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Aim: To character the specific metabolomics profiles in the sera of Chinese patients with mild persistent asthma and to explore 
potential metabolic biomarkers.
Methods: Seventeen Chinese patients with mild persistent asthma and age- and sex-matched healthy controls were enrolled. Serum 
samples were collected, and serum metabolites were analyzed using GC-MS coupled with a series of multivariate statistical analyses.
Results: Clear intergroup separations existed between the asthmatic patients and control subjects. A list of differential metabolites and 
several top altered metabolic pathways were identified. The levels of succinate (an intermediate in tricarboxylic acid cycle) and inosine 
were highly upregulated in the asthmatic patients, suggesting a greater effort to breathe during exacerbation and hypoxic stress due 
to asthma. Other differential metabolites, such as 3,4-dihydroxybenzoic acid and phenylalanine, were also identified. Furthermore, 
the differential metabolites possessed higher values of area under the ROC curve (AUC), suggesting an excellent clinical ability for the 
prediction of asthma.
Conclusion: Metabolic activity is significantly altered in the sera of Chinese patients with mild persistent asthma. The data might be 
helpful for identifying novel biomarkers and therapeutic targets for asthma.
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Introduction
Asthma is an inflammatory disease of the airways and one of 
the most common chronic illnesses[1, 2].  It is a heterogeneous 
disease characterized by recurrent and reversible airflow 
obstruction with clinical classifications previously based 
mainly on patient symptoms, lung function measurements, 
and responses to therapy[3, 4].  The symptoms are largely 
caused and sustained by abnormal airway inflammation and 
its effects on structural airway cells, including the epithe-

lium and smooth muscle cells[5-7].  However, detecting airway 
inflammation is often difficult for clinicians.  Physiological 
tests (ie, spirometry and peak flow measurements) and func-

tional tests may not always reflect airway inflammation and 
are insensitive to small changes in the inflammatory status[8].  

Accurate invasive airway measurements such as bronchos-

copy are expensive and accompanied by adverse events[8].  To 

address these issues, research has focused on less invasive 
measurements of airway inflammation.

Numerous chemical tests can be used to improve the clini-
cal diagnosis of diseases by quantifying the concentrations of 
a range of biomarkers[9].  Monitoring marker metabolite levels 
has become an important way to detect the pathogenesis of 
diseases.  Biomarkers are typically measured in biofluids, such 
as urine, plasma, serum and exhaled breath condensate (EBC), 
which are commonly used to detect asthma due to the ease of 
collection and their minimally invasive nature[10-12].  However, 
many current biomarkers are not specific and lack adequate 
sensitivity in detection assays.  Therefore, one major unmet 
need is to identify new biomarkers with high sensitivity 
and specificity that reflect the specific pathology and airway 
inflammation associated with asthma and can be collected in a 
less invasive manner.

Metabolomics represents an emerging discipline that is 
defined as the comprehensive assessment of low molecular 
weight (<1 kDa) endogenous metabolites generated by bio-

chemical reactions under a given set of physiological condi-
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tions[13, 14].  It utilizes fundamental analytical techniques to 
probe the chemical fingerprint of the samples and makes 
use of multivariate statistical analyses to search for disease-
related potential biomarkers and metabolic pathways[15-18].  To 
date, both nuclear magnetic resonance (NMR)[8, 19-22] and mass 
spectrometry (MS)-based[23, 24] metabolomics techniques have 
been used to analyze respiratory diseases, including asthma, 
chronic obstructive pulmonary disease (COPD) and cystic 
fibrosis.  However, studies have not documented specific met-
abolic alterations in the sera of asthmatic patients using gas 
chromatography mass spectrometry (GC-MS) methods.

In this study, we performed GC-TOF-MS using serum 
samples to detect potential metabolite changes associated with 
mild persistent asthma.  We demonstrated clear separation 
between asthmatic patients and healthy controls after a series 
of multivariate statistical analyses.  We also identified several 
novel metabolites that exhibited significant changes in the 
serum and potentially represented the top altered pathways.

