
Meta Reinforcement Learning with
Latent Variable Gaussian Processes

Steindór Sæmundsson

Department of Computing

Imperial College London

United Kingdom

Katja Hofmann

Microsoft Research

Cambridge

United Kingdom

Marc Peter Deisenroth

Department of Computing

Imperial College London

United Kingdom

Abstract

Learning from small data sets is critical in

many practical applications where data col-

lection is time consuming or expensive, e.g.,

robotics, animal experiments or drug design.

Meta learning is one way to increase the data

efficiency of learning algorithms by general-

izing learned concepts from a set of training

tasks to unseen, but related, tasks. Often, this

relationship between tasks is hard coded or re-

lies in some other way on human expertise.

In this paper, we frame meta learning as a hi-

erarchical latent variable model and infer the

relationship between tasks automatically from

data. We apply our framework in a model-

based reinforcement learning setting and show

that our meta-learning model effectively gen-

eralizes to novel tasks by identifying how new

tasks relate to prior ones from minimal data.

This results in up to a 60% reduction in the

average interaction time needed to solve tasks

compared to strong baselines.

1 INTRODUCTION

Reinforcement learning (RL) is a principled mathemati-

cal framework for learning optimal controllers from trial

and error [28]. However, RL traditionally suffers from

data inefficiency, i.e., many trials are needed to learn

to solve a specific task. This can be a problem when

learners operate in real-world environments where exper-

iments can be time consuming (e.g., where experiments

cannot run faster than real time) or expensive. For exam-

ple, in a robot learning setting, it is impractical to con-

duct hundreds of thousands of experiments with a single

robot because we will have to wait for a long time and

the wear and tear on the hardware can cause damage.

There are various ways to address data-efficiency in RL.

Model-based RL, where predictive models of the transi-

tion function are learned from data, can be used to reduce

the number of experiments in the real world. The learned

model serves as an emulator of the real world. A chal-

lenge with these learned models is the problem of model

errors: If we learn a policy based on an incorrect model,

the policy is unlikely to succeed on the real task. To miti-

gate the issue of these model errors it is recommended to

use probabilistic models and to take model uncertainty

explicitly into account during planning [27, 10]. This

approach has been applied successfully to simulated and

real-world RL problems [9], where a policy-search ap-

proach was used to learn optimal policy parameters. Ro-

bustness to model errors and, thereby, increased data ef-

ficiency, can be achieved by using model predictive con-

trol (MPC) instead of policy search since MPC allows

for online updates of the model, whereas policy search

would update the model only after a trial [17].

If we are interested in solving a set of related tasks we

can use meta learning as an orthogonal approach to in-

crease data efficiency. Generally, the aim of meta learn-

ing is to train a model on a set of training tasks and

then generalize to new tasks using minimal additional

data [12]. The strength of meta learning is to transfer

learned knowledge to related situations. For example,

we may want to control multiple robot arms with slightly

different specifications (e.g., link weights or lengths) or

different operating environments (e.g., underwater, in

low gravity). Normally, learned controllers deal with a

single task. In a robotics context, solutions for multiple

related tasks are often desired, e.g., for grasping multiple

objects [22] or in robot games, such as robot table ten-

nis [24] or soccer [3]. Much of the literature on meta and

transfer learning in RL has focused on multi-task learn-

ing, i.e., cases where the system/robot is the same, but the

task changes [16, 29, 3, 5, 20, 21, 24, 8, 12]. Although

meta learning given multiple or non-stationary dynamics

has also been considered in [11, 18, 4, 1].

We adopt a meta learning [26, 32, 12] perspective on the

problem of using knowledge from prior tasks for more

efficient learning of new ones. We take a probabilistic

view and propose to transfer knowledge within a model-

based RL setting using a latent variable model. We focus

on settings where system specifications differ, but where

the task objective is identical. We treat system specifi-

cations as a latent variable, and infer these unobserved

factors and their effects online. To address the issue of

meta learning within the context of data-efficient RL, we

propose to learn predictive dynamics models conditioned

on the latent variable and to learn controllers using these

models. We use Gaussian processes (GPs) [25] to model

the dynamics, and MPC for policy learning. To obtain a

posterior distribution on the latent variable, we use vari-

ational inference. The posterior can be updated online as

we observe more and more data, e.g., during the execu-

tion of a control strategy. Hence, we systematically com-

bine three orthogonal ideas (probabilistic models, MPC,

meta learning) for increased data efficiency in settings

where we need to solve different, but related tasks.

2 MODEL-BASED RL

We consider stochastic systems of the form

xt+1 = f(xt, ct) + ǫ (1)

with state variables x ∈ R
D, control signals c ∈ R

K

and i.i.d. system noise ǫ ∼ N (0,E), where E =
diag(σ2

1 , . . . , σ
2
D). For model-based RL we first aim to

learn the unknown transition function f . In this context,

[27, 10] highlighted that probabilistic models of f are

essential for data-efficient learning as they mitigate the

effect of model errors. Therefore, we learn the dynamics

of the system using a GP.

