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Abstract

We propose a novel and flexible anchor mechanism named MetaAnchor for object
detection frameworks. Unlike many previous detectors model anchors via a prede-
fined manner, in MetaAnchor anchor functions could be dynamically generated
from the arbitrary customized prior boxes. Taking advantage of weight prediction,
MetaAnchor is able to work with most of the anchor-based object detection systems
such as RetinaNet. Compared with the predefined anchor scheme, we empirically
find that MetaAnchor is more robust to anchor settings and bounding box distri-
butions; in addition, it also shows the potential on transfer tasks. Our experiment
on COCO detection task shows that MetaAnchor consistently outperforms the
counterparts in various scenarios.

1 Introduction

The last few years have seen the success of deep neural networks in object detection task [5, 39, 9,
12, 8, 32, 16, 2]. In practice, object detection often requires to generate a set of bounding boxes
along with their classification labels associated with each object in the given image. However, it is
nontrivial for convolutional neural networks (CNNs) to directly predict an orderless set of arbitrary
cardinality1. One widely-used workaround is to introduce anchor, which employs the thought
of divide-and-conquer and has been successfully demonstrated in the state-of-the-art detection
frameworks [39, 32, 25, 30, 31, 11, 22, 23, 2]. In short, anchor method suggests dividing the box
space (including position, size, class, etc.) into discrete bins (not necessarily disjoint) and generating
each object box via the anchor function defined in the corresponding bin. Denote x as the feature
extracted from the input image, then anchor function for i-th bin could be formulated as follows:

Fbi(x; θi) =
(

Fcls
bi (x; θclsi ),Freg

bi
(x; θregi )

)

(1)

where bi ∈ B is the prior (also named anchor box in [32]), which describes the common properties
of object boxes associated with i-th bin (e.g. averaged position/size and classification label); while
Fcls

bi
(·) discriminates whether there exists an object box associated with the i-th bin, and Freg

bi
(·)

regresses the relative location of the object box (if any) to the prior bi; θi represents the parameters
for the anchor function.

To model anchors with deep neural networks, one straight-forward strategy is via enumeration,
which is adopted by most of the previous work [32, 39, 25, 30, 31, 23, 11, 22]. First, a number of
predefined priors (or anchor boxes) B is chosen by handcraft [32] or statistical methods like clustering
[39, 31]. Then for each bi ∈ B the anchor function Fbi is usually implemented by one or a few
neural network layers respectively. Weights for different anchor functions are independent or partially
shared. Obviously in this framework anchor strategies (i.e. anchor box choices and the definition of

1There are a few recent studies on the topic, such as [33, 37].
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corresponding anchor functions) are fixed in both training and inference. In addition, the number of
available anchors is limited by the predefined B.

In this paper, we propose a flexible alternative to model anchors: instead of enumerating every
possible bounding box prior bi and modeling the corresponding anchor functions respectively, in our
framework anchor functions are dynamically generated from bi. It is done by introducing a novel
MetaAnchor module which is defined as follows:

Fbi = G (bi;w) (2)

where G(·) is called anchor function generator which maps any bounding box prior bi to the
corresponding anchor function Fbi ; and w represents the parameters. Note that in MetaAnchor the
prior set B is not necessarily predefined; instead, it works as a customized manner – during inference,
users could specify any anchor boxes, generate the corresponding anchor functions and use the latter
to predict object boxes. In Sec. 3, we present that with weight prediction mechanism [10, 18] anchor
function generator could be elegantly implemented and embedded into existing object detection
frameworks for joint optimization.

In conclusion, compared with traditional predefined anchor strategies, we find our proposed MetaAn-
chor has the following potential benefits (detailed experiments are present in Sec. 4):

• MetaAnchor is more robust to anchor settings and bounding box distributions. In
traditional approaches, the predefined anchor box set B often needs careful design – too few
anchors may be insufficient to cover rare boxes, or result in coarse predictions; however,
more anchors usually imply more parameters, which may suffer from overfitting. In addition,
many traditional strategies use independent weights to model different anchor functions, so
it is very likely for the anchors associated with few ground truth object boxes in training
to produce poor results. In contrast, for MetaAnchor anchor boxes of any shape could be
randomly sampled during training so as to cover different kinds of object boxes, meanwhile,
the number of parameters keeps constant. Furthermore, according to Equ. 2 different anchor
functions are generated from the same weights w, thus all the training data are able to
contribute to all the model parameters, which implies more robustness to the distribution of
the training boxes.