Materials and methods
Human subjects

The patients (n=17) were recruited from the Respiratory Clin-

ics at Peking University Third Hospital and were all confirmed 
to be diagnosed with asthma according to the Global Initiative 
for Asthma (GINA) guidelines.  Only non-smoking, mildly 
persistent asthmatic patients were included in this study 
(Table 1).  Subjects with other clinically relevant lung or medi-
cal illnesses, exacerbated asthma or respiratory infection that 
occurred within the 4 weeks prior to this study were excluded.  
We enrolled an additional 17 age- and sex-matched healthy 
controls who met the following criteria: (1) no history of respi-
ratory or other diseases that might interfere with the results; 
(2) baseline forced expiratory volume in 1 s (FEV1) >80% pre-

dicted and FEV1/forced vital capacity (FVC) ratio >0.7; and 
(3) negative methacholine challenge.  The parameters of lung 
function (ie, FEV1, FVC, and FEV1/FVC) were measured using 
a standard spirometry method.  Demographics of the study 
population are briefly presented in Table 1.  All healthy people 
and asthmatic patients provided informed consent prior to the 
collection of any data.  This study was approved by the Ethics 

Committee of Peking University Third Hospital (2014071).

Serum samples

To avoid variation due to circadian rhythms, blood was drawn 
in the morning between 8:00 and 10:30 AM after overnight 
fasting (at least 8 h).  Blood samples were transferred into 
serum gel tubes and gently inverted twice, followed by rest at 
room temperature for 30 min to obtain complete coagulation.  
The tubes were centrifuged at 2750 ×g for 10 min at 15 °C.  
Serum was aliquoted and stored at -80 °C prior to analysis.

Serum metabolites were analyzed with chemical derivatiza-

tion according to the previously published procedure with 
minor modifications[25, 26].  First, 100 μL aliquots of the thawed 
serum samples were transferred into 1.5-mL Eppendorf tubes, 
followed by the addition of 350 μL of methanol for extrac-

tion.  A total of 50 μL of L-2-chlorophenylalanine (0.1 mg/mL 
stock in dH2O; Shanghai Hengbai Biotech Co Ltd, Shanghai, 
China) that acted as an internal standard was added to the 
tubes, which were then vortexed for 10 s.  The samples were 
centrifuged at 12 000 rounds per minute for 10 min at 4 °C.  
An aliquot of 300 µL of supernatant was transferred to a 2 mL 
GC-MS glass vial and vacuum-dried at room temperature.  The 
residue was derivatized using a two-step procedure.  Then, 80 
μL of methoxyamine hydrochloride (20 mg/mL in pyridine) 
was added to each vial, mixed gently and shaken for 2 h at 
37 °C.  Finally, 100 μL of bis-(trimethylsilyl)-trifluoroacetamide 
(BSTFA) plus 1% (v/v) trimethylchlorosilane (TMCS) (REGIS 
Technologies, Morton Grove, IL, USA) was added, and the 
tubes were shaken for 1 h at 70 °C.  The derivatized samples 
were cooled to room temperature prior to GC-MS analysis.

GC-MS analysis

GC-MS analysis was performed using an Agilent 7890A gas 
chromatograph system (Agilent Technologies, Santa Clara, 
CA, USA) coupled with a Pegasus HT time-of-flight mass 
spectrometer (LECO, St Joseph, MI, USA).  The system utilized 
a DB-5MS capillary column coated with 5% diphenyl cross-
linked with 95% dimethylpolysiloxane (30.0 μm×250 μm inner 
diameter, 0.25 μm film thickness; J&W Scientific, Folsom, CA, 
USA).  Briefly, each 1-μL aliquot of the derivatized sample 
was injected in splitless mode with helium as the carrier gas 
at a constant flow rate of 1.0 mL/min.  Then, separation was 
achieved on a DB-5MS capillary column.  The injector temper-

ature was set at 280 °C.  The column temperature was initially 
kept at 50 °C for 1 min and then increased to 330 °C at a rate 
of 10 °C/min, where it remained for 5 min.  The transfer line 
temperature and ion source temperature were set at 280 °C 
and 250 °C, respectively.  The energy was -70 eV in electron 
impact mode.  The MS data were acquired in full-scan mode 
with a mass-to-charge ratio (m/z) range of 85–600 at a rate of 
20 spectra per second after a solvent delay of 360 s.

