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Abstract

A Dialogue State Tracker (DST) is a core com-

ponent of a modular task-oriented dialogue

system. Tremendous progress has been made

in recent years. However, the major chal-

lenges remain. The state-of-the-art accuracy

for DST is below 50% for a multi-domain di-

alogue task. A learnable DST for any new

domain requires a large amount of labeled in-

domain data and training from scratch. In this

paper, we propose a Meta-Reinforced Multi-

Domain State Generator (MERET). Our first

contribution is to improve the DST accuracy.

We enhance a neural model based DST gen-

erator with a reward manager, which is built

on policy gradient reinforcement learning (R-

L) to fine-tune the generator. With this change,

we are able to improve the joint accuracy of

DST from 48.79% to 50.91% on the Multi-

WOZ corpus. Second, we explore to train a

DST meta-learning model with a few domains

as source domains and a new domain as target

domain. We apply the model-agnostic meta-

learning (MAML) algorithm to DST and the

obtained meta-learning model is used for new

domain adaptation. Our experimental results

show this solution is able to outperform the tra-

ditional training approach with extremely less

training data in target domain.

1 Introduction

A Dialogue State Tracker (DST) is a core compo-

nent of a modular task-oriented dialogue system

(Young et al., 2013). For each dialogue turn, a DST

module takes the user utterance and the dialogue

history as input, and outputs a belief estimate of

the dialogue state. The dialogue state as of today

is simplified as a set of requests and goals, both of

which are represented as (slot, value) pairs such as

(area, centre), (food, Chinese) for a user request

I’m looking for a Chinese restaurant in the centre of

the city. A highly accurate DST is crucial to ensure

moderate price south.

the hotel 

Figure 1: An example of dialogue state tracking pro-

cess for booking a hotel, looking for an attraction and

booking a taxi between them. Each turn contains a us-

er utterance (grey) and a system utterance (blue). The

dialogue state tracker (yellow) tracks all the (domain,

slot, value) until the current turn. Blue color texts indi-

cate mentions of slot values appeared at that turn. Best

viewed in color.

the quality and smoothness of a human-machine

dialogue.

Budzianowski et al. (2018) recently introduced

a multi-domain dialogue dataset Multi-domain

Wizard-of-Oz (MultiWOZ), which is more than

one order of magnitude larger than all previous

annotated task-oriented corpora with around 10k

dialogues and involves more than 7 domains. A

domain of a task-oriented system is often defined

by an ontology, which defines all entity attributes

called slots and all possible values for each slot.

MultiWOZ presents conversation scenarios much

similar to those in real industrial applications. Fig-

ure 1 shows an example of a multi-domain dialogue,

where a user starts a conversation about hotel reser-

vation and moves on to look for attractions nearby
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of his interest. It adds a layer of complexity to the

DST and brings new challenges.

The first new challenge is how to appropriate-

ly model DST for a multi-domain dialogue task.

Multi-domain DST is in its infancy before Multi-

WOZ (Rastogi et al., 2017). Most previous work

on DST focus on one given domain (Henderson

et al., 2013, 2014; Mrkšić et al., 2017; Zhong et al.,

2018; Korpusik and Glass, 2018; Liu et al., 2019).

As Wu et al. (2019) pointed out, to process the

MultiWOZ data, the DST model has to determine

a triplet (domain, slot, value) instead of a pair (s-

lot, value) at each turn of dialogue. MultiWOZ

contains 30 (domain, slot) pairs over 4,500 pos-

sible slot values in total. The prediction space is

significantly larger. This change seems quantita-

tive. However, it challenges the foundation of most

successful DST models, where DST is casted as

a neural model based classification problem, each

(slot, value) pair is an independent class and the

number of classes is relatively limited. When the

number of classes is large enough as the case in

MultiWOZ, classification-based approaches are not

applicable. In real industry scenarios, the predic-

tion space is even larger and it is often not possible

to have full ontology available in advance (Xu and

Hu, 2018). It’s hard to enumerate all possible val-

ues for each slot. The second challenge is how

to model the commonality and differences among

domains. The number of domains is unlimited in

real-life. It won’t be able to scale up if each new

domain requires a large amount of annotated data.