• MetaAnchor helps to bridge the bounding box distribution gap between datasets. In
traditional framework, anchor boxes B are predefined and keep unchanged for both training
and test, which could be suboptimal for either dataset if their bounding box distributions are
different. While in MetaAnchor, anchors could be flexibly customized to adapt the target
dataset (for example, via grid search) without retraining the whole detector.

2 Related Work

Anchor methodology in object detection. Anchors (maybe called with other names, e.g. “default
boxes” in [25], “priors” in [39] or “grid cells” in [30]) are employed in most of the state-of-the-art
detection systems [39, 32, 22, 23, 25, 7, 11, 2, 31, 21, 35, 15]. The essential of anchors includes
position, size, class label or others. Currently most of the detectors model anchors via enumeration,
i.e. predefining a number of anchor boxes with all kinds of positions, sizes and class labels, which
leads to the following issues. First, anchor boxes need careful design, e.g. via clustering [31], which
is especially critical on specific detection tasks such as anchor-based face [40, 45, 28, 36, 43] and
pedestrian [41, 3, 44, 26] detections. Specially, some papers suggest multi-scale anchors [25, 22, 23]
to handle different sizes of objects. Second, predefined anchor functions may cause too many
parameters. A lot of work addresses the issue by weight sharing. For example, in contrast to earlier
work like [5, 30], detectors like [32, 25, 31] and their follow-ups [7, 22, 2, 11, 23] employ translation-
invariant anchors produced by fully-convolutional network, which could share parameters across
different positions. Two-stage frameworks such as [32, 2] share weights across various classes. And
[23] shares weights for multiple detection heads. In comparison, our approach is free of the issues, as
anchor functions are customized and generated dynamically.

Weight prediction. Weight prediction means a mechanism in neural networks where weights
are predicted by another structure rather than directly learned, which is mainly used in the fields of
learning to learn [10, 1, 42], few/zero-shot learning [4, 42] and transfer learning [27]. For object
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detection there are a few related works, for example, [15] proposes to predict mask weights from box
weights. There are mainly two differences from ours: first, in our MetaAnchor the purpose of weight
prediction is to generate anchor functions, while in [15] it is used for domain adaption (from object
box to segmentation mask); second, in our work weights are generated almost “from scratch”, while
in [15] the source is the learned box weights.

3 Approach

3.1 Anchor Function Generator

In MetaAnchor framework, anchor function is dynamically generated from the customized box prior
(or anchor box) bi rather than fixed function associated with predefined anchor box. So, anchor
function generator G(·) (see Equ. 2), which maps bi to the corresponding anchor function Fbi , plays
a key role in the framework. In order to model G(·) with neural work, inspired by [15, 10], first we
assume that for different bi anchor functions Fbi share the same formulation F(·) but have different
parameters, which means:

Fbi(x; θi) = F(x; θbi) (3)

Then, since each anchor function is distinguished only by its parameters θbi , anchor function generator
could be formulated to predict θbi as follows:

θbi = G(bi;w)
= θ∗ +R(bi;w)

(4)

where θ∗ stands for the shared parameters (independent to bi and also learnable), and the residual
term R(bi, w) depends on anchor box bi.

In the paper we implement R(·) with a simple two-layer network:

R(bi, w) = W2σ (W1bi) (5)

Here, W1 and W2 are the learnable parameters and σ(·) is the activation function (i.e. ReLU in our
work). Denote the number of hidden neurons by m. In practice m is usually much smaller than the
dimension of θbi , which causes the weights predicted by R(·) lie in a significantly low-rank subspace.
That is why we formulate G(·) as a residual form in Equ 4 rather than directly use R(·). We also
survey more complex designs for G(·), however, which results in comparable benchmarking results.