Multivariate statistical analysis

The acquired raw GC-MS data were analyzed as previously 
described[27].  The Chroma TOF4.3X software (LECO) and 
LECO-Fiehn Rtx5 database were used for raw peak exacting, 

Table 1.  Demographic characteristics of human subjects. 

  Asthmatics (n=17) Controls (n=17)       
 
Age, year (median, range) 33 (25–86)a 33 (25–86)a

Male/female ratio 6/11 6/11
BMI, kg/m2 (median, range) 23.03 (19.8–25.1) 22.99 (19.8–28.7)
Height, cm (median, range) 168 (155–181) 169 (150–181)
Weight, kg (median, range) 65 (46–80) 65 (46–83)
Smoking status Never Never
FEV1, % predicted (median, range) 90 (82–101) 93 (84–111)
FEV1/FVC, % (median, range) 87 (75–92)b 90 (75–97)

aOnly one pair of subject was from asthmatics/controls with 86 years old, 
excluding of which gave rise to the age range of 25–56.
bMild-persistent asthma.
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data baseline filtering and calibration, peak alignment, decon-

volution analysis, peak identification and integration of the 
peak area.  The missing values of the raw data were filled up 
by half of the minimum value; then, 296 peaks were detected, 
representing 272 metabolites, through the interquartile range 
denoising method.  The retention time index (RI) method 
was employed for peak identification, and the RI tolerance 
was 5000.  Additionally, the internal standard normalization 
method was used in this data analysis.  The resulting normal-
ized data involving the peak number, sample name and nor-

malized peak area were fed into the SIMCA-P 13.0 software 
package (Umetrics, Umea, Sweden) for a series of multivariate 
statistical analyses.

Principal component analysis (PCA) was employed to visu-

alize the dataset and display the similarities and differences.  
The partial least squares-discriminant analysis (PLS-DA) was 
used for cluster analysis, and linear regression was used for 
categorical variables in supervised learning.  The R2 value was 
recorded to describe how well the data were mathematically 
reproduced; the values ranged between 0 and 1, with 1 indi-
cating a model with perfect fitness.  The Q2 value was recorded 
as the percent variation of the response predicted by the 
model, or how accurately the model could predict new data.  
The PLS-DA model was validated by performing permuta-

tion tests (n=200) to check its validity and then was converted 
into corresponding orthogonal projection to latent structures-
discriminant analysis (OPLS-DA) models.

Metabolite identification, ROC curve and pathway analysis
We identified the discriminating compounds by matching the 
RI with data from the LECO/Fiehn Metabolomics Library[27], 

which gave a similarity value for the compound identifica-

tion accuracy.  Peaks with similarities greater than 700 were 
assigned compound names, while those with similarities less 
than 200 were named “analyte”. If the similarity was between 
200 and 700, the compound name was a putative annotation.

After completion of the OPLS-DA analysis, the differentially 
expressed metabolites between the control and asthmatic 
subjects could be distinguished.  To choose the most accurate 
list of metabolites, potential candidates were chosen based 
on the contribution of Variable Importance for the Projection 
(VIP) that was extracted from the first principal component of 
the OPLS-DA analysis.  The greater the consistent difference 
in metabolite levels between groups, the more important a 
metabolite would become in creating the final model, which 
is reflected by a VIP value.  VIP values exceeding 1.0 were 
first selected as significantly changed metabolites.  Then, the 
remaining variables were assessed by Student’s t-test, with P 

values <0.05 considered to be statistically significant; variables 
that were not significantly changed were discarded.

