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Abstract

Brain development is a highly orchestrated complex process. The developing brain utilizes many
substrates including glucose, ketone bodies, lactate, fatty acids and amino acids for energy, cell
division and the biosynthesis of nucleotides, proteins and lipids. Metabolism is crucial to provide
energy for all cellular processes required for brain development and function including ATP
formation, synaptogenesis, synthesis, release and uptake of neurotransmitters, maintaining ionic
gradients and redox status, and myelination. The rapidly growing population of infants and
children with neurodevelopmental and cognitive impairments and life-long disability resulting
from developmental brain injury is a significant public health concern. Brain injury in infants and
children can have devastating effects because the injury is superimposed on the high metabolic
demands of the developing brain. Acute injury in the pediatric brain can derail, halt or lead to
dysregulation of the complex and highly regulated normal developmental processes. This paper
provides a brief review of metabolism in developing brain and alterations found clinically and in
animal models of developmental brain injury. The metabolic changes observed in three major
categories of injury that can result in life-long cognitive and neurological disabilities, including
neonatal hypoxia-ischemia, pediatric traumatic brain injury, and brain injury secondary to
prematurity are reviewed.

Introduction

The mammalian brain is dependent on a constant supply of oxygen and nutrients, both from
dietary intake and provided by other organs, which are delivered to the brain via circulation
[1, 2]. The developing brain controls the function of body organs through neurotransmission,
while simultaneously facing the metabolic demands of its” own growth and maturation.
Brain development is an energy expensive process; hence, during infancy and childhood
there is a continuous increase in cerebral blood flow and glucose utilization [3, 4].

Glucose and substrates present in mammalian milk including ketones, fatty acids and
glycerol are used to meet the high metabolic demands of the developing brain, whereas adult
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brain uses glucose as the primary energy substrate [2—4]. Recognition that the immature
brain uses a variety of substrates for energy and biosynthetic processes led to extensive
research to characterize temporal and regional changes in brain development and
metabolism [3-5].

Early studies demonstrated high circulating levels and uptake of ketones and lactate [2, 5, 6]
as well as glucose, whereas positron emission tomography (PET) studies revealed regional
differences in uptake and use of glucose that correlated with developmental maturation of
brain function [3, 4, 7].

Uptake and utilization of substrates depends on the presence of specific glucose and
monocarboxylic acid transporters (MCT) and the activity of enzymes required for
metabolism (see Table 1). Glucose and the MCT transporters responsible for lactate and
ketone body uptake show regional and temporal changes in both human [8] and rodent brain
[9] which parallel the developmental transition from lower glucose use in suckling brain to
the high glucose use by adult brain (Table 1). The enzymes for substrate use undergo a
coordinated maturation; with those for ketone body utilization peaking during early
development then decreasing after the suckling period in rodents, while enzymes for glucose
metabolism and TCA cycle activity increase several-fold from birth and mature between 20—
40 days of age in rodents [1, 10-12]. Rates of TCA cycle flux and neurotransmitter cycling
increase at least 3-fold from postnatal day 10 to 30 [13]. (Table 1).

The developing brain utilizes many substrates including glucose, ketone bodies, lactate, fatty
acids and amino acids for energy and biosynthesis of lipids and proteins [1, 5, 6, 10, 13].
Metabolism is crucial to provide energy for all cellular processes including ATP formation,
cell division, synaptogenesis, synthesis, release and uptake of neurotransmitters, maintaining
ionic gradients, and maintaining reduced glutathione and redox status [1]. Metabolism is
also crucial for synthesis of proteins, nucleic acids, carbohydrates and membrane lipids
needed for mitochondrial function and myelination [1]. Although oxidation of glucose via
the TCA cycle for energy is lower in developing brain, metabolism of glucose via the
pentose phosphate pathway is higher than in adults and provides necessary precursors for
nucleotide synthesis and the NADPH required for lipid biosynthesis and maintaining
reduced glutathione [1, 10, 14, 15]. The ability to utilize ketones, lactate, pyruvate, free fatty
acids and glycerol and certain amino acids also enables the developing brain to survive
episodes of hypoglycemia [5, 6].