GP Dynamics A GP is a probabilistic, non-parametric

model and can be interpreted as a distribution over func-

tions. A GP is defined as an infinite collection of random

variables {f1, f2, . . . }, any finite number of which are

jointly Gaussian distributed [25]. A GP is fully specified

by a mean function m and a covariance function (ker-

nel) k, which allows us to encode high-level structural

assumptions on the underlying function such as smooth-

ness or periodicity. We denote an unknown function f

that is modeled by a GP by f ∼ GP (m(·), k(·, ·)). We

use the squared exponential (RBF) covariance function

k(xi,xj)=σ2
f exp

(

− 1
2 (xi − xj)

T
L
−1(xi − xj)

)

(2)

where σ2
f is the signal variance and L is a diagonal ma-

trix of squared length-scales.

RL with MPC Our objective is to find a sequence of

optimal controls c∗0, . . . , c
∗
H−1 that minimizes the ex-

pected finite-horizon cost

J = E

[

∑H

t=1
ℓ(xt)

]

, (3)

where xt is the state of the system at time t and ℓ is

a known immediate/instantaneous cost function that en-

codes the task objective. We consider an episodic setting.

Initial states x0 are sampled from p(x0) = N (µ0,Σ0).

To find the optimal open-loop sequence c∗0, . . . , c
∗
H−1,

we compute the expected long-term cost J in (3) using

Gaussian approximations p(x1), . . . , p(xH) for a given

control sequence c0, . . . , cH−1. The computation of the

expected long-term cost is detailed in the supplementary

material. Then, we find an open-loop control sequence

that minimizes the expected long-term cost and apply

the first control signal c∗0 to the system, which transi-

tions into the next state. Next we re-plan, i.e., we deter-

mine the next open-loop control sequence c∗0, . . . , c
∗
H−1

from the new state. This iterative MPC approach turns an

open-loop controller into a closed-loop controller. Com-

bining MPC with learned GP models for the underlying

dynamics increases the robustness to model errors and

has shown improved data efficiency in RL [17].

3 MODEL-BASED META RL

We assume a setting with a potentially infinite number

of dynamical systems that are of the same type but with

different specifications (e.g., multiple robotic arms with

links of differing lengths and weight). More formally,

we assume a distribution over dynamical systems with

samples fp ∼ p(f) indexed by p = 1..P . Each sam-

ple fp is a dynamical system of the form (1) with states

x ∈ R
D and control signals c ∈ R

K . Instead of learning

individual predictive models for each dynamical system

from scratch, we look to meta learning as an approach to

learning new dynamics more data efficiently by leverag-

ing shared structure in the dynamics.

Meta Learning Generally, meta learning aims to learn

new tasks with minimal data and/or computation using

knowledge or inductive biases learned from prior tasks

[12]. Here we require our model to accomplish two

things simultaneously:

1. Multi-Task Learning: Disentangle global and

task-specific properties of the different dynamics

such that it can solve multiple tasks.

2. Transfer Learning: Use global properties to gen-

eralize predictive performance to novel dynamics.

We propose to address this meta-learning challenge in

a probabilistic way: We model the distribution over sys-

tems using a latent embedding h and model the dynamics

using a global function conditioned on the latent embed-

ding. Each sample fp from the distribution is modeled

as

xt+1 = f(xt, ct,hp) + ǫ , (4)

such that the successor state depends on the latent sys-

tem specification hp. This means, we explicitly model

the global properties through a shared function f and the

task-specific variation using a distribution over the latent

variables p(hp). Framing the meta learning problem as

a hierarchical Bayesian model means that meta-training

becomes inference in a meta-learning model.

Training and Evaluation Training corresponds only

to the multi-task learning aspect of our meta learning ap-

proach. We aim to learn the global function f and the

latent embeddings hp given trajectory observations from

a set of training systems. For evaluation at test time, we

use inference to obtain a distribution over a set of latent

variables h∗ for each test system. Since our objective

is to improve data efficiency in an RL setting, we con-

sider two related but distinct measures of performance.

One corresponds to the transfer learning aspect of our

approach, where we infer only the latent test embeddings

without updating the global model f . We refer to this as

the single-shot performance. The other measure we use

is the additional data required to successfully solve a RL

task: few-shot learning. In this case, the global model f

is updated with new additional data, thus combining both

the multi-task and transfer learning aspects.

The meta RL procedures for training and testing are de-

tailed in algorithms 1 and 2, respectively.

3.1 META-LEARNING MODEL

Our meta-learning model is a GP prior on the unknown

transition function in (4) with a concatenated state x̃t =
(xt, ct,hp) ∈ R

D+K+Q as the input to the model. We

define yt = xt+1 − xt as the targets of the GP and take

the mean function to be m(x̃t) = 0, which encodes that

a priori the state does not change [9]. Each dimension of

the targets y is modeled by an independent GP. We use a

Gaussian likelihood

p(yt|x̃t,f(·),θ) = N (yt|f(x̃t),E), (5)

where θ = {E,L, σ2
f , Q} are the model hyper-

parameters and f(·) =
(

f1(·), . . . , fD(·)
)

denotes a

multi-dimensional function. We place a standard-normal

prior hp ∼ N (0, I) on the latent variables hp. The full

Initialize dataset D and model M

⊲ Initial random rollouts

forall training tasks do
execute random policy

add observations to D
end

⊲ Meta training

while training tasks not solved do
—update—: train M and infer h given D

forall unsolved training tasks do

for each step in horizon do
—plan—: get control sequence using (3)

—execute—: execute first control in

sequence

end

add observations to D

check if task solved
end

end

Algorithm 1: Model-based Meta RL with MPC (Train)

specification of the model is

p(Y ,H,f(·)|X,C) (6)

=
∏P

p=1
p(hp)

∏Tp

t=1
p(yt|xt, ct, hp,f(·))p(f(·))

where we denote a collection of vectors in bold upper-

case and we have dropped dependence on the hyper-

parameters for notation purposes. The corresponding

graphical model is given in Fig. 1. The figure shows

the dependence of individual system observations on the

global GPs f(·) modeling each dimension of the out-

puts, the system-specific latent embeddings hp and the

observed states and controls.

