functions in the bottom seg-

ment all return a Boolean value.

To find general-purpose expressions (i.e., expressions that
work well for a broad range of input programs), the learning
algorithm learns from a set of ‘training’ programs. To train
on multiple input programs, we use the technique described
by Gathercole in [9]. The technique—called dynamic subset
selection (DSS)— trains on subsets of the training programs,
concentrating more effort on programs that perform poorly
compared to the baseline heuristics. DSS reduces the num-
ber of fitness evaluations that need to be performed in order
to achieve a suitable solution. Because our system must
compile and run benchmarks to test an expression’s level of
fitness, fitness evaluations for our problem are costly.

The next section describes the methodology that we use
throughout the remainder of the paper.

4. METHODOLOGY
Compiler priority functions are often based on assump-

tions that may not be valid across application and architec-
tural variations. In other words, who knows on what set of
benchmarks, and for what target architecture the priority
functions were designed? It could be the case that a prior-
ity function was designed for completely orthogonal circum-
stances than those under which you use your compiler.

Our system uses genetic programming to automatically
search for effective priority functions. Though it may be
possible to ‘evolve’ the underlying algorithm, we restrict our-
selves to priority functions. This drastically reduces search
space size, and the underlying algorithm ensures optimiza-
tion legality. Furthermore, this technique is still very pow-
erful; even small changes to the priority function can dras-
tically improve (or diminish) performance.

We optimize a given priority function by wrapping the
iterative framework of Figure 2 around the compiler and ar-
chitecture. We replace the priority function that we wish

Parameter Setting

Population size 400 expressions
Number of generations 50 generations
Generational replacement 22 expressions
Mutation rate 5%
Tournament size 7
Elitism Best expression is guaranteed sur-

vival.
Fitness Average speedup over the baseline

on the suite of benchmarks.

Table 2: GP parameters. This table shows the GP pa-

rameters we used to collect the results in this section.

to optimize with an expression parser and evaluator. This
allows us to compile the benchmarks in our ‘training’ suite
using the expressions— which are priority functions— in the
population. The expressions that create the fastest executa-
bles for the applications in the training suite are favored for
crossover.

Our system uses total execution time to assign fitnesses.
This approach focuses on frequently executed procedures,
and therefore, may slowly converge upon general-purpose
solutions. However, when one wants to specialize a compiler
for a given input program, this evaluation of fitness works
extremely well.

Table 1 shows the GP expression primitives that our sys-
tem uses. Careful selection of GP primitives is essential. We
want to give the system enough flexibility to potentially find
unexpected results. However, the more leeway we give GP,
the longer it will take to converge upon a general solution.

Our system creates an initial population that consists of
399 randomly generated expressions; it randomly ‘grows’
expressions of varying heights using the primitives in Table 1
and features extracted by the compiler writer. Features are
measurable program characteristics that the compiler writer
thinks may be important for forming good priority functions
(e.g., latency-weighted depth for list scheduling).

In addition to the randomly generated expressions, we
seed the initial population with the compiler writer’s best
guess. In other words, we include the priority function
distributed with the compiler. For two of the three opti-
mizations presented in this paper, we found that the seed is
quickly obscured and weeded out of the population as more
favorable expressions emerge. In fact, for hyperblock selec-
tion and data prefetching, which we discuss later, the seed
had no impact on the final solution. These results suggest
that one could use Meta Optimization to construct priority
functions from scratch rather than trying to improve upon
preexisting functions. In this way, our tool can reduce the
complexity of compiler design by sparing the engineer from
perfunctory algorithm tweaking.

Table 2 summarizes the parameters that we use to col-
lect results. We chose the parameters in the table after a
moderate amount of experimentation. We give our GP sys-
tem 50 generations to find a solution. For the benchmarks
that we surveyed, the time required to run for 50 genera-
tions is about one day per benchmark in the training set2.
Our system memoizes benchmark fitnesses because fitness
evaluations are so costly.

After every generation the system randomly replaces 22%
of the population with new expressions created via the crossover

2
We ran on 15 to 20 machines in parallel for the experiments in Section 5 and

Section 6, and we used 5 machines for the experiments in Section 7.



(a)

branch ...

d - buf & 0x1

  buf = *inp
  inp = inp + 1
 t = buf >> 4
  d = t & 0xf

(b)

    cmp p2,p3 ...
 (p2) d = buf & 0x1 
 (p3) buf = *inp 
 (p3) inp = inp + 1 
 (p3) t = buf >> 4 
 (p3) d = t & 0xf 

 

Figure 3: Control flow v. predicated execution. Part (a)

shows a segment of control-flow that demonstrates a sim-

ple if-then-else statement. As is typical with multime-

dia and integer applications, there are few instructions

per basic block in the example. Part (b) is the corre-

sponding predicated hyperblock. If-conversion merges

disjoint paths of control by creating predicated hyper-

blocks. Choosing which paths to merge is a balancing

act. In this example, branching may be more efficient

than predicating if p3 is rarely true.

operation presented in Section 3. Only the best expression is
guaranteed survival. Typically, GP practitioners use much
higher replacement rates. However, since we use dynamic
subset selection, only a subset of benchmarks is evaluated
in a generation. Thus, we need a lower replacement rate
in order to increase the likelihood that a given expression
will be tested on more than one subset of benchmarks. The
mutation operator, which is discussed in the same section,
mutates roughly 5% of the new expressions. Finally, we use
a tournament size of 7 when selecting the fittest expressions.
This setting causes moderate selection pressure.