Developmental Brain Injuries that Can Lead to Poor Neurodevelopmental

Outcome

A significant public health concern is the rapidly growing population of infants and children
with neurodevelopmental and cognitive impairments [16—18]. Due to advancements in both
neonatal and intensive care, more premature infants and children with neonatal or childhood
brain injury survive with life-long disability [16,17]. A common misconception is that
children with brain injury fare better than adults [19]. However, the pathology differs from
adults, because in infants and children injury is superimposed on the highly orchestrated
processes and high metabolic demands of the developing brain [19-25]. Acute injury in the
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pediatric brain can derail or even halt normal developmental processes due to energy failure,
disrupted cell division and synaptogenesis, impaired ionic gradients and depleted antioxidant
capacity which can further impair metabolism [26-30].

The overall goal of this paper is to provide a brief review of metabolism in developing brain
and the alterations found clinically and in animal models of developmental brain injury. We
focus on three major categories of injury that can result in life-long cognitive and
neurological disabilities, including brain injury secondary to prematurity, neonatal hypoxia-
ischemia, and pediatric traumatic brain injury.

Brain Injury Related to Prematurity

Worldwide approximately 15 million infants are born prematurely, with ~1.5 million annual
deaths attributable to preterm birth, especially in those very premature infants (<28 weeks
gestation) [31]. Survival rates for premature neonates have increased over the last decades,
with improvements in neonatal intensive care. However, the long-term morbidity from
premature birth, especially as related to brain injury and abnormalities in brain development,
has not significantly decreased. The neurologic deficits in premature infants are diverse, and
include cerebral palsy, intellectual disability, sensory deficits, learning disabilities, attention
deficits and problems with executive function [32, 33]. Many of these deficits persist
throughout childhood and adolescence, requiring assistance in school and support for daily
living activities. A longitudinal study showed that 72% of adolescents born very prematurely
(<750 g birth weight) had school performance difficulties even without sensory or 1Q
impairments [33]. It is estimated that in the United States, ~5,000 annual cases of cerebral
palsy, and ~10-20,000 cases of serious learning disabilities result from premature birth [32].
One of the most common conditions leading to neurologic injury in premature infants is
periventricular leukomalacia (PVL), with diffuse white matter damage resulting from
ischemia or inflammation in the vulnerable, immature white matter [32]. This process is
believed to account for the majority of motor, cognitive and behavioral sequelae of
prematurity; however, the biological basis for brain injury secondary to prematurity is
complex and multifactorial. Animal models demonstrate the negative effects of prematurity
on growth and maturation of multiple cell types throughout the brain, including neurons,
astrocytes, and oligodendrocytes [29].

Neonatal Hypoxia-Ischemia

Neonatal hypoxia-ischemia (HI), which occurs in 1.8-6 per 1,000 live births, is a significant
public health problem [26, 34-36]. A large proportion (~25%) of infants with perinatal
hypoxia-ischemia develop life-long disabilities [37], which include intellectual disability,
impaired learning, memory and executive function, seizure disorders and varying degrees of
motor impairment [38, 39]. HI results in significant mortality and accounted for ~ 9% of all
infant deaths in the US in 2005 [40]. Hypoxic-ischemic encephalopathy (HIE) is due to
decreased delivery of oxygen and nutrients to brain, lactic acidosis and decreased clearance
of CO, [26]. MRI and MRS studies reveal significant injury to deep gray matter including
thalamus, hippocampus, putamen and basal ganglia; cortical loss is also observed but there
is a relative sparing of cortex compared to other regions [26, 41-43]. While the causes of the

Neurochem Res. Author manuscript; available in PMC 2016 December 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

McKenna et al. Page 4

initial hypoxia-ischemia are multifactorial, the insult triggers a delayed cascade of molecular
events resulting in progressing brain injury over time [26]. This insult leads to rapid energy
failure, followed by a transient period of normalization of function for several hours, and a
later secondary energy failure that ultimately can result in cell death [23, 24]. Hypothermia,
the current therapeutic modality to prevent or attenuate secondary energy failure must be
initiated within the first 6 hours of life and continued for 72 hr [24, 43]. Many randomized
clinical trials demonstrated that therapeutic hypothermia decreases mortality without
increasing disability in surviving children [16, 44]. While many prospective and
retrospective studies show that therapeutic hypothermia is safe, assessing the long term
outcomes of this intervention (up to adulthood) is still ongoing. A recent report by Massaro
et al., [45] shows that this intervention is now offered to children with mild form of HIE. .