Model Properties Our meta-learning GP (ML-GP)

model exhibits three important properties:

1. The latent variable encodes a distribution over plau-

sible systems and is inferred from data

2. Conditioning the GP on the latent variable enables

it to disentangle global and task specific variation

in the dynamics. Generalization to new dynamics is

done by inferring the latent variable of that system.

3. The latent variable is fixed within system trajecto-

ries so that inference can be performed online (e.g.

while executing a controller).

Fig. 2 illustrates these properties on a toy example.

Given dataset D and model M from training

⊲ Single shot performance

forall test tasks do

for each step in horizon do
—plan—: get control sequence using (3)

—execute—: execute first control in sequence

—inference—: infer the value of h∗ given

observations so far
end

add observations to D

check if task solved
end

⊲ Meta test

while test tasks not solved do
—update—: train M and infer h given D

forall unsolved test tasks do

for each step in horizon do
—plan—: get control sequence using (3)

—execute—: execute first control in

sequence

end

add observations to D

check if task solved
end

end

Algorithm 2: Model-based Meta RL with MPC (Test)

3.2 INFERENCE

To learn the dynamics model we seek to optimize the

hyperparameters θ w.r.t. the log-marginal likelihood,

which involves marginalization of the latent variables

in (6). For predictions of the evolution of a system we

also need to infer the posterior GP and the posterior dis-

tribution of the latent variables H = (h1, ...,hP). We

approach this problem with approximate variational in-

ference. We posit a variational distribution that assumes

independence between the latent functions of the GP and

the latent task variables

Q(f(·),H) = q(f(·))q(H) (7)

and minimize the Kullback-Leibler divergence between

the approximate and true posterior distributions. Equiv-

alently we can maximize the evidence lower bound

L = EQ(f(·),H)

[

log
p(Y ,H,f(·)|X,C)

Q(f(·),H)

]

, (8)

which lower-bounds the log-marginal likelihood [15].

We parameterize our variational distribution such that we

can compute the lower bound in (8). We then jointly op-

timize L with respect to the model hyperparameters and

the variational parameters.

Sparse Gaussian Processes It is important to account

for the fact that training a GP on a joint data set of

yt

∞

f(·)

xt

ut

hp

t = 1, . . . , Tp

p = 1, . . . , P

Figure 1: Graphical model for our ML-GP model.

x

f
(x
)

Train pred.

Test pred.

True f(x)

Train data

Test data

Figure 2: The figure shows six unknown tasks (toy exam-

ples) with a shared structure (the same function) and task

specific variation (fixed offset). The ML-GP model is

able to disentangle the two automatically given the train-

ing data (black discs) as demonstrated by the training

prediction curves. It also infers a reasonable value for

the offset given a single observations from unseen test

tasks (orange discs) and can use the global structure to

generalize predictive performance on those tasks.

P different systems quickly becomes infeasible due to

the O(T 3) computational complexity for training and

O(T 2) for predictions where T is the total number of

observations. To address this we turn to the variational

sparse GP approximation [30] and approximate the pos-

terior GP with a variational distribution q(f(·)) that de-

pends on a small set of M ≪ T inducing points. We in-

troduce a set of M inducing inputs Z = (z1, . . . , zM) ∈
R

M×(D+K+Q), which live in the same space as x̃, with

corresponding GP function values U = (u1, . . . ,uM) ∈
R

M×D. We follow [14] and specify the variational ap-

proximation as a combination of the conditional GP prior

and a variational distribution over the inducing function

values, independent across output dimensions

q(fd(·)) =

∫

p(fd(·)|ud)q(ud)dud. (9)

where q(ud) = N (ud|md,Sd) is a full rank Gaussian.

The integral in (9) can be computed in closed form since

both terms are Gaussian, resulting in a GP with mean and

covariance functions given by

mq(·) = kT
Z(·)K

−1
ZZm

d (10)

kq(·, ·) = k(·, ·)− kT
Z(·)K

−1
ZZ(KZZ − Sd)K−1

ZZkZ(·)
(11)

where [kZ(·)]i = k(·, zi) and [KZZ]ij = k(zi, zj).
Here, the variational approach has two main benefits:

a) it reduces the complexity of training to O(TM2) and

predictions to O(TM), b) it enables mini-batch training

for further improvement in computational efficiency.

Latent Variables For the latent variables H we as-

sume a Gaussian variational posterior

q(H) =
∏P

p=1
N (hp|np,T p) (12)

where T p is in general a full rank covariance matrix. We

use a diagonal covariance in practice for more efficient

computation of the ELBO (8).