The levels of differential metabolites were quantified by 
measuring the peak area after normalization and analyzed 
using R (the R Project).  ROC curves and the area under the 
ROC curve (AUC) were computed using the ‘pROC’ package 
in R[28].  Differential metabolites of asthmatic patients were 
further identified and validated by searching online databases, 

including the Kyoto Encyclopedia of Genes and Genomes 
(KEGG), PubChem Compound, Chemical Entities of Biological 
Interest (ChEBI), Japan Chemical Substance Dictionary Web 
(NIKKAJI) and Chemical Abstracts Service (CAS).  Then, each 
differential metabolite was cross-listed with the pathways 
in KEGG, and the top altered pathways were identified and 
finally constructed according to the potential functional analy-

sis.

Results
Characterization of GC-MS data

For an efficient evaluation of the metabolic variability in the 
serum samples, the acquired GC-MS data were normalized 
and exported into the Chroma TOF4.3X software and LECO-
Fiehn Rtx5 database for analysis.  A total of 296 peaks were 
detected, and 272 metabolites were selected through the 
interquartile range denoising method.  To better visualize the 
subtle similarities and differences among the complex data 
sets, multivariate statistical methods including PCA, PLS-DA 
and OPLS-DA analysis were applied.

The unsupervised segregation was checked by PCA, which 
mainly showed the distribution of the original data.  PCA 
reduces the dimensionality of data and summarizes the simi-
larities and differences between multiple MS spectra using 
score plots.  As shown in the plot, the unsupervised PCA 
basically demonstrated a clear separation between the asthma 
and control groups, except for one abnormal control sample 
(Figure 1A).  Similarly, asthma and control subjects were also 
separated in the three-dimensional (3-D) PCA score plot (Fig-

ure 1B).  The PCA analysis suggests that metabolic alterations 
indeed occur in the sera of asthmatic patients.

To obtain an improved separation and gain a better under-

standing of the variables responsible for the classification, a 
supervised clustering PLS-DA model analysis was applied.  
This model had an R2Y value of 0.955 (ie, the model explained 
95.5% of the variation observed within the data) and a Q2Y 

value of 0.862, suggesting that the model had a very good pre-

dictive capability.  The score plot of PLS-DA analysis showed 
a distinct separation between the asthma and control groups 
(Figure 2A).  Furthermore, a leave-one-out cross-validation 
(LOOCV) was used to estimate the robustness and predictive 
ability of this model, and thus a permutation test was applied.  
The R2 and Q2 intercept values were 0.726 and -0.17, respec-

tively, after 200 permutations (Figure 2B).  The low value of 
the Q2 intercept indicated the robustness of the model and 
thus showed a low risk of over-fitting.

To refine the PLS-DA analysis, OPLS-DA analysis was 
performed to maximize the differences between groups in 
the model.  As shown in the score plot, asthma subjects were 
appreciably separated from the controls (Figure 2C).  A load-

ing plot was constructed based on the OPLS analysis that 
manifested the contribution of variables to the differences 
between the two groups.  The plot showed that the important 
variables were situated far from the origin, which had the 
highest discriminatory power between the groups (Figure 2D).  
Taken together, these results demonstrated that the levels of 
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metabolic components in the sera of asthmatic patients were 
significantly altered, which was visualized using a series of 
multivariate statistical methods.

Differential metabolites in asthma

We determined which differentially expressed metabolites 
played the greatest role in separating the two groups.  We 
obtained VIP values from the OPLS-DA analysis; differential 
metabolites were selected when the VIP values were more 
than 1.0 and P values were less than 0.05.  Based on these 
criteria, we found a total of 30 metabolites that were present 
at different abundances in asthmatic patients compared with 
the controls (Table 2).  By ranking the VIP values accord-

ing to their significance in the model, we determined that 
14 specific metabolites were remarkably altered in the sera 
of asthmatic patients (Figure 3).  The levels of differential 
expressed metabolites were quantified by measuring the peak 
area after normalization.  Among them, the levels of 2-ketova-

leric acid, 3,4-dihydroxybenzoic acid, 5-aminovaleric acid, 
ascorbate, dehydroascorbic acid, inosine, phenylalanine, and 
succinic acid (succinate) were significantly higher in serum 
samples from asthmatic patients than the healthy controls 
(Figure 3A–3H).  In contrast, the levels of β-glycerophosphoric 
acid, maleamate, maleic acid, monoolein, ribose, and trans-

4-hydroxy-L-proline were significantly reduced in the sera of 
asthmatic patients (Figure 3I–3N).