Pediatric Traumatic Brain Injury

Trauma is the leading cause of death in children ages 1-18, and traumatic brain injury (TBI)
is the major determinant of functional outcome in injured children (NIH 1998). In the United
States each year, approximately ¥ million children sustain TBI with ~35,000
hospitalizations, and ~3,000 pediatric deaths from brain trauma [46]. Over the last 10 years,
the rates of TBI-related Emergency Department visits have increased across all age groups,
with children 0-4 years of age having the highest rate of any age group, and adolescents 15—
19 years of age having the second highest rate [46]. Overall, the vast majority of TBI occurs
in children and young adults [46].

The pathobiology of the response to biomechanical injury in a developing brain is distinct
from that in adult TBI, and may require age-specific treatments [47]. In addition, while post-
injury recovery in the adult is defined by return to pre-morbid functional level, the
developing brain is dynamic. Developing children are expected to be continuously learning
new skills, making the burden of TBI even greater. As a result, survivors of pediatric TBI
suffer from many long-term physical, cognitive, psychological and social impairments [17,
18], and many of these deficits can persist into adulthood [48-50].

Alterations in Brain Metabolism After Developmental Brain Injury

Acute injury including neonatal hypoxia-ischemia and traumatic brain injury leads to rapid
energy failure which is followed by a transient normalization of function and then a later
secondary energy failure that ultimately leads to brain injury and poor neurodevelopmental
outcome [23, 24]. Acute alterations in energy metabolism and prolonged metabolic
dysregulation after neonatal and pediatric brain injury leave the brain vulnerable and unable
to support many processes essential for normal development [20-24, 51]. Any injury
superimposed on the high metabolic requirements of the rapidly developing brain can
compromise normal developmental processes and lead to neurodevelopmental outcomes
ranging from mild to severe learning disabilities [20-24]. Very premature infants often have
neurodevelopmental disabilities; however, metabolic alterations in brain of premature infants
are not well characterized.
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Importance of Proton Magnetic Resonance Spectroscopy in Assessing
Brain Injury

Magnetic Resonance Imaging (MRI) and proton Magnetic Resonance Spectroscopy (1H-
MRS) have become essential tools for studying brain injury in infants, children and adults
[17-19, 47, 48]. IH-MRS is a non-invasive method for measuring metabolites that provide
information about the structural and metabolic integrity of brain tissue. Importantly, 1H-
MRS can detect localized metabolic abnormalities, even in tissue that appears anatomically
normal on other forms of MR imaging [52, 53]. Some studies have determined the absolute
concentration of metabolites. Numerous studies over the past two decades have
demonstrated that ratios of metabolites provide diagnostically relevant information about the
severity of injury and are predictive of neurological outcome [20-22, 51, 52, 54].

N-acetylaspartate (NAA) is an amino acid synthesized in neuronal mitochondria which
increases throughout early brain development, reaching a plateau at ~ 2 to 3 years of age
[55, 56]. Reductions in NAA reflect severe alterations in neuronal mitochondrial function
[56] and may reflect loss of viable neurons [55, 56]. NAA is released by neurons and taken
up by oligodendroglial cells which use the acetyl moiety as a substrate for the synthesis of
myelin lipids [1]. NAA can be detected in areas of active myelination during development
[57, 58]. The presence of lactate in brain reflects anaerobic metabolism including impaired
TCA cycle activity [56-58]. Presence of lactate is one of the earliest markers of brain injury
in infants [56] and persistently elevated lactate is predictive of poor outcome [23]. The
creatine-phosphocreatine pathway is essential for buffering ATP levels in brain [1].
Although Cr levels are considered to be relatively constant, decreased total and/or
phosphocreatine levels reflect impaired energy status. Choline levels (tCho or Cho) increase
in developing brain and the peak observed include free choline and choline containing
phospholipids which are essential components of cell membranes and myelin [59].
Decreased choline can reflect cell loss; whereas increased choline can be a maker of
increased membrane turnover, cellular proliferation and/or gliosis after injury [56, 59]. Myo-
inositol is a key glial osmolyte that can increase in brain in response to edema [59]. Inositol
containing phospholipids have important roles in signaling pathways involved in
differentiation and cell growth in brain [60, 61].