Evidence Lower Bound (ELBO) The ELBO can be

shown to decompose into (see supplementary material)

L =
∑P

p=1

∑T

t=1
Eq(ft|xt,ct)

[

log p(yt|f t)
]

−KL
[

q(H)||p(H)
]

−KL
[

q(U)||p(U)
]

(13)

where the expectation is taken with respect to

q(f t|xt, ct) =

∫

q(f t|xt, ct,hp)q(hp)dhp. (14)

We emphasize that q(f t|xt, ct,hp) =
q(f(x̃t)|xt, ct,hp) is the marginal of the GP eval-

uated at the inputs x̃t. The integral in (14) is intractable

due to the non-linear dependence on hp in (10) and

(11). Given our choice of kernel (RBF) and Gaussian

variational distribution q(hp) the first and second

moments can be computed in closed form. We could use

these terms to compute the log-likelihood term in closed

form since the likelihood is Gaussian but in practice

this can be prohibitively expensive since it requires

the evaluation of a TM2D tensor. Instead we avoid

computing the moments by approximately integrating

out the latent variable using Monte Carlo sampling.

Training For the update steps in algorithms

1 and 2 we jointly optimize the GP hyper-

parameters θ and the variational parameters

φ = {Z,M {md,Sd}Dd=1, {np,T p}
P
p=1} w.r.t.

the ELBO. For the inference step in algorithm 2, we

optimize only the variational parameters for the latent

variables h, i.e. φh = {np,T p}
P
p=1.

In practice, we use a single sample hp ∼ q(hp) drawn

from the variational distribution for each system. We use

stochastic mini-batch training, sampling a small num-

ber of trajectories and their associated latent variable

at a time. Empirically, we found standardizing the in-

put states and controls (x, c) and outputs (y) crucial

for successful training of the model. For optimization

we used Adam [19] with default hyperparameters: α =
1× 10−2, β1 = 0.9, β2 = 0.999, ǫ = 10−8.

4 EXPERIMENTS

Our experiments focus on evaluating our proposed model

in terms of predictive performance, the nature of the la-

tent embeddings and data efficiency. We address the fol-

lowing questions: “Does conditioning the GP on the la-

tent variable allow us to disentangle system specific and

global properties of the observations? Does this improve

predictive performance in the transfer learning setting?”

(Section 4.1). “Is the latent system embedding the model

learns a sensible one? (Section 4.2) “Does the appli-

cation of our ML-GP in model-based RL lead to data-

efficient learning across tasks” (Section 4.3).

As a baseline model we use a sparse GP (SGP) [30]

as described in Section 3.2 but without the latent vari-

able that explicitly represents the task. For assessing the

model quality (Section 4.1) we additionally evaluate the

performance of a standard GP with no sparse approxima-

tion. We use the following nonlinear dynamical systems

to perform our experiments:

Cart-pole swing-up The cart-pole system consists of

a cart that moves horizontally on a track with a freely

swinging pendulum attached to it. The state of this non-

linear system is the position x and velocity ẋ of the cart

and the angle θ and angular velocity θ̇ of the pendulum.

The control signals act as a horizontal force on the cart

limited to the range c ∈ [−15, 15]N. The mean of the

initial state distribution is the state where the pendulum

is hanging downward. The task is to learn to swing up

and balance the pendulum in the inverted position in the

middle of the track.

Double-pendulum swing-up The double-pendulum

system is a two-link robotic arm with two motors, one in

the shoulder and one in the elbow. The state of the system

comprises the angles θ1, θ2 and angular velocities θ̇1, θ̇2
of the inner and outer pendulums, respectively. The con-

trol signals are the torques c1,2 ∈ [−4, 4]Nm applied to

the two motors. The mean of p(x0) is the position where

both pendulums are hanging downward. The goal is to

find a control strategy that swings the double pendulum

up and balances it in the inverted position.

4.1 QUALITY OF MODEL LEARNING

In the first set of experiments, we investigate if the latent

variable of the ML-GP improves prediction performance

on unseen systems compared to the SGP baseline. To

assess the effect of the sparse approximation we also in-

clude a standard GP baseline (no sparse approximation)

in this section. To test the prediction quality, we exe-

cute the same fixed control signals1 on six settings of the

cart-pole task to generate one 100-step (10 s) trajectory

per training task. The specifications of the training tasks

were all combinations (m, l) of m ∈ {0.4, 0.6, 0.8}, l ∈
{0.5, 0.7} where m and l denote the mass and length of

the pendulum, respectively. Thus, the total number of

data points for our six training tasks is T = 600 amount-

ing to 60 s of interaction time.

For evaluation we use the same sequence of control

signals we used for training and compute the one-step

prediction quality in terms of root mean squared error

(RMSE) and negative log likelihood (NLL) on a set of

test tasks. We use 14 held-out test tasks specified as

m ∈ {0.4, 0.6, 0.7, 0.8, 0.9}, l ∈ {0.4, 0.5, 0.6, 0.7},

excluding the (m, l)-combinations of the training tasks.

During evaluation, we observe 10 time steps from an un-

seen trajectory based on which we infer the latent task hp

using variational inference for the ML-GP while leaving

the model hyperparameters and other variational param-

eters fixed. We then predict the next 90 steps using the

ML-GP, SGP and GP models. ML-GP also performs on-

line inference of the latent variable after each step. We

repeat this experiment with 10 different seeds that deter-

mine the initial state, and average the results.