The following three sections build upon the methodology
described in this section by presenting individual case stud-
ies. Results for each of the case studies are included in their
respective sections.

5. CASE STUDY I: HYPERBLOCK
FORMATION

This section describes the operation of our system in the
context of a specific compiler optimization: hyperblock for-
mation. Here we introduce the optimization, and then we
discuss factors that might be important when creating a pri-
ority function for it. We conclude the section by presenting
experimental results for hyperblock formation.

Architects have proposed two noteworthy methods for de-
creasing the costs associated with control transfers3: im-
proved branch prediction, and predication. Improved branch
prediction algorithms would obviously increase processor uti-
lization. Unfortunately, some branches are inherently unpre-
dictable, and hence, even the most sophisticated algorithm
would fail. For such branches, predication may be a fruitful
alternative.

3
The Pentium r© 4 architecture features 20 pipeline stages. It squashes up to

126 in-flight instructions when it mispredicts.

Rather than relying on branch prediction, predication al-
lows a multiple-issue processor to simultaneously execute the
taken and fall-through paths of control flow. The processor
nullifies all instructions in the incorrect path. In this model,
a predicate operand guards the execution of every instruc-
tion. If the value of the operand is true, then the instruction
executes normally. If however, the operand is false, the pro-
cessor nullifies the instruction, preventing it from modifying
processor state.

Figure 3 highlights the difference between control-flow
and predicated execution. Part (a) shows a segment of
control-flow. Using a process dubbed if-conversion, the IM-
PACT predicating compiler merges disjoint paths of execu-
tion into a predicated hyperblock. A hyperblock is a predi-
cated single-entry, multiple-exit region. Part (b) shows the
hyperblock corresponding to the control-flow in part (a).
Here, p2 and p3 are mutually exclusive predicates that are
set according to the branch condition in part (a).

Though predication effectively exposes ILP, simply pred-
icating everything will diminish performance by saturating
machine resources with useless instructions. However, an
appropriate balance of predication and branching can dras-
tically improve performance.

5.1 Feature Extraction
In the following list we give a brief overview of several cri-

teria that are useful to consider when forming hyperblocks.
Such criteria are often referred to as features. In the list,
a path refers to a path of control flow (i.e., a sequence of
basic blocks that are connected by edges in the control flow
graph):

• Path predictability: Predictable branches incur no
misprediction penalties, and thus, should probably re-
main unpredicated. Combining multiple paths of ex-
ecution into a single predicated region uses precious
machine resources [15]. In this case, using machine
resources to parallelize individual paths is typically
wiser.

• Path frequency: Infrequently executed paths are
probably not worth predicating. Including the path
in a hyperblock would consume resources, and could
negatively affect performance.

• Path ILP: If a path’s level of parallelism is low, it may
be worthwhile to predicate the path. In other words, if
a path does not fully use machine resources, combining
it with another sequential path probably will not di-
minish performance. Because predicated instructions
do not need to know the value of their guarding pred-
icate until late in the pipeline, a processor can sustain
high levels of ILP.

• Number of instructions in path: Long paths use
up machine resources, and if predicated, will likely
slow execution. This is especially true when long paths
are combined with short paths. Since every instruc-
tion in a hyperblock executes, long paths effectively
delay the time to completion of short paths. The cost
of misprediction is relatively high for short paths. If
the processor mispredicts on a short path, the pro-
cessor has to nullify all the instructions in the path,
and the subsequent control-independent instructions
fetched before the branch condition resolves.



• Number of branches in path: Paths of control
through several branches have a greater chance of mis-
predicting. Therefore, it may be worthwhile to predi-
cate such paths. On the other hand, including several
such paths may produce large hyperblocks that satu-
rate resources.

• Compiler optimization considerations: Paths that
contain hazard conditions (i.e., pointer dereferences
and procedure calls) limit the effectiveness of many
compiler optimizations. In the presence of hazards, a
compiler must make conservative assumptions. The
code in Figure 3(a) could benefit from predication.
Without architectural support, the load from *inp can-
not be hoisted above the branch. The program will
behave unexpectedly if the load is not supposed to ex-
ecute and it accesses protected memory. By removing
branches from the instruction stream, predication af-
fords the scheduler freer code motion opportunities.
For instance, the predicated hyperblock in Figure 3(b)
allows the scheduler to rearrange memory operations
without control-flow concerns.

• Machine-specific considerations: A heuristic should
account for machine characteristics. For instance, the
branch delay penalty is a decisive factor.