To overcome these challenges, Wu et al. (2019)

proposed a TRAnsferable Dialogue statE generator

(TRADE) that generates dialogue states from utter-

ances using a copy mechanism, facilitating knowl-

edge transfer between domains. The prominent

difference from previous one-domain DST models

is that TRADE is based on a generation approach

instead of a close-set classification approach. The

generation model parameters are shared among var-

ious domains and slots. TRADE is able to help

boost the DST accuracy up to 48.62% with the

MultiWOZ corpus. It is obvious this accuracy is

far from being acceptable.

In this paper, we are motivated to enhance this

generation-based approach for two objectives, high-

er accuracy and better domain adaptability. To im-

prove DST accuracy, we propose a new framework

which contains the state generator and reward man-

ager. The state generator follows the same setup

of TRADE. The Reward Manager calculates the

reward to fine-tune the generator through policy

gradient reinforcement learning (PGRL). We use

the reward manager to help the generator allevi-

ate the objective mismatch challenge. Objective

mismatch is a limitation of encoder-decoder gen-

eration approaches, where the training process is

set to maximize the log likelihood, but it doesn’t

assure producing the best results on discrete eval-

uation metrics such as the DST accuracy. Since

MultiWOZ provides data for multiple domains, it

enables us to study the long-standing domain adapt-

ability problem. It is a hope we can train a general

DST model from multi-domain data and this mod-

el can be adapted to a new domain with minimal

examples from a new domain. We apply the meta-

learning algorithm, MAML, for this study. Our key

contributions in this paper are as follows:

• We propose a new framework as the DST mod-

el, which contains a neural model based DST

generator and a reward manager.

• With our proposal, we are able to improve

the joint accuracy of DST from 48.79% to

50.91%, which is 2.12% absolute improve-

ment over the latest state-of-the-art on the

MultiWOZ corpus.

• We apply MAML to train a meta-learning

DST model with a few domains as the train-

ing domains and a new domain as the testing

domain. Our experimental results show this

solution is able to outperform the traditional

training approach with only 30% of the in-

domain training data.

• To our knowledge, we are the first to apply

RL and MAML into DST.

2 Model MERET

The overview of our model is illustrated in Figure

2. It consists of a generator model and a reward

manager.

2.1 The Generator

In this paper, we take TRADE as our baseline. The

TRADE model comprises three components: (1)

an utterance encoder, (2) a context-enhanced slot

classifier, (3) a state generator. We briefly describe

the TRADE model in this Section.

The utterance encoder encodes dialogue ut-

terances into a sequence of fixed-length vectors.
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Figure 2: The architecture of the proposed MERET model, which contains a Generator and a Reward Manager

in general. The Generator includes (a) an utterance encoder, (b) a context-enhanced slot classifier, and (c) a

state generator. The Reward Manager calculates the reward values based on the reward functions to fine-tune the

generator through PGRL.

TRADE uses Bi-GRU (Chung et al., 2014), to

encode. Instead of initializing by concatenat-

ing GloVe embeddings (Pennington et al., 2014),

our model explore to use BERT (Devlin et al.,

2019) as embedding model. We denote a se-

quence of dialogue turns as a matrix Xt =
[Ut−l, Rt−l, ..., Ut, Rt] ∈ ℜ

|Xt|×demb , where l is

the length of the dialogue history selected, U is

the user turn, R represents the system response

and demb indicates the turn-level embedding size.

The encoder encodes Xt into a hidden matrix

Ht = [henc
1

, ..., henc|Xt|
] ∈ ℜ|Xt|×dhdd , hdd is the

hidden size.

The state generator uses GRUs as the decoder,

which takes the embedding of the jth (domain,slot)

pair as well as the kth word as input and outputs a

hidden vector hdecjk at the kth decoding step. This

hidden vector is then mapped to distribution over

the vocabulary V and over the dialogue history as

shown in Eq (1).