Fig. 3 shows the RMSE and NLL for all 3 models. The

ML-GP clearly outperforms both the SGP and GP base-

lines in terms of both the accuracy of its mean predic-

tions (as evident by the RMSE) as well as capturing the

data better under its predictive distribution as seen by the

NLL. The NLL accounts for both the mean prediction

as well as the uncertainty of the model about the predic-

tion. Both baselines have comparable RMSEs to each

other with enough inducing points but generalize poorly

on new tasks with overconfident predictions. Fig. 4 illus-

trates this behavior.

The baselines fail to generalize since they have no ob-

servations from the system with this configuration. The

ML-GP generalizes from training to new test tasks nat-

urally because it explicitly incorporates the latent vari-

ables encoding the system configuration.

1the control signals were manually chosen as ones that
solved a configuration not included in either the training or test
set.

0.25

0.50

0.75

R
M
S
E

ML-GP SGP GP

25 50 75 100 125 150 175 200

Inducing Points

−10

−5

N
L
L

Figure 3: Mean and two standard deviation confidence

error-bars of the RMSE and NLL for the ML-GP, SGP

and the standard GP model as a function of the number of

inducing points. The ML-GP significantly outperforms

both baselines.

4.2 LATENT EMBEDDING

In order for our model to perform well in meta learning

settings, the latent variables hp need to reflect a sensi-

ble embedding. By sensible we mean it should take on

a particular structure: a) locally similar values in the la-

tent space should correspond to similar task specifica-

tions and b) moving in latent space should correspond to

coherent transitions in task specifications.

Fig. 5 shows an example of an inferred latent embedding

of both training and test tasks after the training procedure

outlined above. The test-task latent variables are inferred

from 10 observations from the held-out systems.

The different colors of the discs denote the four different

settings of lengths whereas the colors of the dotted lines

connecting the discs denote the five different settings of

mass. The figure plots the mean of each q(hp) with two

standard deviation error bars in each dimension. The em-

bedding displays an intuitive structure where changes in

length or mass are disentangled (denoted by the black ar-

rows) into a length-mass coordinate system with the ex-

pected transitive properties, e.g. the lengths are ordered

as blue (l = 0.4), green (l = 0.5), red (l = 0.6) and

orange (l = 0.7). The uncertainty estimates also exhibit

qualitatively the intuitive property of being less uncertain

about tasks which are similar to (closer to) the training

tasks, e.g. comparing the red and blue tasks in fig. 5.

4.3 DATA-EFFICIENT RL

Our second set of experiments investigates the perfor-

mance of the ML-GP model in terms of data efficiency

in RL settings. Specifically, we look at whether our meta

learning approach is a) at least as efficient at solving a

−7

−4

−1

2

5

−7

−4

−1

2

5

A
n
g
u
la
r
V
el
o
ci
ty

50 55 60 65 70 75 80

Timestep

−7

−4

−1

2

5

Test data ML-GP SGP GP

Figure 4: One-step predictions of the angular velocity in

cart-pole. The figure shows the true data points (discs)

and the predictive distributions with a two standard de-

viation confidence interval for the ML-GP, SGP and a

standard GP. The ML-GP generalizes well to new tasks;

both the SGP and GP baselines are overly confident.

set of training tasks, b) more efficient at solving subse-

quent test tasks, when compared to a non-meta learning

baseline and c) whether the ML-GP model improves per-

formance when compared to the SGP model trained with

the meta learning approach.

We first learn a model of the dynamics (4), which we then

use to learn a policy to control the system. For policy

learning we use MPC, minimizing the cost in (3) with a

moving horizon to learn an optimal sequence of control

signals. We assume we have a set of training systems

and evaluate the performance of the models using some

held-out test systems with novel configurations (tasks).

We run experiments on both the cart-pole swing-up task

and the double-pendulum swing-up task. In both scenar-

ios, we use a sampling frequency of 10Hz, episodes of

30 steps (3 s) and a planning horizon of 10 steps. For the

cart-pole swing-up, solving the task means the pendulum

is balanced closer than 8 cm from the goal position for at

least the last 10 steps. For the double-pendulum swing-

up, it means the outer pendulum is balanced closer than

22 cm for at least the last 10 steps.

At meta-training or test-time, a pass through the training-

/test-set means executing the MPC policy learning algo-

rithm on each of the unsolved task in that set. Each ex-

ecution constitutes a trial for that task. The sets are tra-

versed until all the tasks are solved or all unsolved tasks

have executed 15 trials. The training and test procedures

are detailed in algorithms 1 and 2 in section 3. All results

are averaged over 20 independent random initializations.

Length

Mass

l = 0.4

l = 0.5

l = 0.6

l = 0.7

m = 0.4

m = 0.6

m = 0.7

m = 0.8

m = 0.9

Figure 5: Latent space embedding of cart-pole configu-

rations/tasks. The figure shows the mean (discs) of the

inferred latent variables and two standard deviation error

bars. Filled discs are training tasks and empty discs are

held out test tasks. The colors of the discs represent the

length and the colors of the dotted lines between discs

represent the mass.

Note that we execute on all (unsolved) tasks before re-

training the dynamics model as detailed in section 3.

This means that the model is updated with 3 s worth of

experience for every task in that pass at a time. On the

other hand, the model does not take advantage of addi-

tional prior experience until it has completed a pass.