Clearly, there is much to consider when designing a heuris-
tic for hyperblock selection. Many of the above considera-
tions make sense on their own, but when they are put to-
gether, contradictions arise. Finding the right mix of criteria
to construct an effective priority function is nontrivial. That
is why we believe automating the decision process is crucial.

5.2 Trimaran’s Heuristic
We now discuss the heuristic employed by Trimaran’s IM-

PACT compiler for creating predicated hyperblocks [15, 16].
The IMPACT compiler begins by transforming the code
so that it is more amenable to hyperblock formation [15].
IMPACT’s algorithm then identifies acyclic paths of con-
trol that are suitable for hyperblock inclusion. Park and
Schlansker detail this portion of the algorithm in [21]. A pri-
ority function— which is the critical calculation in the predi-
cation decision process— assigns a value to each of the paths
based on characteristics such as the ones just described [15].
Some of these characteristics come from runtime profiling.

IMPACT uses the priority function shown below:

hi =

�
0.25 : if pathi contains a hazard.

1 : if pathi is hazard free.

d ratioi =
dep heighti

maxj=1→N dep heightj

o ratioi =
num opsi

maxj=1→N num opsj

priorityi = exec ratioi · hi · (2.1 − d ratioi − o ratioi) (1)

The heuristic applies the above equation to all paths in a
predicatable region. Based on a runtime profile, exec ratio
is the probability that the path is executed. The prior-
ity function also penalizes paths that contain hazards (e.g.,

Feature Description

Registers 64 general-purpose registers, 64 floating-
point registers, and 256 predicate
registers.

Integer units 4 fully-pipelined units with 1-cycle la-
tencies, except for multiply instructions,
which require 3 cycles, and divide instruc-
tions, which require 8.

Floating-point units 2 fully-pipelined units with 3-cycle laten-
cies, except for divide instructions, which
require 8 cycles.

Memory units 2 memory units. L1 cache accesses take
2 cycles, L2 accesses take 7 cycles, and
L3 accesses require 35 cycles. Stores are
buffered, and thus require 1 cycle.

Branch unit 1 branch unit.
Branch prediction 2-bit branch predictor with a 5-cycle

branch misprediction penalty.

Table 3: Architectural characteristics. This table de-

scribes the EPIC architecture over which we evolved.

This model approximates the Intel Itanium architecture.

pointer dereferences and procedure calls). Such paths may
constrain aggressive compiler optimizations. To avoid large
hyperblocks, the heuristic is careful not to choose paths that
have a large dependence height (dep height) with respect
to the maximum dependence height. Similarly it penalizes
paths that contain too many instructions (num ops).

IMPACT’s algorithm then merges the paths with the high-
est priorities into a predicated hyperblock. The algorithm
stops merging paths when it has consumed the target archi-
tecture’s estimated resources.

5.3 Experimental Setup
This section discusses the experimental results for opti-

mizing Trimaran’s hyperblock selection priority function.
Trimaran is an integrated compiler and simulator for a pa-
rameterized EPIC architecture. Table 3 details the specific
architecture over which we evolved. This model resembles
Intel’s Itanium r© architecture.

We modified Trimaran’s IMPACT compiler by replacing
its hyperblock formation priority function (Equation 1) with
our GP expression parser and evaluator. This allows IM-
PACT to read an expression and evaluate it based on the
values of human-selected features that might be important
for creating effective priority functions. Table 4 describes
these features.

The hyperblock formation algorithm passes the features
in the table as parameters to the expression evaluator. For
instance, if an expression contains a reference to dep height,
the path’s dependence height will be used when the expres-
sion is evaluated. Most of the characteristics in Table 4
were already available in IMPACT. Equation 1 has a local
scope. To provide some global information, we also extract
the minimum, maximum, mean, and standard deviation of
all path-specific characteristics in the table.

We added a 2-bit dynamic branch predictor to the sim-
ulator and we modified the compiler’s profiler to extract
branch predictability statistics. Lastly, we enabled the fol-
lowing compiler optimizations: function inlining, loop un-
rolling, backedge coalescing, acyclic global scheduling [6],
modulo scheduling [25], hyperblock formation, register allo-
cation, machine-specific peephole optimization, and several
classic optimizations.



Feature Description

dep height The maximum instruction dependence
height over all instructions in path.

num ops The total number of instructions in the
path.

exec ratio How frequently this path is executed com-
pared to other paths considered (from
profile).

num branches The total number of branches in the path.
predictability Average path predictability obtained by

simulating a branch predictor (from pro-
file).

predict product Product of branch predictabilities in the
path (from profile).

avg ops executed The average number of instructions exe-
cuted in the path (from profile).

unsafe JSR If the path contains a subroutine call that
may have side-effects, it returns true; oth-
erwise it returns false.

safe JSR If the path contains a side-effect free sub-
routine call, it returns true; otherwise it
returns false.

mem hazard If the path contains an unresolvable mem-
ory access, it returns true; otherwise it
returns false.

max dep height The maximum dependence height over all
paths considered for hyperblock inclusion.

total ops The sum of all instructions in paths con-
sidered for hyperblock inclusion.

num paths Number of paths considered for hyper-
block inclusion.