In addition, we introduce a data-dependent variant of anchor function generator, which takes the input
feature x into the formulation:

θbi = G(bi;x, w)
= θ∗ +W2σ (W11bi +W12r(x))

(6)

where r(·) is used to reduce the dimension of the feature x; we empirically find that for convolutional
feature x, using global averaged pooling [13, 38] operation for r(·) usually produces good results.

3.2 Architecture Details

Theoretically MetaAnchor could work with most of the existing anchor-based object detection
frameworks [32, 25, 30, 31, 23, 11, 22, 19, 20, 2]. Among them, for the two-stage detectors
[32, 2, 22, 11, 19] anchors are usually used to model “objectness” and generate box proposals, while
fine results are predicted by RCNN-like modules [9, 8] in the second stage. We try to use MetaAnchor
in these frameworks and observe some improvements on the box proposals (e.g. improved recalls),
however, it seems no use to the final predictions, whose quality we believe is mainly determined
by the second stage. Therefore, in the paper we mainly study the case of single-stage detectors
[30, 25, 31, 23].

We choose the state-of-the-art single-stage detector RetinaNet [23] to apply MetaAnchor for instance.
Note that our methodology is also applicable to other single-stage frameworks such as [31, 25, 7, 35].
Fig 1(a) gives the overview of RetinaNet. In short, 5 levels of features {Pl|l ∈ {3, 4, 5, 6, 7}} are
extracted from a “U-shaped” backbone network, where P3 stands for the finest feature map (i.e.
with largest resolution) and P7 is the coarsest. For each level of feature, a subnet named “detection
head” in Fig 1 is attached to generate detection results. Anchor functions are defined at the tail of
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Figure 1: Illustration to applying MetaAnchor on RetinaNet [23]. (a) RetinaNet overview. (b)
Detection heads in RetinaNet equipped with MetaAnchor. Fcls(·) and Freg(·) compose the anchor
function (defined in Equ 1), which are implemented by a convolutional layer respectively here.
G(·, wcls) and G(·, wreg) are anchor function generators defined in Equ 4 (or Equ 6). bi is the
customized box prior (or called anchor box); and “cls” and “reg” represent the prediction results
associated to bi.

each detection head. Referring to the settings in [23], anchor functions are implemented by a 3× 3
convolutional layer; and for each detection head, there are 3× 3× 80 types of anchor boxes (3 scales,
3 aspect ratios and 80 classes) are predefined. Thus for each anchor function, there should be 720
filters for the classification term and 36 filters for the regression term (3× 3× 4, as regression term
is class-agnostic).

In order to apply MetaAnchor, we need to redesign the original anchor functions so that their
parameters are generated from the customized anchor box bi. First of all, we consider how to encode
bi. According to the definition in Sec. 1, bi should be a vector which includes the information such as
position, size and class label. In RetinaNet, thanks to the fully-convolutional structure, position could
be naturally encoded by the coordinate of feature maps thus no need to be involved in bi. As for class
label, there are two alternatives: A) directly encode it in bi, or B) let G(·) predict weights for each
class respectively. We empirically find that Option B is easier to optimize and usually results in better
performance than Option A. So, in our experiment bi is mainly related to anchor size. Motivated by
the bounding box encoding method introduced in [9, 32], bi is represented as follows:

bi =

(

log
ahi

AH
, log

awi

AW

)

(7)

where ahi and awi are the height and width of the corresponding anchor box; and (AH,AW ) is the
size of “standard anchor box”, which is used as a normalization term. We also survey a few other
alternatives, for example, using the scale and aspect ratio to represent the size of anchor boxes, which
results in comparable results with that of Equ. 7.