P vocab
jk = Softmax(E · (hdecjk )⊤) ∈ ℜ|V | (1)

P
history
jk = Softmax(Ht · (h

dec
jk )⊤) ∈ ℜ|Xt|

These two distributions are combined as Eq (2) as

the final results,

P
final
jk = p

gen
jk × P vocab

jk
+ (1− p

gen
jk )× P

history
jk

(2)

The context-enhanced slot classifier takes as

input Ht and classifies it into one of the three class-

es: ptr, none, dontcare. With a linear layer parame-

terized by Wg ∈ ℜ
3×dhdd , the slot classifier for the

jth (domain, slot) pair is defined as

Gj = Softmax(Wg · (P
history
j0 ·Ht)

⊤) ∈ ℜ3 (3)

If this slot classifier determines none or dontcare

, the system ignores any output from the state gen-

erator.

Optimization is performed jointly for both the

state generator and the slot classifier. The cross-

entropy loss is used for both, with Ls representing

the loss for the slot classifier and Lg for the gener-

ator. They are combined with hyper-parameters η

and σ.

Lmix = ηLs + σLg (4)

2.2 A Reward Manager

Generally, the cross-entropy loss is used to train a

generator. In our task, the true words Y label
j is used

and the cross-entropy loss can be defined as:

lossg = −
J∑

j=1

|Yj |∑

k=1

log
(
P

final
jk · (ylabeljk )⊤

)
(5)

where ylabeljk is the ground truth of the value word

for the jth (domain, slot) pair.

In this paper, we propose a RL-based Reward

Manager to work the generator. The Reward Man-

ager is used for calculating the reward to fine-tune

the Generator through PGRL.
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The specific modeling process of reinforcement

learning adaptation for DST task is summarized in

Algorithm 1: We treat the Generator as the target

agent to be trained. The agent interacts with an

external environment (utterances, domains, slots

and reward manager) by taking actions and receiv-

ing environment state and reward. The actions are

the choices of tokens for slot value that generates

for any given (domain, slot) pair. The action space

is the vocabulary. Following each action, the re-

ward manager calculates a reward by comparing the

generated token to the corresponding ground-truth

token. When reaching the last decoding step, the

agent updates its parameters towards maximizing

the expected reward. RL loss is defined as follows:

Lrl = −
J∑

j=1

|Yj |∑

k=1

r(ysjk) log
(
P final(ysjk)

)
(6)

where ysjk is a token sampled from the vocabulary

probability distribution and r(ysjk) means the re-

ward for the sampled token ysjk, computed by a

reward function. Intuitively, the loss function Lrl

enlarges the probability of the sampled ysjk if it

obtains a higher reward for the kth token in jth

(domain, slot) pair.

We also define a combined loss function:

L = µLrl + λLmix (7)

where Lrl is defined as the reinforcement learning

loss, Lmix is the cross-entropy loss from TRADE,

µ and λ are the combined hyper-parameters. Algo-

rithm 1 shows how this method works.

3 MAML-adaptive DST

The traditional paradigm of supervised learning is

to train a model for a specific task with plenty of

annotated data. Meta-learning aims at learning new

tasks with few steps and little data based on exist-

ing tasks. MAML (Finn et al., 2017) is the most

popular meta-learning algorithm. It has been suc-

cessfully employed in various tasks. We propose

to apply MAML to perform dialogue state tracking

for new domains. The MAML algorithm tries to

build an internal representation of multiple tasks

and maximize the sensitivity of the loss function

when applied to new tasks, so that small update of

parameters could lead to large improvement of new

task loss value. In this paper, we explore how it

works with DST, a key component in task-oriented

dialogue systems.

Algorithm 1 REINFORCE algorithm

Input: Dialogue history sequence X , ground-truth

output slot value sequences Y , a pre-trained model

πθ.

Output: Trained model πθ′ with REINFORCE

algorithm.

1: Training Steps:

2: Initialize πθ with random weights θ;

3: Pre-train πθ using cross-entropy loss of gener-

ator and classifier on dataset (X,Y );
4: Initialize πθ′ = πθ.