For comparison with the ML-GP model, we use the SGP

model trained in two different ways. To establish a

lower-bound baseline, we run the model-based RL ap-

proach where we train a separate model for each task on

both the training and test sets. After each training task

we additionally attempt to solve each of the test tasks

to evaluate single-shot performance where we report the

mean across the training tasks as the single shot success

rate. We refer to this baseline as SGP-I which is a sparse

variant of the approach in [17] that achieves state-of-the-

art in data efficiency. Secondly, we train a single SGP

model on all the training tasks simultaneously using the

same training approach as we do for ML-GP. We refer

to this baseline as SGP-ML.

Cart-pole swing-up We train the models on six

specifications of the cart-pole dynamics, with m ∈
{0.4, 0.6, 0.8}, l ∈ {0.6, 0.8} and evaluate its per-

formance on a set of four test tasks chosen as m ∈
{0.7, 0.9}, l = {0.5, 0.7}. We choose these settings to

examine the performance on both interpolation and ex-

trapolation for differing lengths and masses. We choose

the squared distance between the tip of the pendulum

and goal position (with the pendulum balanced straight

in the middle of the track) as the cost. Fig. 6 shows the

mean success rate (over initializations and the four test

tasks) of ML-GP, SGP-I and SGP-ML against the num-

ber of trials executed on the systems. We observe that

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Trials

0

20

40

60

80

100
S
u
cc
es
s
R
at
e
(%

)

ML-GP

SGP-I

SGP-ML

Figure 6: Mean success rate over initializations and the

four test tasks for the cart-pole system after training

on six tasks. The graph compares ML-GP with SGP-

I (trained independently) and SGP-ML (trained on all

tasks).

both the ML-GP model and the SGP-ML display gen-

eralization to new tasks as evident by the success rate

in the first trial (see also Table 1). However, whereas

the ML-GP quickly improves with more observations in

subsequent trials, the SGP-ML model struggles to solve

the remaining tasks. We attribute this failure to the in-

ability of the SGP-ML model to explain variation in the

dynamics caused by differences in system specifications.

When comparing with independent training of each sys-

tem we see that the ML-GP compares favorably, reach-

ing 80% success rate after only three trials and 90% af-

ter six trials compared to the SGP-I, which reaches 80%
after 7 trials and 90% after 8 trials. We further ana-

lyze performance of ML-GP to identify the tasks that

were additionally solved between trials 3 and 6. We find

that this is due to a consistently challenging system with

m = 0.9, l = 0.5, which requires the learner to extrap-

olate beyond the range of values seen during training.

The mean number of trials required to solve this task is

4.3 ± 0.6, compared to the task mean of 2.7 ± 0.2 tri-

als. Table 1 shows the mean total time required to solve

Table 1: Mean time spent solving the cart-pole system

and the single-shot success rate.

MODEL TRAIN (s) TEST (s) SINGLE SHOT

SGP-I 16.1 ± 0.4 17.5 ± 0.4 0.08 ± 0.01

SGP-ML 23.7 ± 1.4 20.8 ± 1.2 0.38 ± 0.04

ML-GP 15.1 ± 0.5 8.1 ± 0.6 0.35 ± 0.05

the training and test tasks. On average, ML-GP needs

less than half the amount of time to solve the test tasks

compared to individually training on the tasks (SGP-I).

We also see an improvement in the total training time,

which suggests that ML-GP derives some transfer ben-

efit during training despite training on the systems on a

concurrent trial basis, i.e. we do not update the model

until all systems have executed a given trial. Compared

to the SGP-ML, the ML-GP model can maintain an accu-

rate model while learning multiple systems and quickly

adapts to new dynamics, whereas the performance of

SGP-ML stagnates as reflected in the interaction time on

both the training and test systems.

Double-pendulum swing-up We repeat the same ex-

perimental set-up on the double-pendulum task. We

trained on six systems with m1 ∈ {0.5, 0.7}, l1 ∈
{0.4, 0.5, 0.7} and evaluate on a set of four test tasks

chosen as m1 ∈ {0.6, 0.8}, l1 = {0.6, 0.8}, where

m1, l1 are the mass and length of the inner pendulum.

The cost is the squared distance between the tip of the

outer pendulum and the goal position (with both pendu-

lums standing straight up). Fig. 7 plots the mean success

rate against the number of trials executed on the system.

Comparing the ML-GP model to the SGP-ML we ob-

serve comparable single-shot performance and a qualita-

tively similar learning curve for the test tasks. However,

the ML-GP reaches 90% success rate about four trials

before the SGP-ML, around trial nine, i.e. meta learn-

ing achieves a significantly higher data efficiency. Com-

pared to independent training of the tasks using SGP-I,

the ML-GP leads to significantly less (new) training data

needed to solve the tasks. Table 2 reports the mean total

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Trials

0

20

40

60

80

100

S
u
cc
es
s
R
at
e
(%

)

ML-GP

SGP-I

SGP-ML

Figure 7: Mean success rate over initializations and the

four test tasks for the double pendulum after training on

six tasks. The graph compares the ML-GP against the

SGP-I (trained independently on each task) and the SGP-

ML (trained using the meta learning procedure).

time required to solve the tasks. Compared to the SGP-

ML, the performance of the two is similar, although ar-

guably the ML-GP compares favorably in terms of aver-

age time needed to solve the test tasks. Compared to the

SGP-I, we see improvement during training as well as at

test time. The average time needed for ML-GP to solve

the test environments is reduced to around 40% to that of

the SGP-I.