Table 4: Hyperblock selection features. The compiler

writer chooses interesting attributes, and the system

evolves a priority function based on them. We rely on

profile information to extract some of these parameters.

We also include the min, mean, max, and standard devi-

ation of path characteristics. This provides some global

information to the greedy local heuristic.

5.4 Experimental Results
We use the familiar benchmarks in Table 5 to test our sys-

tem. All of the Trimaran certified benchmarks are included
in the table4 [24]. Our suite also includes many of the Media-
bench benchmarks [14]. The build process for ghostscript
proved too difficult to compile. We also exclude the remain-
der of the Mediabench applications because the Trimaran
system does not compile them correctly5.

We begin by presenting results for application-specialized
heuristics. Following this, we show that it is possible to use
Meta Optimization to create general-purpose heuristics.

5.4.1 Specialized Priority Functions
Specialized heuristics are created by optimizing a prior-

ity function for a given application. In other words, we
train the priority function on a single benchmark. Figure 4
shows that Meta Optimization is extremely effective on a
per-benchmark basis. The dark bar shows the speedup (over
Trimaran’s baseline heuristic) of each benchmark when run
with the same data on which it was trained. The light bar
shows the speedup attained when the benchmark processes
a data set that was not used to train the priority function.
We call this the novel data set.

4
Due to preexisting bugs in Trimaran, we could not get 134.perl to execute

correctly, though [24] certified it.
5
We exclude cjpeg, the complement of djpeg, because it does not execute prop-

erly when compiled with some priority functions. Our system can also be used
to uncover bugs!

Benchmark Suite Description

codrle4 See [4] RLE type 4 encoder/decoder.
decodrle4
huff enc See [4] A Huffman encoder/decoder.
huff dec
djpeg Mediabench Lossy still image decompressor.
g721encode Mediabench CCITT voice
g721decode compressor/decompressor.
mpeg2dec Mediabench Lossy video decompressor.
rasta Mediabench Speech recognition application.
rawcaudio Mediabench Adaptive differential pulse code
rawdaudio modulation audio encoder/decoder.
toast Mediabench Speech transcoder.
unepic Mediabench Experimental image decompressor.
085.cc1 SPEC92 gcc C compiler.
052.alvinn SPEC92 Single-precision neural network

training.
179.art SPEC2000 A neural network-based image

recognition algorithm.
osdemo Mediabench Part of a 3-D graphics library
mipmap Mediabench similar to OpenGL.
129.compress SPEC95 In-memory file compressor and

decompressor.
023.eqntott SPEC92 Creates a truth table from a logical

representation of a Boolean equa-
tion.

132.ijpeg SPEC95 JPEG compressor and
decompressor.

130.li SPEC95 Lisp interpreter.
124.m88ksim SPEC95 Processor simulator.
147.vortex SPEC95 An object oriented database.

Table 5: Benchmarks used. The set includes applica-

tions from the SpecInt, SpecFP, and Mediabench bench-

mark suites, as well as a few miscellaneous programs.

Intuitively, in most cases the training input data achieves
a better speedup. Because Meta Optimization is performance-
driven, it selects priority functions that excel on the training
input data. The alternate input data likely exercises dif-
ferent paths of control flow—paths which may have been
unused during training. Nonetheless, in every case, the
application-specific priority function outperforms the base-
line.

Figure 5 shows fitness improvements over generations. In
many cases, Meta Optimization finds a superior priority
function quickly, and finds only marginal improvements as
the evolution continues. In fact, the baseline priority func-
tion is quickly obscured by GP-generated expressions. Of-
ten, the initial population contains at least one expression
that outperforms the baseline. This means that by simply
creating and testing 399 random expressions, we were able
to find a priority function that outperformed Trimaran’s for
the given benchmark.

Once GP has discovered a decent solution, the search
space and operator dynamics are such that most offspring
will be worse, some will be equal and very few turn out to be
better. This seems indicative of a steep hill in the solution
space. In addition, multiple reruns using different initializa-
tion seeds reveal minuscule differences in performance. It
might be a space in which there are many possible solutions
associated with a given fitness.

5.4.2 General-Purpose Priority Functions
We divided the benchmarks in Table 5 into two sets6: a

training set, and a test set. Instead of creating a priority

6
We chose to train mostly on Mediabench applications because they compile and

run faster than the Spec benchmarks.
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Figure 4: Hyperblock specialization. This graph shows

speedups obtained by training on a per-benchmarks ba-

sis. The dark colored bars are executions using the same

data set on which the specialized priority function was

trained. The light colored bars are executions that use

an alternate, or novel data set.