Furthermore, we graphed ROC curves to illustrate and 
evaluate the prognostic performance of the differential metab-

olites.  The closer the apex of the curve toward the upper left 
corner, the greater the discriminatory ability and the higher 
the AUC value achieved.  An AUC value of 1 represents a 
perfect test, while an AUC value of 0.5 represents a worth-

less test.  The AUC value is used to measure discrimination 
between disease and healthy subjects and manifests excellent 

sensitivity and specificity that have great clinical applications 
in the diagnosis of diseases.  Interestingly, there was actually 
a large number of differential metabolites that presented nice 
ROC curves with very high AUC values (Table 2; Figure 4).  
Among them, three metabolites (succinate, 3,4-dihydroxyben-

zoic acid and inosine) possessed the top three AUC values (all 
more than 0.96), indicating an excellent discriminatory ability 
(Table 2; Figure 4).  These results suggest that many, although 
not all, of the differential metabolites have the potential to be 
effective clinical indicators of asthma.

Metabolic pathways and function analysis

It is informative to map the metabolites that describe asthma 
onto the top altered metabolic pathways in order to develop 
an improved understanding of the underlying metabolic per-

turbations.  By searching the KEGG database, the differential 
metabolites were identified to be involved in several key meta-

bolic pathways, including the tricarboxylic acid (TCA) cycle, 
nitrogen metabolism, glutamine and glutamate metabolism, 
ribose metabolism, and phenylalanine metabolism.  A detailed 
construction of the altered pathways was generated using the 
reference maps from KEGG (Figure 5).

Specifically, we found that the TCA cycle was involved in 
the metabolic changes associated with asthma.  The level of 
succinate (the most effective substrate following oxygen con-

sumption) was demonstrated to be increased in the asthma 
group (Figure 5).  The enhancement of TCA cycle metabolism 
with the increased abundance of TCA-cycle intermediates may 
result from a greater effort to breathe during exacerbation and 
hypoxic stress due to poor oxygenation.

We also documented the involvement of altered nitrogen 
metabolism (ie, the urea cycle) in asthma.  Levels of L-orni-
thine and L-citrulline were significantly lower in the asthma 
group compared to the healthy controls, suggesting that the 

Figure 1.  PCA analysis of GC-MS metabolite profiles.  (A) The PCA score plot showed that the asthma samples and control subjects were scattered into 
two different regions.  The X-axis, t[1], and Y-axis, t[2], indicated the first and second principal components, respectively.  (B) 3-D score plot of the PCA 
analysis.
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urea cycle and nitrogen metabolism were greatly dampened 
(Figure 5).  Reduced levels of L-glutamine and L-asparagine 
were also observed in asthma samples, indicating alterations 
in amino acid metabolism (Figure 5).

Additionally, the levels of inosine, 3,4-dihydroxybenzoic 
acid and phenylalanine were dramatically upregulated in 
asthma; this result was not previously reported in metabo-

lomics studies (Figure 3F).  Inosine (a breakdown product of 
adenosine) can penetrate into cells to enhance the activity of 
many enzymes, particularly coenzyme A (CoA) and pyruvate 
oxidase, thereby facilitating cell metabolism under hypoxic 

conditions.  The enhanced inosine expression suggests that the 
asthmatic human body may be under hypoxic circumstances 
with less oxygen.  Notably, succinate and inosine possessed 
the highest VIP values, underpinning the important roles of 
the TCA cycle and hypoxic metabolism in asthma (Table 2 and 
Figure 3O).  Although we did not assess any pathways related 
to the other differential metabolites (ie, inosine, 3,4-dihydroxy-

benzoic acid and phenylalanine), they all possessed the high-

est VIP or AUC values and might also be of great importance 
in monitoring asthma progression.