Fig 1(b) illustrates the usage of MetaAnchor in each detection head of RetinaNet. In the original
design [23], the classification and box regression parts of anchor functions are attached to separated
feature maps (xcls and xreg) respectively; so in MetaAnchor, we also use two independent anchor
function generators G(·, wcls) and G(·, wreg) to predict their weights respectively. The design of
G(·) follows Equ. 4 (data-independent variant) or Equ. 6 (data-dependent variant), in which the
number of hidden neurons m is set to 128. In addition, recall that in MetaAnchor anchor functions
are dynamically derived from bi rather than predefined by enumeration; so, the number of filters for
Fcls(·) reduces to 80 (80 classes, for example) and 4 for Freg(·).
It is also worth noting that in RetinaNet [23] corresponding layers in all levels of detection heads
share the same weights, even including the last layers which stand for anchor functions. However, the
definitions of anchors differ from layer to layer: for example, in l-th level suppose an anchor function
associated to the anchor box of size (ah, aw); while in (l+ 1)-th level (with 50% smaller resolution),
the same anchor function should detect with 2x larger anchor box, i.e. (2ah, 2aw). So, in order to
keep consistent with the original design, in MetaAnchor we use the same anchor generator function
G(·, wcls) and G(·, wreg) for each level of detection head; while the “standard boxes” (AH,AW )
in Equ. 7 are different between levels: suppose the standard box size in l-th level is (AHl, AWl),
then for (l + 1)-th level we set (AHl+1, AWl+1) = (2AHl, 2AWl). In our experiment, the size of

4



Table 1: Anchor box configurations

# of Anchors Scales 2 Aspect Ratios (AH,AW )

3× 3 {2k/3|k < 3} {1/2, 1, 2} (44, 44)
5× 5 {2k/5|k < 5} {1/3, 1/2, 1, 2, 3} (45, 47)
7× 7 {2k/7|k < 7} {1/4, 1/3, 1/2, 1, 2, 3, 4} (48, 50)
9× 9 {2k/9|k < 9} {1/5, 1/4, 1/3, 1/2, 1, 2, 3, 4, 5} (53, 53)

standard box in the lowest level (i.e. P3, which has the largest resolution) is set to the average of all
the anchor box sizes (shown in the last column in Table 1).

4 Experiment

In this section we mainly evaluate our proposed MetaAnchor on COCO object detection task [24]. The
basic detection framework is RetinaNet [23] as introduced in 3.2, whose backbone feature extractor
we use is ResNet-50 [13] pretrained on ImageNet classification dataset [34]. For MetaAnchor, we
use the data-independent variant of anchor function generator (Equ. 4) unless specially mentioned.
MetaAnchor subnets are jointly optimized with the backbone detector during training. We do not use
Batch Normalization [17] in MetaAnchor.

Dataset. Following the common practice [23] in COCO detection task, for training we use two
different dataset splits: COCO-all and COCO-mini; while for test, all results are evaluated on the
minival set which contains 5000 images. COCO-all includes all the images in the original training
and validation sets excluding minival images, while COCO-mini is a subset of around 20000 images.
Results are mainly evaluated with COCO standard metrics such as mmAP.

Training and evaluation configurations. For fair comparison, we follow most of the settings in
[23] (image size, learning rate, etc.) for all the experiments, except for a few differences as follows.
In [23], 3× 3 anchor boxes (i.e. 3 scales and 3 aspect ratios) are predefined for each level of detection
head. In the paper, more anchor boxes are employed in some experiments. Table 1 lists the anchor
box configurations for feature level P3, where the 3 × 3 case is identical to that in [23]. Settings
for other feature levels could also be derived (see Sec. 3.2). As for MetaAnchor, since predefined
anchors are not needed, we suggest to use the strategy as follows. In training, first we select a sort of
anchor box configuration from Table 1 (e.g. 5 × 5), then generate 25 bis according to Equ. 7; for
each iteration, we randomly augment each bi within ±0.5, calculating the corresponding ground truth
and use them to optimize. We call the methodology “training with 5× 5 anchors”. While in test, bis
are also set by a certain anchor box configuration without augmentation (not necessary the same as
used in training). We argue that with that training/inference scheme, it is possible to make direct
comparisons between MetaAnchor and the counterpart baselines.

In the following subsections, first we study the performances of MetaAnchor by a series of controlled
experiments on COCO-mini. Then we report the fully-equipped results on COCO-full dataset.