5: while not done do

6: Select a batch of size N from X and Y ;

7: for each slot do

8: Sample {Y s = (ys
1
, · · · , ys|Yj |

)}N
1

from

the final probability distribution of vocab-

ulary;

9: Compute reward {r(ys
1
), · · · , r(ys|Yj |

)}N
1

defined in the Reward Manager;

10: end for

11: Compute Lrl and L using Eq (6) and Eq (7);

12: Update the parameters of network with

learning rate ρ, θ′ ← θ′ + ρ∇θ′Lθ′ ;

13: end while

14: Testing Steps:

15: for batch of X and Y do

16: Generate the output Ŷ ;

17: end for

18: return The evaluated model πθ′ ;

MAML is compatible for any model training

based on gradient descent. We can denote the base-

line model as M . Training a typical gradient de-

scent model M involves (1) providing training data

and initializing parameters of M ; (2) computing

a given objective loss; (3) applying gradient de-

scent to the loss to update M parameters. With

MAML, the training steps becomes: (1) Initialize

M and making nd copies of M to be M ′
d; (2) Se-

lect training data from each domain and updating

M ′
d parameters based on gradient descent and a

loss function; (3) Calculate a loss for each domain

with their updated temporary model M ′
d; (4) Sum

up the new loss from each training domain to be a

total loss; (5) Update parameters of the original M

based on the total loss; (6) Repeat above steps until

M converges.

Algorithm 2 shows step-by-step how MAML

combines with our model MERET. Suppose we

consider nd dialogue domains, we take ntr do-
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mains as source domains for meta-training and nts

domains as target domains for meta-testing. For

each source domain, we divide the source domain

data into Dtrain
d as the support dataset and Dvalid

d

as the query dataset, d is the domain index. α,

β are two hyper-parameters for MAML, α as the

learning rate for each domain and β as the learning

rate for meta-learning update.

There are two cycles. The outer cycle is for meta-

learning, updating model parameters of M . The

inner cycle is for task learning, updating the tempo-

rary model M ′
d of each domain d. For task learning,

we select K examples from Dtrain
d for each domain

d, evaluate the gradient of the loss function as Eq

(7), update the parameters θ′d with respect the K

examples (Step 4). After each domain model is

updated once, the M model parameters are updat-

ed using the sum of the loss with respect to K ′

examples sampled from each Dvalid
d . Specifically,

we sum the loss of M ′
d in each domain to obtain

the meta loss LM ,

LM =
∑

d

Ld(M
′
d, D

v
d) (8)

Finally, we minimize the meta loss for updating

the current model M until an ideal meta-learned

model M is achieved,

M ←M − β∇M

∑

d

Ld(M
′
d, D

v
d) (9)

To adapt to a new domain, we start with the meta-

learned model M instead of initializing randomly,

new-domain training data is used to update model

parameters as multiple batches and the learnt task

model is fit for the new domain.

4 Experiments

4.1 Dataset and Evaluation Matrix

In this paper, we use MultiWOZ as our training

and testing corpus. MultiWOZ is a fully-labeled

collection of human-human written conversations

spanning over multiple domains and topics. It con-

tains 8438 multi-turn dialogues with on average

13.7 turns per dialogue. It has 30 (domain, slot)

pairs and over 4,500 slot values. We use the most

frequent five domains (restaurant, hotel, attraction,

taxi, train) in our experiments.

Two common metrics to evaluate DST models

are joint goal accuracy and slot accuracy. Joint

accuracy measures the accuracy of dialogue states,

where a dialogue state is correctly predicted only if

Algorithm 2 MAML algorithm

Input: Dtrain
d ; Dvalid

d ; α; β.

Output: Trained model M with MAML algorith-

m.

1: while not done do

2: for each domain d do

3: Select a batch of size from Dtrain
d and

Dvalid
d to get Dt

d and Dv
d;

4: Pre-update model with gradient descent:

M ′
d ←M − α∇MLd(M,Dt

d)
5: Compute Ld(M

′
d, D

v
d) using Dv

d;

6: end for

7: Update the current model M :

M ←M − β∇M

∑
d

Ld(M
′
d, D

v
d)

8: end while

9: return meta-learned model M ;

all the values of for all the (domain, slot) pairs are

correctly predicted. Slot accuracy is the accuracy

of the (domain, slot, value) tuples. Joint accuracy

is a more challenging metric.