Collectively, we speculate that asthma is tightly associated 

Figure 2.  PLS-DA and OPLS-DA analysis of GC-MS metabolite profiles.  (A) The PLS-DA score plot showed that the asthma samples and control subjects 
were scattered into two different regions.  The X-axis, t[1], and Y-axis, t[2], indicated the first and second principal components, respectively.  (B) A 
permutation test was performed to validate the PLS-DA model.  The R2 and Q2 intercept values were 0.726 and -0.17, respectively after 200 permuta-

tions.  (C) The OPLS-DA score plot showed that the asthma samples and control subjects were scattered into two different regions.  The X-axis, t[1], and 
Y-axis, t[2], indicated the first and second principal components, respectively.  (D) The OPLS-DA loading plot was constructed to display the relationship 
between the X-variables and the Y-variables for the first predictive component and the first Y-orthogonal component.  The horizontal axis represented 
the X-loadings p and the Y-loadings q of the predictive component.  The vertical axis represented the X-loadings p(o) and the Y-loadings s(o) for the Y-
orthogonal component.  X-variables situated in the vicinity of the dummy Y-variables have the highest discriminatory power between the classes.
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with abnormalities in the TCA cycle, hypoxia metabolism, the 
urea cycle and amino acid metabolism due to the great effort 
to breathe and the presence of hypoxic stress.

Discussion
Respiratory diseases are a major cause of global morbidity and 
mortality that greatly impair the quality of life and represent 
a burden to the healthcare system throughout adult life[14, 29].  

Biomarkers play an ever-increasing role in the diagnosis and 
prognosis of respiratory diseases, the evaluation of the effects 
of a chosen therapy, and monitoring disease progression.  The 
repertoire of small molecule metabolites represents a number 
of attractive candidates to understand disease phenotypes.  To 
gain new insights into asthma pathogenesis, it is necessary to 
clarify the global metabolic alterations that characterize its pro-

gression.  Fortunately, metabolomics technology has enabled 
us to explore particular metabolites, potential prognostic and 
diagnostic biomarkers, and novel pathways.  Metabolomics is 
based on an unbiased approach that simultaneously consid-

ers a large number of metabolites in a given sample, resulting 

in fairly comprehensive coverage of the central pathways of 
primary metabolism[3].  To date, many initial metabolomics 
studies in the respiratory field were conducted with NMR due 
to its ease of application and non-destructive nature, but MS 
is now increasingly used due to its improved sensitivity and 
specificity[30].

Among MS methods, GC-MS has been recognized as a 
robust metabolomics tool and has been widely applied in 
metabolite identification and quantification due to its high sen-

sitivity, peak resolution, and reproducibility[31].  In our study, 
we employed GC-MS with high resolution and successfully 
discriminated mild persistent asthmatic patients from healthy 
people.  The GC-MS data showed stable RI with minor fluctua-

tions, which was greatly beneficial for matching and extracting 
the co-eluting peaks.  Following multivariate statistical analy-

sis of the metabolites, a clear separation of the asthma group 
and control group was achieved.  The values of R2 (0.955) and 
Q2 (0.862) showed that the analysis model was stable, with 
good fitness and prediction capability.  Notably, an abnormal 
point was detected in the control group after PCA or PLS-

Table 2.   Identification and selection of differentially expressed metabolites. 