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35 40 45 50

Generation

S
p
e
e
d
u
p

129.compress

g721decode

mpeg2dec

rawcaudio

rawdaudio

toast

huff_enc

huff_dec

Figure 5: Hyperblock formation evolution. This figure

graphs the best fitness over generations. For this prob-

lem, Meta Optimization quickly finds a priority function

that outperforms Trimaran’s baseline heuristic.

function for each benchmark, in this section we aim to find
one priority function that works well for all the benchmarks
in the training set. To this end, we evolve over the training
set using dynamic subset selection [9].

Figure 6 shows the results of applying the single best pri-
ority function to the benchmarks in the training set. The
dark bar associated with each benchmark is the speedup
over Trimaran’s base heuristic when the training input data
is used. This data set yields a 44% improvement. The light
bar shows results when novel input data is used. The overall
improvement for this set is 25%.

It is interesting that, on average, the general-purpose pri-
ority function outperforms the application-specific priority
function on the novel data set. The general-purpose solution
is less susceptible to variations in input data because it was
trained to be more general.

We then apply the resulting priority function to the bench-
marks in the test set. The machine-learning community
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Figure 6: Training on multiple benchmarks. A sin-

gle priority function was obtained by training over all

the benchmarks in this graph. The dark bars represent

speedups obtained by running the given benchmark on

the same data that was used to train the priority func-

tion. The light bars correspond to a novel data set.

refers to this as cross validation. Since the benchmarks in
the test set are not related to the benchmarks in the training
set, this is a measure of the priority function’s generality.

The results of the cross validation are shown in Figure 7.
This experiment applies the best priority function on the
training set to the benchmarks in the test set. The av-
erage speedup on the test set is 9%. In three cases (un-
epic, 023.eqntott, and 085.cc1) Trimaran’s baseline heuris-
tic marginally outperforms the GP-generated priority func-
tion. For the remaining benchmarks, the heuristic our sys-
tem found is better.

5.4.3 The Best Priority Function
Figure 8 shows the best general-purpose priority function

our system found for hyperblock selection. Because par-
simony pressure favors small expressions, most of our sys-
tem’s solutions are readable. Nevertheless, the expressions
presented in this paper have been hand simplified for ease
of discussion.

Notice that some parts of the expression have no im-
pact on the overall result. For instance, removing the sub-
expression on line 2 will not affect the heuristic; the value
is invariant to a scheduling region since the mean execution
ratio is the same for all paths in the region. Such ‘use-
less’ expressions are called introns. It turns out that introns
are actually quite useful for preserving good building blocks
during crossover and mutation [13].

The conditional multiply statement on line 4 does have a
direct effect on the priority function: it favors paths that do
not have pointer dereferences (because the sub-expression
in line 5 will always be greater than one). Pointers inhibit
the effectiveness of the scheduler and other compiler opti-
mizations, and thus dereferences should be penalized. The
IMPACT group came to the exact same conclusion, though
the extent to which they penalize dereferences differs [15].

The sub-expression on line 8 favors ‘bushy’ parallel paths,
where there are numerous independent operations. This re-
sult is somewhat counterintuitive since highly parallel paths
will quickly saturate machine resources. In addition, paths
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Figure 7: Cross validation of the general-purpose prior-

ity function. The best priority function found by training

on the benchmarks in Figure 6 is applied to the bench-

marks in this graph.

(1) (add
(2) (sub (mul exec ratio mean 0.8720) 0.9400)
(3) (mul 0.4762
(4) (cmul (not mem hazard)
(5) (mul 0.6727 num paths)
(6) (mul 1.1609
(7) (add
(8) (sub
(9) (mul
(10) (div num ops dep height) 10.8240)
(11) exec ratio)
(12) (sub (mul (cmul has unsafe jsr
(13) predict product mean
(14) 0.9838)
(15) (sub 1.1039 num ops max))
(16) (sub (mul dep height mean
(17) num branches max )
(18) num paths)))))))

Figure 8: The best priority function our system found

for hyperblock scheduling.

with higher exec ratio’s are slightly penalized, which also
defies intuition.

The conditional multiply expression on line 12 penalizes
paths with unsafe calls (i.e., calls to subroutines that may
have side effects). Once again this agrees with the IMPACT
group’s reasoning [15].

Because Trimaran is such a large and complicated sys-
tem, it is difficult to know exactly why the priority function
in Figure 8 works well. This is exactly the point of us-
ing a methodology like Meta Optimization. The bountiful
complexities of compilers and systems are difficult to un-
derstand. Also worthy of notice is the fact that we get such
good speedups, particularly on the training set, by changing
such a small portion of the compiler.

The next section presents another case study, which we
also test on Trimaran.

6. CASE STUDY II:
REGISTER ALLOCATION

The importance of register allocation is well-known, so we
will not motivate the optimization here. Many register al-
location algorithms use cost functions to determine which

variables to spill when spilling is required. For instance in
priority-based coloring register allocation, the priority func-
tion is an estimate of the relative benefits of storing a given
variable in a register [7].