4.2 Implementation Details

For all experiments, we choose Bi-GRU networks

with a hidden size of 768 to be the encoder and the

decoder. The model is optimized using Adam (K-

ingma and Ba, 2015) with a learning rate of 0.001.

We reduce the learning rate to half if the validation

loss increases. We set the batch (Ioffe and Szegedy,

2015) size to 32 and the dropout (Zaremba et al.,

2014) rate to 0.2. Different reward functions have

been tried through the experiment progress. We

choose a binary reward that a positive value is giv-

en when the output token equals the target and a

punishment otherwise, 1 and -0.1 respectively. We

evaluate the model every epoch and adopt early

stopping on the validation dataset. In meta-training

phase, we set different numbers of updating M ′

due to the differences in slot complexity for each

domain. The model was implemented in the py-

Torch.

4.3 Multi-domain Results

Table 1 shows our experimental results with

MERET. MERET achieves the joint goal accu-

racy of 50.91%, which is 2.12% above the latest

state-of-the-art DST model COMER and is 2.29%
higher than TRADE. Table 1 also shows accura-

cies of a few latest systems on the same corpus.

MERET is also able to obtain the best slot accura-
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DST Models Joint Acc Slot Acc

MultiWOZ Benchmark (Budzianowski et al., 2018) 25.83 –

GLAD (Zhong et al., 2018) 35.57 95.44

HyST (ensemble)(Goel et al., 2019) 44.22 –

TRADE (Wu et al., 2019) 48.62 96.92

COMER (Ren et al., 2019) 48.79 –

MERET 50.91 97.07

-BERT 50.35 96.98

-RL 50.09 97.01

Table 1: The evaluation of existing multi-domain DSTs on MultiWOZ. MERET has the highest joint accuracy,

which surpasses current state-of-the-art model. The baseline for the MultiWOZ dataset is taken from Budzianowski

et al. (2018)

New Domain (Proportion) Training Model Joint Acc Slot Acc

Taxi (1%)

Training from scratch 60.57 73.25

Fine-tuning TRADE 59.03 78.65

MERET 64.37 83.20

Attraction (1%)

Train from scratch 27.88 63.43

Fine-tuning TRADE 29.05 62.24

MERET 43.10 74.32

Table 2: Evaluation on taxi and attraction new domains. MERET outperforms learning from scratch and TRADE

fine-tune with the same data on both new domains.

Figure 3: K-shot results of different experimental set-

tings. Performance of our model surpasses training

from scratch on attraction domain with K=5.

cy 97.07% which is slightly higher than TRADE,

but not substantial. To prove the effectiveness of

our structure, we conduct ablation experiments in

different setups. MERET-BERT(remove BERT,

acc 50.35%, +1.73%) has the same embedding

Glove with TRADE, the improvement here main-

ly comes from RL, benefitting from the reward

manager, which provides an ability for the entire

model to explore rather than to be greedy at every

single step and overcomes the existing limitation

of encoder-decoder generation approach as men-

tioned in the intro. MERET-RL(remove RL, ac-

c 50.09%, +1.47%) shows the increment due to

embedding changes, which uses BERT instead of

Glove, integrating powerful pre-trained language

representation of BERT. We can see that MERET’s

advantage mainly comes from the RL. The way we

employ RL with the generator in this paper is a

good baseline. We are encouraged by these experi-

mental results for future exploration in this line of

research.

4.4 New Domain Results

To test the effectiveness of MERET, we choose

hotel, train and restaurant as the source domain-

s, taxi and attraction as the target domains. For

each source domain, we utilize 3000 dialogues on

average and 200 dialogues for training and testing.

We utilize 30 dialogues (1% of source domain)

for training on new domains with the pre-trained

model. In our experiments, we conducted com-

parison studies with three setups, (1) Training a

MERET model from scratch using 1% sampled

data from each target domain, (2) Meta-training a

MERET model using the source domain data and

then fine-tuning with 1% sampled data from each

target domain, (3) Training a TRADE model us-

ing the source domain data and then fine-tuning
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Figure 4: Distributions of different error type for two

models’ comparison.