4.1 Ablation Study

4.1.1 Comparison with RetinaNet baselines

Table 2 compares the performances of MetaAnchor and RetinaNet baseline on COCO-mini dataset.
Here we use the same anchor box settings for training and test. In the column “Threshold” t1/t2
means the intersection-over-union (IoU) thresholds for positive/negative anchor boxes respectively in
training (the detailed definition are introduced in [32, 23]).

To analyze, first we compare the rows with the threshold of 0.5/0.4. It is clear that MetaAnchor
outperforms the counterpart baselines on each of anchor configurations and evaluation metrics, for
instance, 0.2 ∼ 0.8% increase for mmAP and 0.8 ∼ 1.5% for AP50. We suppose the improvements
may come from two aspects: first, in MetaAnchor the sizes of anchor boxes could be augmented and

2Here we follow the same definition of scale and aspect ratio as in [23].
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Table 2: Comparison of RetinaNets with/without MetaAnchor.

Threshold # of Anchors Baseline (%) MetaAnchor (%)

mmAP AP50 AP75 mmAP AP50 AP75

0.5/0.4 3× 3 26.5 43.1 27.6 26.9 44.2 28.2
0.5/0.4 5× 5 26.9 43.7 28.1 27.1 44.5 28.1
0.5/0.4 7× 7 26.4 43.0 27.7 27.2 44.4 28.5
0.5/0.4 9× 9 26.3 42.8 27.5 27.1 44.3 28.2

0.6/0.5 3× 3 25.7 41.1 27.3 26.0 42.0 27.2
0.6/0.5 5× 5 26.1 41.4 27.8 27.3 44.2 28.8
0.6/0.5 7× 7 26.2 41.3 27.9 27.0 43.1 28.3
0.6/0.5 9× 9 26.1 41.0 27.9 27.4 43.7 29.2

Table 3: Comparison of various anchors in inference (mmAP, %)

Training Inference

# of Anchors 3× 3 5× 5 7× 7 9× 9 search

3× 3 26.0 26.6 26.8 26.7 27.0
5× 5 26.7 27.3 27.5 27.5 27.7
7× 7 26.1 26.9 27.0 27.1 27.3
9× 9 26.3 27.2 27.4 27.4 27.6

make the anchor functions to generate a wider range of predictions, which may enhance the model
capability (especially important for the case with smaller number of anchors, e.g. 3 × 3); second,
rather than predefined anchor functions with independent parameters, MetaAnchor allows all the
training boxes to contribute to the shared generators, which seems beneficial to the robustness over
the different configurations or object box distributions.

For further investigating, we try using stricter IoU threshold (0.6/0.5) for training to encourage more
precise anchor box association, however, statistically there are fewer chances for each anchor to
be assigned with a positive ground truth. Results are also presented in Table 2. We find results
of all the baseline models suffer from significantly drops especially on AP50, which implies the
degradation of anchor functions; furthermore, simply increasing the number of anchors works little
on the performance. For MetaAnchor, in contrast, 3 out of 4 configurations are less affected (for the
case of 9× 9 anchors even 0.3% improved mmAP are obtained). The only exception is the 3× 3 case;
however, according to Table 3 we believe the degradation is mainly because of too few anchor boxes
for inference rather than poor training. So, the comparison supports our hypothesis: MetaAnchor
helps to use training samples in a more efficient and robust way.

4.1.2 Comparison of various anchor configurations in inference

Unlike the traditional fixed or predefined anchor strategy, one of the major benefits of MetaAnchor
is able to use flexible anchor scheme during inference time. Table 3 compares a variety of anchor
box configurations (refer to Table 1; note that the normalization coefficient (AH,AW ) should be
consistent with what used in training) for inference along with their scores on COCO-mini. For each
experiment IoU threshold in training is set to 0.6/0.5. From the results we find that more anchor boxes
in inference usually produce higher performances, for instance, results of 9× 9 inference anchors are
0.7 ∼ 1.1% better than that of 3× 3 for a variety of training configurations.