Priority-based coloring first associates a live range with
every variable. A live range is the composition of code
segments (basic blocks), through which the associated vari-
able’s value must be preserved. The algorithm then pri-
oritizes each live range based on the estimated execution
savings of register allocating the associated variable:

savingsi = wi · (LDsave · usesi + STsave · defsi) (2)

priority(lr) =

�
i∈lr savingsi

N
(3)

Equation 2 is used to compute the savings of each code
segment. LDsave and STsave are estimates of the execu-
tion time saved by keeping the associated variable in a reg-
ister for references and definitions respectively. usesi and
defsi represent the number of uses and definitions of a vari-
able in block i. wi is the estimated execution frequency for
the block.

Equation 3 sums the savings over the N blocks that com-
pose the live range. Thus, this priority function represents
the savings incurred by accessing a register instead of re-
sorting to main memory.

The algorithm then tries to assign registers to live ranges
in priority order. Please see [7] for a complete description
of the algorithm. For our purposes, the important thing to
note is that the success of the algorithm depends on the
priority function.

The priority function described above is intuitive— it as-
signs weights to live ranges based on the estimated execution
savings of register allocating them. Nevertheless, our system
finds functions that improve the heuristic by up to 11%.

6.1 Experimental Results
We collected these results using the same experimental

setup that we used for hyperblock selection. We use Tri-
maran and we target the architecture described in Table 3.
However, to more effectively stress the register allocator, we
only use 32 general-purpose registers and 32 floating-point
registers.

We modified Trimaran’s Elcor register allocator by re-
placing its priority function (Equation 2) with an expres-
sion parser and evaluator. The register allocation heuristic
described above essentially works at the basic block level.
Equation 3 simply sums and normalizes the priorities of the
individual basic blocks. For this reason, we stay within the
algorithm’s framework and leave Equation 3 intact.

For a more detailed description of our experiments with
register allocation, including the features we extracted to
perform them, please see [23].

6.1.1 Specialized Priority Functions
These results indicate that Meta Optimization works well,

even for well-studied heuristics. Figure 9 shows speedups
obtained by specializing Trimaran’s register allocator for a
given application. The dark bar associated with each appli-
cation represents the speedup obtained by using the same
input data that was used to specialize the heuristic. The
light bar shows the speedup when the benchmark processes
a novel data set.
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Figure 9: Register allocation specialization. This

graph shows speedups obtained by training on a per-

benchmarks basis. The dark colored bars are executions

using the same data set on which the specialized pri-

ority function was trained. The light colored bars are

executions that use a novel data set.
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Figure 10: Register allocation evolution. This figure

graphs fitness over generations. Unlike the hyperblock

selection evolution, these fitnesses improve gradually.

Once again, it makes sense that the training input data
outperforms the alternate input data. In the case of reg-
ister allocation however, we see that the disparity between
speedups on training and novel data is less pronounced than
it is with hyperblock selection. This is likely because hyper-
block selection is extremely data-driven. An examination of
the general-purpose hyperblock formation heuristic reveals
two dynamic factors (exec ratio and predict product mean)
that are critical components in the hyperblock decision pro-
cess.

Figure 10 graphs fitness improvements over generations.
It is interesting to contrast this graph with Figure 5. The
fairly constant improvement in fitness over several genera-
tions seems to suggest that this problem is harder to op-
timize than hyperblock selection. Additionally, unlike the
hyperblock selection algorithm, the baseline heuristic typi-
cally remained in the population for several generations.
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Figure 11: Training a register allocation priority func-

tion on multiple benchmarks. Our DSS evolution trained

on all the benchmarks in this figure. The single best pri-

ority function was applied to all the benchmarks. The

dark bars represent speedups obtained by running the

given benchmark on the same data that was used to

train the priority function. The light bars correspond

to an alternate data set.
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Figure 12: Cross validation of the general-purpose reg-

ister allocation priority function. The best priority func-

tion found by the DSS run is applied to the benchmarks

in this graph. Results from two target architectures are

shown.

6.1.2 General-Purpose Priority Functions
Just as we did in Section 5.4.2, we divide our benchmarks

into a training set and a test set7. The benchmarks in Fig-
ure 11 show the training set for this experiment. The figure
also shows the results of applying the best priority function
(from our DSS run) to all the benchmarks in the set. The
dark bar associated with each benchmark is the speedup
over Trimaran’s baseline heuristic when using the training
input data. The average for this data set is 3%. On a novel
data set we attain an average speedup of 3%, which indicates
that register allocation is not as susceptible to variations in
input data.

Figure 12 shows the cross validation results for this ex-

7
This experiment uses smaller test and training sets due to preexisting bugs in

Trimaran. It does not correctly compile several of our benchmarks when target-
ing a machine with 32 registers.
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Figure 13: Prefetching specialization. This graph shows

speedups obtained by training on a per-benchmarks ba-

sis. The dark colored bars are executions using the same

data set on which the specialized priority function was

trained. The light colored bars are executions that use

a novel data set.

periment. The figure shows the speedups (over Trimaran’s
baseline) achieved by applying the single best priority func-
tion to a set of benchmarks that were not in the training set.
The learned priority function outperforms the baseline for
all benchmarks except decodrle4 and 132.ijpeg. Although
the overall speedup on the cross validation set is only 3%,
this is an exciting result. Register allocation is well-studied
optimization which our technique is able to improve.