Figure 5: Overview of correct-error rate for multi-

domain slots. The book stay slot in hotel domain and

name slot in restaurant domain has the highest and low-

est correct rate respectively, 98.97% and 91.06% corre-

spondingly.

with 1% sampled data from each target domain.

Experimental results are listed in Table 2. MERET

achieves substantial higher accuracy, 64.7% joint

goal accuracy for the Taxi domain and 43.10% for

the Attraction domain, comparing to the other two

setups. Similar advantages are obtained for slot

accuracies for both target domains.

To explore the K-shot performance of the

MERET model, we conduct experiments to mea-

sure the impact of the number of training examples

from the target domain. We meta-train MERET

with source domains and meta-test on the taxi and

attraction domain. The number of training samples

K from the target domains varies from 1 to 10. We

use K = (1, 3, 5, 10) as the testing point. Figure

3 illustrates our experiments. It’s natural that the

accuracy increases as the training data increases.

We can observe that the accuracy with K = 5 of

 

Figure 6: The changes of joint accuracy over dialogue

turns. The performance of our model MERET gradu-

ally emerges as the number of dialogue turns increases

with the help of RL maximizing reward expectations.

the attraction domain surpasses the accuracy with

training MERET from scratch using 1% (30 dia-

logues) of the attraction domain data. This demon-

strates our model’s capability to achieve good per-

formance with a fraction of the target data.

4.5 Analysis and Discussion

We analyze the wrong predictions and draw a heat

map of distributions for the slot classifier consider-

ing the importance of its determining to the final

output. From the map in Figure 4, we can see the

main cause of the error-maker is the classifier’s

inertia of omit-prediction from ptr to none, which

stands up to 47.3% proportion. The over-prediction

cause comes in the next, with a 27.3% rate. Val-

ue on the diagonal of the lower-left corner shows

the mis-prediction rate of the generator. Combined

with the comparison of the two pictures, we can

get the point that our proposed model has a higher

generative ability over state value.

An overview correct-error analysis of multi-

domain for slots is shown in Figure 5. The number-

related slots book stay in hotel domain and book

day in restaurant domain have the highest correct

rates, 98.97% and 98.94%, respectively.The name-

related slots in the restaurant, attraction, and hotel

domains have the highest error rates, 8.94%, 7.36%,

and 7.21%, respectively. It is because these slots

usually have a large number of possible values set

and high annotation errors. The type slot of hotel

domain also keeps a high error rate in different ex-

periments, even if it is an easy task with only two

possible values in the ontology. The reason is that

labels of the (hotel, type) pair are usually missing

in the dataset. We further show the performance

of our model over different dialogue turn in Fig-

ure 6. As the number of dialogue turn increases,
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User: I’m looking for a jamaican restaurant in the east.

System: There are no jamaican restaurants in the east. Would you like to

try another food type or area?

User: I’m looking for a place that serves jamaican food in the east. If

not, italian will do.

System: There is one Italian place in the east, Pizza Hut Fen Ditton.

TRADE prediction: { (restaurant, area, east), (restaurant, food, jamaican) }

MERET prediction: { (restaurant, area, east), (restaurant, food, italian) }

Table 3: Case study for state Generator. We can find that with the same context, MERET outperforms TRADE in

terms of state generation for DST.

the influence of context gradually appears for the

final results due to the abilities of different model-

s. We can see that MERET outperforms TRADE

gradually. This is especially true when the context

length is long. Our model can carry information

over multiple turns which will be used for state

generator with the help of RL maximizing rewards

expectations in a better way. We sample one typ-

ical dialogue from MultiWOZ to demonstrate the

effectiveness of MERET in the case study. Due

to limited space, we present the same key parts

derived from two models and the details are shown

in Table 3. We observe that the constraint for food

slot is dynamic and MERET is sensitive to capture

this context information with the advantage of RL-

based fine-tune state Generator, which reinforces in

greater exploration for DST and maximizes reward

expectation in a better way.

5 Related Work

Mrkšić et al. (2017) propose neural belief tracking

(NBT) framework without relying on hand-crafted

semantic lexicons. The model uses Convolutional

Neural Networks (CNN) or Deep Neural Networks

(DNN) as dialogue context encoder and makes a

binary decision for (slot,value) pairs. Zhong et al.