The interpretation of 1H spectroscopy in pediatric brain injury is challenging, as metabolite
levels can change throughout normal brain development [62], with rapid maturational
changes in the first year of life and slower changes through adolescence [63-65]. Ultimately,
post-traumatic changes in 1H-MRS in infants and children must be interpreted by
comparison to age-matched reference data [55]. Although alterations in metabolite ratios
provide useful clinical information, they do not give an in depth understanding of the
mechanisms underlying energy failure subsequent to HI.
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13C-Nuclear Magnetic Resonance Spectroscopy is Used to Determine
Brain Metabolism

13C-Nuclear Magnetic Resonance (13C-NMR) spectroscopy is the most powerful technique
for determining energy metabolism and neurotransmitter synthesis in brain [1, 66].
Specifically labeled forms of 13C-glucose are used to determine metabolism via glycolysis,
the pentose phosphate pathway, synthesis of neurotransmitters glutamate and GABA and
metabolism via the pyruvate carboxylase pathway and synthesis of glutamine in astrocytes
[66]. Alterations in neuron — astrocyte and astrocyte — neuron trafficking of metabolites
can also be determined by 13C-NMR since individual carbons of glutamate, glutamine and
GABA are labeled from neuronal specific and glial specific pathways [66]. Since 13C-
acetate is selectively taken up into astrocytes this precursor is used to determine metabolism
via the astrocyte TCA cycle and trafficking from astrocytes — neurons [66]. Studies using
ex vivo 13C-NMR have provided important information about alterations in specific
pathways of metabolism in preclinical studies of brain injury [10, 66—69]. There are fewer in
vivo studies and due to technical considerations including relatively low sensitivity, and due
to the limitations using high field magnets there are a limited number of human studies.
However, the greatly increased sensitivity of newer hyperpolarized 3C-NMR techniques
holds great promise for determining metabolism in human brain. 13C-NMR can provide a
functional readout of alterations in metabolism via neuronal and glial pathways in brain after
injury and determine the efficacy of neuroprotective therapies.

Metabolic Alterations Associated with Prematurity

Clinical studies using magnetic resonance imaging (MRI) demonstrate significantly reduced
gray matter volume (both cortex and subcortical structures), diffuse white matter injury, and
abnormal development of temporal lobes and cerebellum in very premature infants [42,

70]. IH-MRS revealed decreased NAA levels in brain of very premature infants at term
equivalent age and later time points [51, 71], consistent with changes observed in a recent
animal study [72]. Preterm infants had lower GABA and glutamate in right frontal lobe than
term controls and altered neonatal resting-state connectivity, (a measure of neural activity
determined by assessing fluctuations in blood oxygen level dependent signal) [73, 74]. MRS
showed increased lactate in areas of diffuse white matter injury in preterm infants and
increased glutamine in punctate white matter lesions [75]. Bapat et al. [76] recently reported
that decreased ratios of NAA/Cho in hippocampus, cortex and subventricular zone and
decreased NAA/Myo-inositol ratio in subventricular zone in very low birth weight infants
were associated with cognitive and language delay assessed at 18—-22 months. Bluml et al.
[30] reported altered metabolic maturation of white matter and disturbed synchronization of
white matter and grey matter maturation that could contribute to neurological problems in
preterm infants. These recent studies provide strong evidence of alterations in metabolism
and connectivity, and asynchronous development in premature brain [30, 51, 71, 73, 76]. To
date the metabolic alterations in brain of premature infants are not understood and remain
poorly characterized. There is a paucity of preclinical data regarding specific alterations in
transporter levels, substrate use, oxidative energy metabolism and antioxidant capacity
(Table 2).
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Metabolic Alterations in Neonatal Hypoxia-Ischemia

Magnetic Resonance Imaging (MRI) and proton Magnetic Resonance Spectroscopy (*H-
MRS) have become essential tools for studying brain injury in infants with hypoxia-
ischemia [17-19, 72]. Such studies have provided important insights regarding brain
changes after HI, and studies that also included neurological assessment at 12 months have
demonstrated the power of 'H-MRS data in predicting outcome [20-22]. A number of
studies have reported that ratios of metabolites provide diagnostically relevant information
and are predictive of neurological outcome [20-22]. A meta-analysis of prognostic accuracy
of MR biomarkers and correlation with neurodevelopmental outcome at 1 year (32 studies;
860 infants) demonstrated that MR spectroscopy was a better diagnostic tool than
conventional MRI [77, 78]. Ratios of Lac/choline in basal nuclei [20] and Lac/NAA
accurately predicted adverse neurodevelopmental outcome at 1 year with high specificity
and predictive value. [79]. Very early peaks in lactate can normalize; however, the
persistence of high lactate in brain is associated with poor outcome [23, 56] (Table 2).