Peak Metabolites Similarity RT (s) VIP AUC P-value Folda CAS No

 
21 2-Ketovaleric acid 522.700  8.3715 2.721  0.8737 0.010875858 12.756  1821-02-9
42 Methyl phosphate 584.636  9.01098 1.890  0.1246 6.14122E-05 0.296  812-00-0
75 Maleic acid 544.167  10.7467 3.152  0.2941 9.60192E-07 0.001  110-16-7
81 Succinic acid 537.444  10.9488 4.727  0.9758 1.39563E-12 18.012  110-15-6
90 Pyrrole-2-carboxylic acid 278.100  11.3376 1.992  0.8512 0.005819903 53.088  634-97-9
103 4-Methylcatechol 763.500  11.9378 1.400  0.827 0.002964378 6.455  452-86-8
124 3-Aminoisobutyric acid 430.667  12.8192 1.903  0.2751 0.001969014 0.080  144-90-1
140 Salicylic acid 259.938  13.483 1.409  0.8062 0.030011441 3.123  69-72-7
144 L-glutamic acid 409.840  13.6167 1.667  0.218 0.004650469 0.525  56-86-0
146 Trans-4-hydroxy-L-proline 940.476  13.647 2.342  0.2872 0.037599737 0.507  51-35-4
156 Phenylalanine 718.563  14.0296 3.886  0.9273 3.03157E-05 8.155  63-91-2
157 Threonic acid 898.576  14.0301 1.040  0.0346 9.13379E-10 0.267  7306-96-9
158 Maleamate 501.857  14.1161 2.213  0.2889 0.000163998 0.119  557-24-4
159 2-Hydroxy-3-isopropylbutanedioic acid 308.793  14.2296 1.136  0.2941 0.044990065 0.678  16048-89-8
165 D-alanyl-D-alanine 396.933  14.6255 1.440  0.2561 0.030681161 0.533  923-16-0
182 5-Aminovaleric acid 718.882  15.3106 3.553  0.9481 6.76389E-07 10.151  660-88-8
183 Asparagine 855.323  15.3505 1.029  0.173 0.00240466 0.570  70-47-3
184 Ribose 616.364  15.3721 2.882  0.2509 0.014774949 0.469  50-69-1
197 Beta-Glycerophosphoric acid 508.750  15.9306 2.780  0.1747 3.54503E-06 0.002  819-83-0
201 Diglycerol 491.968  16.1491 1.077  0.8651 0.013648411 3.336  627-82-7
219 3,4-Dihydroxybenzoic acid 677.524  16.9848 2.981  0.9654 7.54145E-08 7.053  99-50-3
220 Ornithine 621.333  17.0177 1.653  0.391 0.006055267 0.125  70-26-8
221 Citrulline 847.833  17.0301 1.319  0.08651 7.03487E-06 0.462  372-75-8
225 Dehydroascorbic acid 819.350  17.2592 3.604  0.8962 7.31492E-06 4.522  490-83-5
244 Ascorbate 728.850  18.269 2.858  0.917 1.25007E-06 5.384  50-81-7
259 Trans-3,5-Dimethoxy-4-hydroxycinnamaldehyde 322.667  19.9182 1.768  0.3581 0.005583875 0.004  4206-58-0
276 Arachidonic acid 606.375  22.1624 1.436  0.3754 0.032532568 0.394  506-32-1
285 Inosine 735.095  23.6905 4.202  0.9619 7.64152E-05 13.046  58-63-9
290 Monoolein 815.400  25.0601 2.393  0.2993 0.000289852 0.001  3443-84-3
294 Cholecalciferol 342.630  26.9592 1.400  0.128 3.18476E-05 0.268  67-97-0

Abbreviations: RT, retention time; VIP, variable importance for the projection; AUC, area under the ROC curve.
aFold change: Asthma vs Control.
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DA analysis that we considered to represent an interpersonal 
variation in the human samples.  Because the samples were 
derivatized prior to GC-MS analysis, further investigation 

with a larger number of patients should be performed to out-
line the metabolic origins of the observed metabolic changes 
and define a possible association with mild persistent asthma.