(2018) propose global-local modules to learn repre-

sentations of the user utterance and system actions

and calculate similarity between the contextualized

representation and the (slot,value) pair. Xu and

Hu (2018) utilize pointer network to track dialogue

state, which proposes a conception of unseen s-

tates and unknown states earlier. Chao and Lane

(2019) use BERT as dialogue context encoder and

get contextualized representation, which is passed

to the classification module and get three classes:

none, dontcare, span. When the class is span, the

start and end positions of slot values are obtained

in the dialogue context. However, Both Xu and Hu

(2018) and Chao and Lane (2019) suffers from the

fact that they can not get correct answer when the

value does not exist in the input. Wu et al. (2019)

propose an approach that the model generates a

sequence of value from utterances by copy mecha-

nism, which can avoid the case that the value is not

in the input. It also uses a three-way classifier to get

a probability distribution over none, dontcare, ptr

classes. Ren et al. (2019) achieve state-of-the-art

performance on the MultiWOZ dataset by applying

a hierarchical encoder-decoder structure for gener-

ating a sequence of belief states. The model shares

parameters and has a constant inference time com-

plexity.

Reinforcement learning is a way of training an

agent during interaction with the environment by

maximizing expected reward. The idea of policy

gradient algorithm has been applied in training of

sequence to sequence model. Ranzato et al. (2016)

propose MIXER algorithm, which is the first appli-

cation of REINFORCE algorithm (Williams, 1992)

in training sequence to sequence model. Howev-

er, an additional model, which is used to predict

expected reward, is required in MIXER. Rennie

et al. (2017) proposed a self-critical method for

sequence training (SCST). It directly optimizes the

true, sequence-level, evaluation metric, and avoids

the training of expected future rewards estimating

model. Paulus et al. (2018) applied SCST in sum-

mary generation, which improved the rouge value

of generated result. SCST algorithm was also used

by Zhao et al. (2018) for improving story ending

generation. Keneshloo et al. (2018) present some of

the most recent frameworks that combine concept-

s from RL and deep neural networks and explain

how these two areas could benefit from each other

in solving complex seq2seq tasks.

Meta-learning aims at learning target tasks with

little data based on source tasks. This algorithm is
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compatible with any model optimized with gradien-

t descent so that it has a wide range of applicability.

Meta-learning has been applied in various fields

such as image classification (Santoro et al., 2016;

Finn et al., 2017) and robot manipulation (Duan

et al., 2016; Wang et al., 2016), etc. In the field

of natural language processing, some exploratory

work (Gu et al., 2018; Huang et al., 2018; Qian and

Yu, 2019; Madotto et al., 2019) have been proposed

in recent years. Most of them are focused on the

generation-related tasks and machine translation.

To our knowledge, few related work in dialogue s-

tate tracking (DST) was found till now. We propose

to apply model-agnostic meta-learning (MAML)

(Finn et al., 2017) algorithm for training a DST

meta-learning model with a few domains as the

training domains and a new domain as the testing

domain to achieve multi-domain adaptation.

6 Conclusion

We introduce an end-to-end generative frame-

work with pre-trained language model and copy-

mechanism, using RL-based generator to encour-

age higher semantic relevance in greater explo-

ration space for DST. Experiments on multi-

domain dataset show that our proposed model

achieves state-of-the-art performance on the DST

task, exceeding current best result by over 2%. In

addition, we train the dialogue state tracker using

multiple single-domain dialogue data with rich-

resource by using the MAML. The model is capa-

ble of learning a competitive and scalable DST on

a new domain with only a few training examples

in an efficient manner. Empirical results on Mul-

tiWOZ datasets indicate that our solution outper-

forms non-meta-learning baselines training from

scratch, adapting to new few-shot domains with

less data and faster convergence rate.

In future work, we intend to explore more with

the combination of RL and DST on the basis of

reward designing, trying to explore more in the

internal mechanism. In the long run, we are in-

terested in combing many tasks into one learning

process with meta-learning.
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