Table 2: Mean time spent solving the double-pendulum

system and the single-shot success rate.

MODEL TRAIN (s) TEST (s) SINGLE SHOT

SGP-I 18.9 ± 0.7 25.9 ± 1.5 0.07 ± 0.01

SGP-ML 17.9 ± 1.3 13.7 ± 2.2 0.36 ± 0.06

ML-GP 16.6 ± 1.1 10.2 ± 1.6 0.43 ± 0.06

5 RELATED WORK

Meta learning has long been proposed as a form of learn-

ing that would allow systems to systematically build up

and re-use knowledge across different but related tasks

[26, 32]. MAML is a recent promising model free meta

learning approach that learns a set of model parameters

that are used to rapidly learn novel tasks [12]. Another

interpretation of MAML is formulated in [13], which

shares our hierarchical Bayesian formulation of the meta

learning problem. However, the model-free setting in

which MAML has been applied so far typically require

orders of magnitude more training data than the model-

based approaches we build up on in the present work.

Our ML-GP model resembles the GP latent variable

model (GPLVM), which is typically used in unsuper-

vised settings [23]. In the GPLVM, the GP is used

to map a low-dimensional latent embedding to higher-

dimensional observations. A Bayesian extension (BG-

PLVM) was introduced in [31] where inference over the

latent variable is performed using variational inference.

To enable minibatch training, and unlike BGPLVM, we

take the approach of [14] and do not marginalize out the

inducing variables. The main difference of our model

and the GPLVM is that we learn a mapping from both

observed and latent inputs to observations.

The combination of observed and latent inputs was in-

vestigated in [33] where the authors use Metropolis

sampling for inference which does not scale to larger

datasets. A similar setup is found in [7] where the model

is used for partially observed input data. The work also

proposes uses in autoregressive settings similar to ours.

Different from us, the distribution over inducing vari-

ables is analytically optimized, making minibatch train-

ing infeasible.

A related and complimentary line of research are multi-

output GPs (MOGPs) [2]. Recently, [6] proposed a la-

tent variable extension to MOGPs (LVMOGP) which is

similar to our ML-GP, particularly in their missing data

formulation of the model. The crucial difference from

our work is that we augment the input space by concate-

nating the latent variable to the input space while the LV-

MOGP uses the Kronecker product of two separate ker-

nels applied on the latent and input spaces respectively.

Notably, the two models are equivalent for kernels that

naturally decompose as a Kronecker product (e.g. the

RBF) but depart from there.

A similar framework to ours is found in [11], called hid-

den parameter Markov decision processes (HiP-MDP),

which parametrizes a family of related dynamics through

a low dimensional latent embedding. The HiP-MDP as-

sumes a fixed latent variable within trajectories. Differ-

ent from us, the authors use an infinite mixture of GP

basis functions where the task specific variation is ob-

tained through the weights of the basis functions [11].

This work was extended in [18], replacing the GP basis

functions with a Bayesian neural network. This enables

non-linear interactions between the latent and addresses

scalability. In this work, the interactions between latent

and state variables are obtained through the non-linear

RBF kernel, and the scalability is addressed through the

variational sparse approach.

In [8], an RL setting is considered that is closely related

to our meta-learning set-up. The authors use a parametric

policy that depends on a known deterministic task vari-

able and augment the policy function to include it as well.

In [8], the authors consider the same dynamical system

but solve different tasks by augmenting the policy with a

task variable. In our work, we look at different settings

of the dynamics but the task remains the same. We show

how to generalize to the setting where task variables are

latent and inferred from interaction data. This dramati-

cally extends applicability in real-world settings.

6 CONCLUSION

We proposed a meta learning approach within the context

of model-based RL that allows us to transfer knowledge

from training configurations of robotic systems to unseen

test configurations. The key idea behind our approach

is to address the meta learning problem probabilistically

using a latent variable model. We use online variational

inference to obtain a posterior distribution over the latent

variable, which describes the relatedness of tasks. This

posterior is then used for long-term predictions of the

state evolution and controller learning within a model-

based RL setting. We demonstrated that our ML-GP

approach is as efficient or better than a non-meta learn-

ing baseline when solving multiple tasks at once. The

ML-GP further generalizes well to learning models and

controllers for unseen tasks giving rise to substantial im-

provements in data-efficiency on novel tasks.

Acknowledgements

This work was supported by Microsoft Research through

its PhD Scholarship Programme.

References

[1] M. Al-Shedivat, T. Bansal, Y. Burda, I. Sutskever,

I. Mordatch, and P. Abbeel. Continuous adapta-

tion via meta-learning in nonstationary and com-

petitive environments. In International Conference

on Learning Representations (ICLR), 2018.

[2] M. A. Àlvarez, L. Rosasco, and N. D. Lawrence.

Kernels for vector-valued functions: A review.

Foundations and Trends in Machine Learning

(FTML), 4(3):195, 2012.

[3] S. Barrett, M. Taylor, and P. Stone. Transfer learn-

ing for reinforcement learning on a physical robot.

In International Conference on Autonomous Agents

and Multiagent Systems (AAMAS), 2010.

[4] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret.

Robots that can adapt like animals. Nature,

521:503–507, 2015.

[5] B. da Silva, G. Konidaris, and A. Barto. Learning

parametrized skills. In International Conference on

Machine Learning (ICML), 2012.

