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Abstract

Meta-research is the study of research itself: its methods, reporting, reproducibility, evalua-

tion, and incentives. Given that science is the key driver of human progress, improving the

efficiency of scientific investigation and yielding more credible and more useful research

results can translate to major benefits. The research enterprise grows very fast. Both new

opportunities for knowledge and innovation and new threats to validity and scientific integrity

emerge. Old biases abound, and new ones continuously appear as novel disciplines eme-

rge with different standards and challenges. Meta-research uses an interdisciplinary app-

roach to study, promote, and defend robust science. Major disruptions are likely to happen

in the way we pursue scientific investigation, and it is important to ensure that these disrup-

tions are evidence based.

Science, like all human endeavors, is prone to biases. Yet science can assess its own methods,

reporting, reproducibility, evaluation, and incentives [1]. A relatively new discipline, called

meta-research, covers a wide range of theoretical, observational, and experimental investiga-

tions designed to study research itself and its practices. The objective is to understand and

improve how we perform, communicate, verify, evaluate, and reward research [1].

Before elaborating on a discipline that studies biases, I should disclose some of my own.

First, all scientists are meta-researchers to some extent, though most usually work on focused

subject matter disciplines. And though the advice of my early lab mentors—“focus, focus,

focus”—still rings in my ears, the piles on my desk and the files in my computers can be noto-

riously unfocused. I don’t have attention-deficit disorder, but plain unconstrained curiosity.

What attracted me to science was its vastness and diversity. In my early training years, I en-

joyed roaming in libraries in Athens and Boston, discovering scientific journals with fancy

names, encountering intriguing articles, drifting from my initial search. Without yet realizing

it, I was interested primarily in research itself apparently, much as others were interested pri-

marily in Caenorhabditis elegans, volcanic eruptions, or automata.

Science and its literature is a marvelous maze of data, arguments, biases, errors, and the

greatest achievements of humans. What can be more rewarding to study scientifically? Thirty
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years later, I still feel like a researcher-in-training—actually, in early training—barely scratch-

ing the surface. However, much has changed. Thirty years ago, articles had to be handpicked

like flowers one by one from their journal shelves and photocopied one page at a time. Now,

one can text mine a million articles overnight. Good research, however, still takes time and

focus. Take, for example, a recent project I worked on with my friend David Chavalarias. We

text mined 12,821,790 abstracts and 843,884 full-text articles. We initially joked that it would

take two days max. Eventually, it took four years of work with innumerable iterations, meticu-

lous corrections, and repeated downloads.

My other personal bias is a heightened interest in methods rather than results. Result narra-

tives are supposedly always exciting. I find them unbearably boring. Conversely, methods typi-

cally are missing in action, left unsung, or hidden in small print. Many researchers hope to

clarify how to do experiments chatting in corridors or conferences. Study design and analysis

are still mostly taught (if at all) in statistics-lite courses. Most of us have mastered how to write

papers through reading other (mostly poorly reported) papers. We freely volunteer peer review

but lack formal training on how to do it. In many fields, issues surrounding reproducibility

were dormant until recently.

Science remains the key driver of human progress, yet we have little evidence on how to

best fund science and incentivize high-quality work. We do know that leaving research prac-

tices to serendipity, biasing influences, methodological illiteracy, and statistical innumeracy is

inefficient. Science needs science to avoid wasted effort and optimize resources. Amateur

approaches face the current gigantic magnitudes of the research endeavor. Google Scholar cur-

rently includes about 180,000,000 documents, accruing approximately 4,000,000 new papers

annually [2]. Along this universe of visible (published) matter, dark matter abounds; probably

most observations and data analyses remain unpublished. Ulrich’s directory includes more

than 40,000 refereed academic journals, and this is probably an underestimate [3]. Thousands

of journals follow predatory practices or have uncertain value. The Science, Technology, Engi-

neering, and Math (STEM) publishing business market size ($28 billion) roughly equals the

National Institutes of Health (NIH) budget. Webometrics lists 26,368 research-producing uni-

versities [4], and many other entities generate research. Probably 100,000 biomedical confer-

ences happen annually [5]. Global Research and Development (R&D) investment recently

exceeded $2 trillion per year. Industry has the lion’s share, while public funding is limited for

basic research and it is even more sparse for evidence-based evaluation research. Financial

conflicts may shape research agendas, results, and interpretations [6]. Consider that the $1 tril-

lion tobacco industry still runs “research” on its products despite killing millions of people

who use them as directed. Big Pharma, another behemoth of similar financial magnitude, but

which probably saves lives (albeit often at high cost), has to sponsor most research on its own

products. Understanding who should do what and how in research needs better study.

Science is no longer the occupation of few intellectual dilettanti. Millions (co)author scien-

tific papers. Even more people participate in research. Currently, health record databases engulf

hundreds of millions of individuals. Social media databases generate the possibility of using

data on billions—active monthly Facebook users, for example, exceeded 2 billion by July 2017.