Table 3 also implies that the improvements are quickly saturated with the increase of anchor boxes,
e.g. ≥ 7× 7 anchors only bring minor improvements, which is also observed in Table 2. We revisit
the anchor configurations in Table 1 and find 7× 7 and 9× 9 cases tend to involve too “dense” anchor
boxes, thus predicting highly overlapped results which might contribute little to the final performance.
Inspired by the phenomenon, we come up with an inference approach via greedy search: each step
we randomly select one anchor box bi, generate the predictions and evaluate the combined results
with the previous step (performed on a subset of training data); if the score improves, we update
the current predictions with the combined results, otherwise discard the predictions in the current
step. Final anchor configuration is obtained after a few steps. Improved results are shown in the last
column (named “search”) of Table 3.
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Table 4: Comparison in the scenarios of different training/test distributions (mmAP, %)

# of Anchors Baseline (all) MetaAnchor (all) Baseline (drop) MetaAnchor (drop)

3× 3 26.5 26.9 21.2 22.2
5× 5 26.9 27.1 20.8 23.0
7× 7 26.4 27.2 21.8 22.8
9× 9 26.3 27.1 20.8 22.8

Table 5: Transfer evaluation on VOC 2007 test set from COCO-full dataset

Method Baseline MetaAnchor Search

mAP@0.5(%) 82.5 83.1 83.3

4.1.3 Cross evaluation between datasets of different distributions

Though domain adaption or transfer learning [29] is out of the design purpose of MetaAnchor, recently
the technique of weight prediction[10], which is also employed in the paper, has been successfully
applied in those tasks [15, 14]. So, for MetaAnchor it is interesting to evaluate whether it is able
to bridge the distribution gap between two dataset. More specifically, what about the performance
if the detection model is trained with another dataset which has the same class labels but different
distributions of object box sizes?

We perform the experiment on COCO-mini, in which we “drop” some boxes in the training
set. However, it seems nontrivial to directly erase the objects in image; instead, during train-
ing, once we use an ground truth box which falls in a certain range (in our experiment the range is

{(h,w)|50 <
√
hw < 100,−1 < log w

h < 1}, around 1/6 of the whole boxes), we manually assign
the corresponding loss to 0. As for test, we use all the data in the validation set. Therefore, the
distributions of the boxes we used in training and test are very different. Table 4 shows the evaluation
results. Obviously after some ground truth boxes are erased, all the scores drop significantly; however,
compared with the RetinaNet baseline, MetaAnchor suffers from smaller degradations and generates
much better predictions, which shows the potential on the transfer tasks.

In addition, we train models only with COCO-full dataset and evaluate the transfer performace on
VOC2007 test set [6]. We use two models: Baseline(RetianNet) and MetaAnchor, which achieve the
best performace on COCO-full dataset with different architectures. In this experiment, we achieve
83.3% mAP on VOC 2007 test set, with 0.8% improvement in mAP compared with Baseline and
0.2% better than MetaAnchor, as shown in Table 5. Therefore, MetaAnchor shows a better tansfer
ability than the RetinaNet baseline on this task. Note that the result is evaluated without sofa class,
because there is no sofa annotation in COCO.

4.1.4 Data-independent vs. data-dependent anchor function generators

In Sec. 3.2 we introduce two variants of anchor function generators: data-independent (Equ. 4)
and data-dependent (Equ. 6). In the above subsections we mainly evaluate the data-independent
ones. Table 6 compares the performance of the two alternatives. For simplicity, we use the same
training and test anchor configurations; the IoU threshold is 0.6/0.5. Results shows that in most cases
data-dependent variant is slight better, however, the difference is small. We also report the scores
after anchor configuration search (described in Sec. 4.1.2).

4.2 Results on COCO Object Detection

Finally, we compare our fully-equipped MetaAnchor models with RetinaNet [23] baselines on COCO-
full dataset (also called trainval35k in [23]). As mentioned at the begin of Sec. 4, we follow the same
evaluation protocol as [23]. The input resolution is 600× in both training and test. The backbone
feature extractor is ResNet-50 [13]. Performances are benchmarked with COCO standard mmAP in
the minival dataset.