A recent high resolution H-MRS provided new insights into injury and information about
the differences in brain in animals treated with hypothermia and normothermia after HI [80].
Biomarkers related to the differential injury pattern were identified in CD1 mice with right
carotid artery occlusion and HI at postnatal day (PND) 7, and identified metabolites that
distinguished between brains less damaged and more damaged after HI [80]. Changes in
malate and aspartate are particularly relevant to metabolism since they suggest impairment
in the activity of the malate-aspartate shuttle, which is essential for transferring reducing
equivalents from the cytosol to the mitochondria to be used for energy [80, 81].

Studies using 13C-NMR spectroscopy are a powerful tool to determine overall energy
metabolism, neurotransmitter synthesis, alterations in cell specific metabolic pathways and
neuronal-glial interactions. Morken et al. [14] used 13C-NMR to determine the differences in
metabolism in normal neonatal and adult brain (Table 1). To date 13C-NMR has not been
used clinically in infants; however, it was recently used in animal studies to determine
alterations in specific metabolic pathways following HI [82, 83]. Morken et al. [83] using
the clinically relevant carotid artery ligation and hypoxia in PND 7 rat pup (Rice Vannucci
model [84]) showed that following HI metabolism via the pentose phosphate pathway (PPP)
was reduced bilaterally and metabolism via pyruvate carboxylase (PC) was reduced in the
ipsilateral (hypoxic-ischemic) side of brain (Table 2). The PPP pathway is particularly high
in developing brain to provide precursors for nucleotide formation, and the NADPH for lipid
synthesis and for maintaining reduced glutathione [14]. Thus, a significant decrease in
metabolism via this pathway can explain, in part, the decreased brain volume, white matter
abnormalities and susceptibility to oxidative stress after HI.

Morken et al. [82] found that metabolism via the pyruvate carboxylase pathway in astrocytes
was decreased after HI. This pathway has the essential role of adding net carbons to the
TCA cycle (anaplerosis) and provides substrate in the form of glutamine to neurons to
replenish carbons in the neuronal TCA cycle, since intermediates are continuously drained
from the cycle for synthesis of glutamate and GABA [1, 85] Neonatal HI led to a prolonged
depression in mitochondrial metabolism [82]. Mitochondrial metabolism was decreased in
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the ipsilateral side at <6 hours post HI and was reduced in neurons but not in astrocytes in
the contralateral side [82]. This study provided new insight into sex differences since male
pups had lower astrocytic mitochondrial metabolism than females immediately after HI;
whereas, mitochondrial metabolism was reduced longer in females and in both neurons and
astrocytes [82]. (See Table 2 for details).

Metabolic Alterations After Pediatric Traumatic Brain Injury

A number of adult clinical studies have correlated the extent of metabolic change seen

by 1H-MRS with the severity of injury and neurologic outcome after TBI [52, 54]. After
TBI, dramatic reductions in NAA are often observed and correlate with either neuronal cell
loss and/or impaired neuronal energy metabolism [55]. Reductions in NAA or in NAA/
Creatine and NAA/Choline ratios have been shown to correlate with greater injury severity
and worse neurological outcomes after pediatric TBI [63, 86].

Lactate presence in remote (uninjured) areas of the occipital cortex after TBI in children is
strongly associated with poor neurological outcome [86]. Multiple studies have reported the
strong association between lactate peaks on 1H-MRS and poor long-term neurological
outcome (up to several years) after pediatric TBI [63, 86—88] (Table 2). More recently, this
association has also been observed in pediatric victims of abusive head trauma, with infants
that show elevated lactate on 1H-MRS having worse early neurological outcome [89]. These
investigators suggested that lactate presence is more common after non-accidental TBI in
children than in accidental TBI [90, 91], and that the lactate peaks could represent either
primary injury or secondary hypoxic-ischemic injury [89, 90]. Importantly, using a
combination of 1H-MRS metabolites may provide even greater predictive value in both
accidental and non-accidental pediatric TBI. For example, in a series of 90 infants who had
confirmed non-accidental TBI, a logistic regression model that used the combination of
initial Glasgow Coma Score (GCS), presence of retinal hemorrhages, and lactate and NAA
values on spectroscopy, was able to predict poor neurologic outcome in 100% of the cases
[90]. In another study that included both accidental and non-accidental TBI, 1H-MRS
changes were more predictive of outcomes than clinical findings [88]. One of the few studies
to compare 'H-MRS metabolites with a detailed panel of intelligence and neuropsychologic
testing found that the NAA/creatine and choline/creatine ratio, and presence of lactate were
predictive of long-term cognitive outcome [88].