7. CASE STUDY III:
DATA PREFETCHING

This section describes another memory hierarchy opti-
mization. Data prefetching is an optimization aimed at re-
ducing the costs of long-latency memory accesses. By mov-
ing data from main memory into cache before it is accessed,
prefetching can effectively reduce memory latencies.

However, prefetching can degrade performance in many
cases. For instance, aggressive prefetching may evict useful
data from the cache before it is needed. In addition, adding
unnecessary prefetch instructions may hinder instruction ca-
che performance and saturate memory queues.

The Open Research Compiler (ORC) [19] uses an exten-
sion of Mowry’s algorithm [18] to insert prefetch instruc-
tions. ORC uses a priority function that assigns a Boolean
confidence to prefetching a given address. Subsequent passes
use this value to determine whether or not to prefetch the
address. Currently, the priority function is simply based
upon how well the compiler can estimate loop trip counts.

7.1 Experimental Setup
This case study is different from those already presented

in two important ways. First, we collected the results of this
section in the context of a real machine: we use the Open
Research Compiler, and we target an Itanium I architecture.
Just as with the previous two case studies, the fitness of an
expression is the speedup over the baseline priority function.
However, unlike simulated execution which is perfectly re-
producible, real environments are inherently noisy. Even on
an unloaded system, back-to-back runs of a program may
vary.
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Figure 14: Prefetching evolution. This figure graphs fit-

ness over generations. The baseline expression is quickly

weeded out of the population.

Fortunately, GP can handle noisy environments, as long
as the level of noise is smaller than attainable speedups us-
ing our technique. For the Itanium processor, this is in-
deed the case. Since it is a single threaded, statically sched-
uled processor, our measurements are fairly consistent; vari-
ations due to noise are well within the range of our attained
speedups.

Another major divergence from the methodology employed
in the last two case studies is the format of the priority func-
tion that we aim to optimize. Whereas the priority functions
for register allocation and hyperblock formation are real-
valued, the prefetching priority function is Boolean-valued.
This case study emphasizes GP’s flexibility.

As the ORC website recommends, we compile all bench-
marks with -O3 optimizations enabled, and we use profile-
driven feedback. For additional details such as the features
we extracted for this optimization, please see [23].

7.2 Experimental Results
Prefetching is known to be an effective technique for float-

ing point benchmarks, and for this reason we train on various
SPECFP benchmarks in this case study.

7.2.1 Specialized Priority Functions
Figure 13 shows the results of the ten different application-

specialized priority functions. Closer examination of the GP
solutions reveals that ORC overzealously prefetches and that
by simply taming the compiler’s aggressiveness, one can sub-
stantially improve performance (on this set of benchmarks).
The GP solutions rarely prefetched. In fact, shutting off
prefetching altogether achieves gains within 7% of the spe-
cialized priority functions.

Figure 14 graphs fitness over generation for the application-
specific experiments. Just as with hyperblock selection,
the baseline priority function has no impact on the final
solutions— it is quickly obscured by superior expressions.
As is the case with hyperblock selection, it appears that in
many cases, GP solutions get ‘stuck’ in a local minimum in
the solution space; the fitnesses stop improving early in the
evolution. One plausible explanation for this is our use of
parsimony pressure in the selection process. For application-
specific evolutions, it is often the case that very small expres-
sions work well. While these small expressions are effective,
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Figure 15: Training a prefetching priority function on

multiple benchmarks. Our DSS evolution trained on all

the benchmarks in this figure. The single best priority

function was applied to all the benchmarks. The dark

bars represent speedups obtained by running the given

benchmark on the same data that was used to train the

priority function. The light bars correspond to an alter-

nate data set.

they limit the genetic material available to the crossover
operator. Furthermore, since we always keep the best ex-
pression, the population soon becomes inbred with copies of
the top expression. Future work will explore the impact of
parsimony pressure and elitism.

7.2.2 General-Purpose Priority Functions
The performance of the best DSS-generated prefetching

priority function is shown in Figure 15. The priority function
was trained on the same benchmarks in the figure, which
are a combination of SPEC92 and SPEC95 floating point
benchmarks. Data prefetching, like hyperblock selection, is
extremely data-driven. By applying the same input data
that we used to train the priority function we achieve a
31% speedup. Somewhat surprisingly, the novel input data
set achieves a better speedup of 36%. Because the priority
function learned to prefetch infrequently, it is simply the
case that the novel data set is more sensitive to prefetching
than the training data set is.

Figure 16 shows the cross validation results for this opti-
mization, and prompts us to mention a caveat of our tech-
nique. GP’s ability to identify good general-purpose so-
lutions is based on the benchmarks over which they are
evolved. For the SPEC92 and SPEC95 benchmarks that
were used to train our general-purpose heuristic, aggressive
prefetching was debilitating. However, for a couple of bench-
marks in the SPEC2000 floating point set, we see that ag-
gressive prefetching is desirable. Thus, unless designers can
assert that the training set provides adequate problem cov-
erage, they cannot completely trust GP-generated solutions.