3Based on the models with 7× 7 anchor configuration in training.
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Table 6: Comparison of anchor function generators (mmAP, %)

# of Anchors Data-independent Data-dependent

3× 3 26.0 26.5
5× 5 27.3 27.3
7× 7 27.0 27.4
9× 9 27.4 27.3

search3 27.6 28.0

Table 7: Results of YOLOv2 on COCO minival (%)

Method Baseline MetaAnchor Search

mmAP 18.9 21.2 21.2

mAP@0.5 35.2 39.4 39.5

Table 8 lists the results. Interestingly, our reimplemented RetinaNet model is 1.8% better than the
counterpart reported in [23]. For better understanding, we further investigate a lot of anchor box
configurations (including those in Table 1) and retrain the baseline model, the best of which is
named “RetinaNet∗” and marked with “search” in Table 8. In comparison, our MetaAnchor model
achieves 37.5% mmAP on COCO minival, which is 1.7% better than the original RetinaNet (our
implemented) and 0.6% better than the best searched entry of RetinaNet. Our data-dependent variant
(Equ. 6) further boosts the performance by 0.4%. In addition, we argue that for MetaAnchor the
configuration for inference could be easily obtained by greedy search introduced in 4.1.2 without

retraining. Specifically, the scales and aspects of greedy search anchors are {2k/5| − 2 < k < 6} and
{1/3, 1/t, 1, t, 3|t = 1.1, 1.2, ..., 2} respectively. Fig 2 visualizes some detection results predicted
by MetaAnchor. It is clear that the shapes of detected boxes vary according to the customized anchor
box bi.

We also evaluate our method on PASCAL VOC 2007 and get preliminary resluts that MetaAnchor
achieves ∼ 0.3% more mAP than RetinaNet baseline (80.3->80.6% mAP@0.5). The gain is less
significant compared with that on COCO, as we find the distribution of boxes on PASCAL VOC is
much simpler than COCO.

To validate our method further, we implement MetaAnchor on YOLOv2 [31], which also use a
two-layer network to predict detector parameters. For YOLOv2 baseline, we use anchors showed
on open source project4 to detect objects. In MetaAnchor, the “standard box” (AH,AW ) is (4.18,
4.69). For training, we follow the strategy used in [31] and use the COCO-full dataset. For the
results, we report mmAP and mAP@0.5 on COCO minival. Table 7 illustrates the results. Obviously,
MetaAnchor is better than YOLOv2 baseline and boosts the performace with greedy search method.

5 Conclusion

We propose a novel and flexible anchor mechanism named MetaAnchor for object detection frame-
works, in which anchor functions could be dynamically generated from the arbitrary customized prior
boxes. Thanks to weight prediction, MetaAnchor is able to work with most of the anchor-based object
detection systems such as RetinaNet. Compared with the predefined anchor scheme, we empirically
find that MetaAnchor is more robust to anchor settings and bounding box distributions; in addition,
it also shows the potential on transfer tasks. Our experiment on COCO detection task shows that
MetaAnchor consistently outperforms the counterparts in various scenarios.

Acknowledgments This work is supported by National Key R&D Program No. 2017YFA0700800,
China.

4https://github.com/pjreddie/darknet
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(a) (b) (c) (d) (e)

Figure 2: Detection results at a variety of customized anchor boxes. From (a) to (e) the anchor box
sizes (scale, ratio) are: (20, 1/3), (20, 1/2), (20, 1), (20, 2) and (20, 3) respectively. Note that for each
picture we aggregate the predictions of all the 5 levels of detection heads, so the differences of boxes
mainly lie in aspect ratios.

Table 8: Results on COCO minival

Model Training Inference

# of Anchors # of Anchors mmAP (%)

RetinaNet [23] 3× 3 3× 3 34.0
RetinaNet (our impl.) 3× 3 3× 3 35.8
RetinaNet∗ (our impl.) search search 36.9

MetaAnchor (ours) 3× 3 3× 3 36.8
MetaAnchor (ours) 9× 9 search 37.5
MetaAnchor (ours, data-dependent) 9× 9 search 37.9
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