Preclinical studies using *H-MRS in TBI models offer several potential advantages, such as
the ability to obtain data very early (<4h) after injury in order to define the time course of
post-traumatic metabolic dysfunction. In clinical studies, the average time to obtain the
first ITH-MRS imaging is ~1 week, often due to the instability of children after moderate to
severe TBI, limiting the ability to obtain lengthy MRI/MRS. Using 1H-MRS in preclinical
studies, with both early and serial imaging, will allow testing of neuroprotective strategies
aimed at reducing cerebral energy failure after TBI. However, there are very few studies
using this approach in pediatric TBI models. Casey et al. [92] used a model of focal TBI
(controlled cortical impact, CCI) in immature rats to evaluate spectroscopic changes at 4h,
24h and 7d after injury. The ipsilateral (injured) hemisphere showed early (4h, 24h)
increases in lactate/creatine ratios, and delayed (24h, 7d) decreases in NAA/creatine ratios,
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with significant decreases in the NAA/lactate ratio at all times studied, in this model of
developmental TBI (Table 2). The metabolic alterations occurred early (4 hrs) and prior to
significant cell death demonstrating potentially reversible alterations of energy metabolism.
Another study used both 1H and phosphorus (31P) NMR spectroscopy to evaluate
neurochemical changes and test the effect of a ketogenic diet on brain metabolism after CCl
in juvenile (PND 35) and adult rats [93]. The results showed that initial alterations in brain
metabolism were seen earlier (6h) in adult rats than in juvenile rats (24h). Furthermore, the
ketogenic diet significantly increased NAA and reduced lactate levels, and improved ATP,
creatine and phosphocreatine levels at 24h after TBI in only in the juvenile rats. In a model
of more diffuse injury (fluid percussion injury, FPI), investigators used 3P MR spectroscopy
at 4h after TBI in immature (PND 7, PND 14, PND 21) and adult rats [94]. In contrast to the
finding in adult rats, in the immature rats, there were no significant changes in the 31P MR
spectra, which showed relatively normal pH, intracellular free magnesium (iMg) and
phosphocreatine/inorganic phosphate (PCr/Pi) ratios at an early time point (4 hrs) after TBI.
However, no studies to date have determined these metabolites at later time points after
injury. In summary, although there are limited studies using H-MRS in pediatric TBI
animal models, the results show the translational potential for utilizing this technique to both
define the timeline and degree of metabolic dysfunction after injury, and to evaluate the
efficacy of novel neuroprotective strategies targeting metabolic rescue.

To date 13C-NMR has been employed in limited number of preclinical studies of TBI and
the majority of these studies were performed in adult animals [69]. Our group used a model
of moderate-to-severe brain trauma (CCI) in PND 21-22 day old rats and assessed oxidative
glucose metabolism at between 5 and 6 hrs after TBI. Oxidative glucose metabolism via
pyruvate dehydrogenase was delayed in both injured and contralateral sides of the brain
compared to sham animals, and there was delayed hypermetabolism of glutamate, glutamine
and GABA in both sides of injured brain [68]; (Table 2). These findings significantly differ
from 13C-NMR in studies adult animals which did not find any differences in oxidative
glucose metabolism in glutamatergic neurons in CCI-TBI [95]. Using a fluid percussion
model of diffuse brain TBI, in adult rats Bartnik and colleagues [96] demonstrated decreased
oxidative glucose metabolism in both astrocytes and neurons as early at 3.5 hrs post TBI.
Both adult and immature brain TBI studies demonstrate that in general oxidative metabolism
at 24hrs post TBI was comparable to sham operated animals [95-97]. However, the only
differences at 24 hr post TBI found in the studies were age specific with decrease 13C label
incorporation into glutamine in adult brains, and decreased 13C label incorporation into
glutamate in immature brain. These differences may reflect differential cell-specific
alterations in response to injury. Additional studies employing multiple 13C-labled substrates
will be particularly useful for further delineating alterations in neuronal and glial metabolic
pathways after TBI in developing brain