8. RELATED WORK
Many researchers have applied machine-learning methods

to compilation, and therefore, only the most relevant works
are cited here.

Calder et al. used supervised learning techniques to fine-
tune static branch prediction heuristics [5]. They employ
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Figure 16: Cross validation of the general-purpose

prefetching priority function on SPEC2000. The best

priority function found by the DSS run is applied to the

benchmarks in this graph. Results from two target ar-

chitectures are shown.

neural networks and decision trees to search for effective
static branch prediction heuristics. While our methodology
is similar, our work differs in several important ways. Most
importantly, we use unsupervised learning, while they use
supervised learning.

Unsupervised learning is used to capture inherent orga-
nization in data, and thus, only input data is required for
training. Supervised learning attempts to match training
inputs with known outcomes, called labels. This means that
their learning techniques rely on knowing the optimal out-
come, while ours does not8. In their case determining the op-
timal outcome is trivial— they simply run the benchmarks
in their training set and note the direction that each branch
favors. In this sense, their method is simply a classifier:
classify the data into two groups, either taken or not-taken.
Priority functions cannot be classified in this way, and thus
they demand an unsupervised method such as ours.

We also differ in the end goal of our learning techniques.
They use misprediction rates to guide the learning process.
While this is a perfectly valid choice, it does not necessarily
reflect the bottom line: execution time.

Monsifrot et al. use a classifier based on decision tree
learning to determine which loops to unroll [17]. Like [5],
this supervised methodology relies on extracting labels, which
is not only difficult, in many cases it is simply not feasible.

Cooper et al. use genetic algorithms to solve compilation
phase ordering problems [8]. Their technique is quite ef-
fective. However, like other related work, they evolve the
application, not the compiler9. Thus, their compiler itera-
tively evolves every program it compiles. By evolving com-
piler heuristics, and not the applications themselves, we need
only apply our process once as shown in Section 5.4.2.

The COGEN(t) compiler creatively uses genetic algorithms
to map code to irregular DSPs [11]. This compiler, though
interesting, also evolves on a per-application basis. Nonethe-
less, the compile-once nature of DSP applications may war-
rant the long, iterative compilation process.

8
This is a strict requirement both for decision trees and the gradient descent

method they use to train their neural network.
9
However, they were able to manually construct a general-purpose sequence us-

ing information gleaned from their application-specific evolutions.



9. CONCLUSION
Compiler developers have always had to contend with

complex phenomenon that are not easy modeled. For ex-
ample, it has never been possible to create a useful model
for all the input programs the compiler has to optimize.
However until recently, most architectures— the target of
compiler optimizations— were simple and analyzable. This
is no longer the case. A complex compiler with multiple in-
terdependent optimization passes exacerbates the problem.
In many instances, end-to-end performance can only be eval-
uated empirically.

Optimally solving NP-hard problems is not practical even
when simple analytical models exist. Thus, heuristics play
a major role in modern compilers. Borrowing techniques
from the machine-learning community, we created a gen-
eral framework for developing compiler heuristics. We ad-
vocate a machine-learning based methodology for automat-
ically learning effective compiler heuristics.

The techniques presented in this paper show promise, but
they are still in their infancy. For many applications our
techniques found excellent application-specific priority func-
tions. However, the disparity in some cases between the
application-specific performance and the general-purpose per-
formance tells us that our techniques can be improved.

We also note disparities between the performance of train-
ing set applications and the cross validation performance. In
some cases our solutions overfit the training set. If compiler
developers use our technique but only train using bench-
marks on which their compiler will be judged, the generality
of their compiler may actually be reduced.

Our fledgling research has a few shortcomings that future
work will address. For instance, the success of any learn-
ing algorithm hinges on selecting the right features. We will
explore techniques that aid in extracting features that best
reflect program variability. While genetic programming is
well-suited to our application, it too has shortcomings. The
overriding goal of our research is to free humans from te-
dious parameter tweaking. Unfortunately, GP’s success is
dependent on parameters such as population size and mu-
tation rate, and finding an adequate solution relies on some
experimentation (which fortunately can be performed with
a minimal amount of user interaction). Future work will
experiment with different learning techniques.

We believe the benefits of using a system like ours far out-
weighs the drawbacks. While our techniques do not always
achieve large speedups, they do reduce design complexity
considerably. Compiler writers are forced to spend a large
portion of their time designing heuristics. The results pre-
sented in this paper lead us to believe that machine-learning
techniques can optimize heuristics at least as well human de-
signers. We believe that automatic heuristic tuning based on
empirical evaluation will become prevalent, and that design-
ers will intentionally expose algorithm policies to facilitate
machine-learning optimization.

A toolset that can be used to evolve compiler heuristics
will be available at:

http://www.cag.lcs.mit.edu/metaopt
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