Currently, generated research data are massive but also fragmented and often nontran-

sparent. Full data sharing and preregistration of protocols are still uncommon in most fields

[7]. We need to understand whether results and inferences are correct, modestly biased, or

plain wrong. Comparing patterns of data and biases across the vast number of available

studies, one can help answer this important question [8]. We have mapped 235 biases in

biomedical research alone [9]. With increasing research complexity, multifarious choices

emerge on how to design studies and analyze data. With 20 binary choices, 220 = 1,048,576

different ways exist to analyze the same data. Therefore, almost any result is possible, unless
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we safeguard methods and analysis standards. Surveys show that questionable research

practices are used by most scientists: not fraud (which is rare) but “cutting corners” to

achieve more interesting-looking results [10]. Understanding the boundaries between bias

and creative exploration is important. Efforts to reproduce high-profile studies have shown

high rates of nonreproducibility [11] and most scientists agree that a reproducibility crisis

exists [12]. Meta-analyses—efforts to combine all data on a given question—become

increasingly popular but face their own problems and biases [13].

How should a scientist best train, work, collaborate, and contribute to scientific and broader

communities? Researchers spend most of their time on grants [14] and administrative chores of

unclear utility. Journal peer review takes another 64 million hours annually for biomedical

papers alone [15]. Justifiably, we all despise bureaucracy and obstructions. Poor research prac-

tices make things worse.

Thousands of new scientific fields emerge, merge, split, and evolve [16]. Different disci-

plines may differ in research standards and challenges (Box 1). Meta-research can help us dis-

seminate efficient research practices and abandon wasteful ones. Publication and peer review

models, scientific education, funding, and academic reward systems need to adapt successfully

to a rapidly changing world. Some predict [17] that even researchers may disappear within

decades, replaced by artificial intelligence. While this sounds extreme, several aspects of cur-

rent “business as usual” in research will face disruption. Even 1% improvement in the yield

and translation of useful discoveries effected through better research practices reflects value

equivalent of many Nobel or Breakthrough prizes.

Meta-research is interdisciplinary. For example, it benefits from better tools and methods in

statistics and informatics. Complex issues of behavior change converge on modeling, psychol-

ogy, sociology, and behavioral economics. Newly introduced, sophisticated measurement tools

and techniques in various disciplines introduce new, peculiar errors and biases; their under-

standing requires combining expertise in biology, bioengineering, and data sciences. Properly

communicating science and its value requires combining expertise in multiple fields and has

become increasingly critical nowadays, when mistrust of science runs high and multiple inter-

ests hold a stake in influencing research results. Some interests set out to manipulate science

and cause damage when their intentional bias pollutes the scientific record (e.g., tobacco com-

panies or climate change deniers). Meta-research may be our best chance to defend science,

gain public support for research, and counter antiscience movements. It may help provide a

correcting mechanism closer to real time than the self-correcting scientific process that other-

wise may take much longer.

Moreover, bird’s-eye metaviews of science are not separate and detached from focused

field-specific research. In my experience, inspiration for new projects has often come from

mistakes, shortcomings, or difficulties that I encountered while doing field-specific research. It

is sometimes difficult to convey a message that something is wrong. However, it is paradoxi-

cally easier when the message says that thousands or millions of papers are doing something

wrong rather than arousing personal animosity for a single failed paper. It is also easier when

the constructive critique comes from within a field, recognized as necessary improvement

rather than intrusion. Learning by collaborating with researchers in diverse disciplines and try-

ing to understand the daily challenges in a specific field can be a highly rewarding experience

for a meta-researcher. We need scientific curiosity but also intellectual humility and commit-

ment to improve our efforts.
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Box 1. Features of research practices, opportunities, and threats
that vary across fields.

• Type of research, designs, tools, and statistical methods

◦ Type of mix of research (basic, applied translational, evaluation, implementation)

◦ Types of study designs commonly used or misused

◦ Types of experimental/measurement tools commonly used or misused

◦ Types of statistical methods commonly used or misused

• Biases and questionable/detrimental practices

◦ Types of common biases encountered and whether they are easy to fix or not

◦ Extent of use of methods to prevent or correct for biases

◦ Prevalence of different types of questionable/detrimental research practices

• Targeted effects and signals

◦ Distribution of effect sizes observed

◦ Typical heterogeneity of results across studies

◦ Proportion of results that are true, exaggerated, or entirely false

◦ Reputational impact for bias or wrong, refuted results

• Publication and peer review practices

◦ Proportion of studies and analyses that are published

◦ Number and types of available publication venues

◦ Implementation of prepublication peer review (e.g., preprints)

◦ Implementation of postpublication peer review

◦ Extent from adoption of various research reporting standards

• Scientific workforce standards

◦ Commonly accepted authorship and contributorship norms

◦ Extent of adoption of team science and consortia

◦ Type of training for scientists in the field

◦ Extent of methodological and statistical literacy/numeracy

• Replication and transparency standards

◦ Extent and enforcement of preregistration of protocols

◦ Extent of use of replication studies

◦ Extent of use of exact replication versus corroboration or triangulation

◦ Extent of sharing of primary raw data and/or processed data

◦ Extent of sharing of software and code

◦ Extent and types of evidence synthesis used
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