Alternative Substrates and Metabolic Modifiers in Brain Injury Models

A number of studies have tested the potential of alternative energy substrates and modulators
of metabolism for preventing injury and improving metabolic and functional outcomes.
Compounds that improve brain function and/or decrease injury volume when administered
after injury are the logical therapeutic approaches. Treatment after injury with creatine
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monohydrate [98], acetyl-L-carnitine [99], or ketogenic diets [100] have led to improved
locomotor and/or cognitive function in young rodents after brain injury (See Table 3).
Compounds that can be metabolized for energy in brain, including ketones [93, 101], acetyl-
L-carnitine [102], and triheptanoin [103] can lead to improved energy status. Therapy with
branched chain amino acids (BCAA) after fluid percussion TBI improved synaptic
efficiency and cognitive performance in adult mice presumably by normalizing brain levels
of these amino acids which have a role in glutamate metabolism [104]. BCAA therapy as
well as triheptanoin which provides anaplerotic substrates to brain and can decreased seizure
activity [103, 105] also appear to be potentially useful treatments for pediatric brain injury.
A recent study [148] using an electron scavenger specifically targeted to neuronal
mitochondrial (XJB-5-131-- a hemigramicidin-nitroxide) demonstrated that this compound
prevented mitochondrial cardiolipin oxidation and caspase activation. This therapy
decreased neuronal death, behavioral deficits and cortical lesion volume in PND 17 rats after
CCI-TBI.

Conclusion

Clinical studies using IH-MRS in infants and children have greatly increased the knowledge
of temporal and regional changes in brain after injury and the relationship of energy failure
to neurologic outcome. Advances in imaging techniques are leading to a better
understanding of specific alterations that occur subsequent to prematurity, neonatal and
childhood injury including alterations in resting state and brain connectivity. Animal studies
have led to an increased understanding of the mechanisms leading to both acute and ongoing
injury in developing brain. These include alterations in metabolism via neuronal and glial
specific pathways in brain, changes in the expression, level and activity of key proteins
involved in development, metabolism and signaling pathways, and the extent of oxidative
stress in specific brain injury models. However, there are still many gaps in knowledge
including a lack of sufficiently detailed information about temporal alterations in brain
energetics and metabolism, the effects of age at time of injury (prenatal, neonatal, during
synaptogenesis and rapid myelination or at the peak of myelination), and the effects of diet
before, during and after injury.

Our understanding of energy metabolism in developing brain stems from studies of temporal
changes in transporter levels and function, enzymatic activity, and changes in cell
populations and mitochondrial function.. In vivo and ex vivo PET and 13C-NMR
spectroscopy have greatly increased our knowledge of regional changes during development
and metabolism in developing brain. To date there are relatively few 13C-NMR studies of
metabolism via cell specific pathways, neurotransmitter synthesis, and neuron — astrocyte
and astrocyte — neuron metabolic trafficking in developing brain. Many newer tools
including genetically modified knock-out, knock-in and inducible Cre-mice, BOLD and
resting state MRI, proteomic and lipidomic techniques and imaging including matrix-
assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to determine
regional alterations in metabolites have great potential to increase the understanding of the
normal developmental changes in brain metabolism, alterations resulting from injury and
effects of therapies.
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Future Directions

Additional clinical studies using H-MRS and advanced neuroimaging techniques will lead
to increased understanding of the regional, temporal, and functional changes resulting from
prematurity, neonatal hypoxia-ischemia and traumatic brain injury in infants and children.
Clinical studies that determine brain changes in conjunction with long-term neurological
outcome are particularly important for identifying biomarkers associated with functional
outcome. The recent identification of metabolites in plasma, including fumaric acid and
propanoic acid, that correlate with, and are potential biomarkers for long term functional
outcome in a nonhuman primate model of neonatal HIE is very promising [159]. Clinical
studies using conventional 13C-NMR spectroscopy or hyperpolarized 13C-NMR would
provide much needed information about alterations in metabolic pathways of specific
importance to developing brain and the extent of alterations in astrocytes, neurons and the
trafficking of metabolites between these cells. Additional preclinical studies using animal
models are essential for increasing the understanding of mechanisms of injury and efficacy
of neuroprotective therapies.
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