[6] Z. Dai, M. A. Álvarez, and N. D. Lawrence. Effi-

cient modeling of latent information in supervised

learning using Gaussian processes. In Neural Infor-

mation Processing Systems (NIPS). 2017.

[7] A. Damianou and N. D. Lawrence. Semi-described

and semi-supervised learning with Gaussian pro-

cesses. Uncertainty in Artificial Intelligence (UAI),

2015.

[8] M. P. Deisenroth, P. Englert, J. Peters, and D. Fox.

Multi-task policy search for robotics. In IEEE In-

ternational Conference on Robotics and Automa-

tion (ICRA), 2014.

[9] M. P. Deisenroth, D. Fox, and C. E. Rasmussen.

Gaussian processes for data-efficient learning in

robotics and control. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence (PAMI),

37(2):408–423, 2015.

[10] M. P. Deisenroth and C. E. Rasmussen. PILCO:

A model-based and data-efficient approach to pol-

icy search. In International Conference on Machine

Learning (ICML), 2011.

[11] F. Doshi-Velez and G. Konidaris. Hidden param-

eter Markov decision processes: A semiparamet-

ric regression approach for discovering latent task

parametrizations. In International Joint Conference

on Artificial Intelligence (IJCAI), 2016.

[12] C. Finn, P. Abbeel, and S. Levine. Model-agnostic

meta-learning for fast adaptation of deep networks.

In International Conference on Machine Learning

(ICML), 2017.

[13] E. Grant, C. Finn, S. Levine, T. Darrell, and T. Grif-

fiths. Recasting gradient-based meta-learning as hi-

erarchical Bayes. In International Conference on

Learning Representations (ICLR), 2018.

[14] J. Hensman, N. Fusi, and N. D. Lawrence. Gaus-

sian processes for big data. In Uncertainty in Arti-

ficial Intelligence (UAI), 2013.

[15] M. Hoffman, D. Blei, C. Wang, and J. Paisley.

Stochastic variational inference. Journal of Ma-

chine Learning Research (JMLR), pages 1303–

1347, 2013.

[16] A. Ijspeert, J. Nakanishi, and S. Schaal. Learning

attractor landscapes for learning motor primitives.

In Neural Information Processing Systems (NIPS),

2002.

[17] S. Kamthe and M. P. Deisenroth. Data-efficient re-

inforcement learning with probabilistic model pre-

dictive control. In International Conference on Ar-

tificial Intelligence and Statistics (AISTATS), 2018.

[18] T. Killian, S. Daulton, G. Konidaris, and F. Doshi-

Velez. Robust and efficient transfer learning with

hidden parameter Markov decision processes. In

Neural Information Processing Systems (NIPS),

Long Beach, CA, 2017.

[19] D. P. Kingma and J. Ba. Adam: A method for

stochastic optimization. In International Confer-

ence on Learning Representations (ICLR), 2015.

[20] J. Kober, E. Otzop, and J. Peters. Reinforcement

learning to adjust robot movements to new situa-

tions. In International Joint Conference on Artifi-

cial Intelligence (IJCAI), 2011.

[21] G. Konidaris, I. Scheidwasser, and A. Barto. Trans-

fer in reinforcement learning via shared features.

Journal of Machine Learning Research (JMLR),

13:1333–1371, 2012.

[22] O. Kroemer, R. Detry, J. Piater, and J. Peters.

Combining active learning and reactive control for

robot grasping. Robotics and Autonomous Systems

(RAS), 58:1105–1116, 2010.

[23] N. D. Lawrence. Gaussian process latent variable

models for visualisation of high dimensional data.

In Neural Information Processing Systems (NIPS).

2004.

[24] K. Mülling, J. Kober, O. Kroemer, and J. Peters.

Learning to select and generalize striking move-

ments in robot table tennis. International Journal

of Robotics Research (IJRR), 2013.

[25] C. E. Rasmussen and C. K. I. Williams. Gaussian

Processes for Machine Learning. The MIT Press,

2006.

[26] T. Schaul and J. Schmidhuber. Metalearning.

Scholarpedia, 5(6):4650, 2010.

[27] J. G. Schneider. Exploiting model uncertainty esti-

mates for safe dynamic control learning. In Neural

Information Processing Systems (NIPS). 1997.

[28] R. S. Sutton and A. G. Barto. Reinforcement Learn-

ing: An Introduction. The MIT Press, 1998.

[29] M. Taylor and P. Stone. Cross-domain transfer for

reinforcement learning. In International Confer-

ence on Machine Learning (ICML), 2007.

[30] M. Titsias. Variational learning of inducing vari-

ables in sparse Gaussian processes. In International

Conference on Artificial Intelligence and Statistics

(AISTATS), 2009.

[31] M. Titsias and N. D. Lawrence. Bayesian Gaus-

sian process latent variable model. In International

Conference on Artificial Intelligence and Statistics

(AISTATS), 2010.

[32] R. Vilalta and Y. Drissi. A perspective view and

survey of meta-learning. Artificial Intelligence Re-

view (AI Review), 18(2):77–95, 2002.

[33] C. Wang and R. M. Neal. Gaussian Process Regres-

sion with Heteroscedastic or Non-Gaussian Resid-

uals. ArXiv e-prints, Dec. 2012.