Figure 3.  Expression levels of the significantly changed metabolites.  (A) 2-ketovaleric acid; (B) 3,4-dihydroxybenzoic acid; (C) 5-aminovaleric acid; (D) 
ascorbate; (E) dehydroascorbic acid; (F) inosine; (G) phenylalanine; (H) succinic acid; (I) β-glycerophosphoric acid; (J) maleamate; (K) maleic acid; (L) 
monoolein; (M) ribose; (N) trans-4-hydroxy-L-proline; (O) ranking of VIP values.
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Although the abnormal metabolic activity of asthma is pri-
marily localized in the lung, impaired lung functions may dis-

turb systemic metabolism.  Serum is an integrated biofluid that 
offers the simultaneous advantage of reflecting both localized 

and systemic changes.  More importantly, serum is commonly 
used for biomarker detection because its compositions are 
relatively well documented and its collection is less invasive.  
The results from our study demonstrated that serum samples 
were reliable for metabolomics analysis in asthma.  However, 
it should be noted that a number of potential metabolomic pit-
falls lurk in the serum, including age, gender, smoking, sam-

pling time, nutritional status, environment, and exercise[32], 

which might be reflected in the metabolite composition and 
could potentially mask molecular changes caused by asthma.  
Therefore, the selection of age- and sex-matched controls was 
extremely important in this study.  Many strategies have been 
used to correct for interpersonal variability.  For example, fast-
ing prior to blood collection can reduce the influence of diet-
related effects[33]; additionally, standardization of serum collec-

tion protocols with different strategies is also of great help[34].

Pathway and network analyses have both been applied to 
metabolomics analysis, thereby vastly extending its clinical 
relevance and effects.  We identified several top altered meta-

bolic pathways associated with asthma.  The TCA cycle is a 
series of enzymatic reactions that are used by aerobic organ-

isms to generate energy and involves the oxidation of acetate 
derived from carbohydrates, fats or proteins.  Succinate is an 
intermediate in this cycle and is greatly enriched in the asthma 
samples; this finding was consistent with previous reports 
of changes in the urine[8] or serum[22] of asthmatic patients by 
NMR-based metabolomics analysis.  The study by Saude et al[8] 

showed that five metabolites acting in the TCA cycle (succi-
nate, fumarate, oxaloacetate, cis- aconitate and 2 -oxoglutarate) 
were present at higher abundances in urine in asthmatic 
patients who had recently suffered an exacerbation.  The 
upregulation of the succinate level was highly consistent with 

Figure 4.  ROC graphs of metabolites with the highest AUC values.

Figure 5.  Pathway analysis of metabolomics alterations associated with 
asthma.  The KEGG database was used to search for each differential 
metabolites.  The illustration was generated using the reference maps 
from KEGG to construct the altered TCA cycle, urea cycle and amino acid 
metabolic pathway in asthmatic patients.
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the result in our study, although we detected metabolomics 
alterations in different biofluids.  

Notably, the changes in other intermediates from the TCA 
cycle were not detected in our study.  This may be due to 
many variables.  We propose that the severity of asthma may 
be a major cause.  The study by Saude et al[8] examined urine 
from asthma patients who recently suffered an exacerbation; 
thus, these patients can be considered to be affected with more 
severe asthma than our subjects with mild persistent asthma 
without exacerbation.  We assume that the change in succinate 
in our study reflects a very early stage of metabolic altera-

tion along the long-term course of asthma.  When the asthma 
becomes severe, the metabolism of the whole TCA cycle will 
change.  Additionally, there are many other contributing causes 
(eg, the use of urine vs serum, children vs adults, and stable 
asthma vs exacerbated asthma).  Metabolism is complicated 
among different systems, organs, and individuals; therefore, 
metabolic profiles may also be affected to different extents.

Another study by Jung et al[22] profiled the serum of asth-

matic patients using NMR and showed an increase in suc-

cinate; however, glutamine was also shown to be increased, 
which is opposite of our results.  Nevertheless, the increased 
TCA-cycle metabolism may suggest an enhanced requirement 
for energy due to the greater effort required to breathe during 
exacerbation and most likely is a response to hypoxic stress 
due to poor oxygenation.  Similar shifts in TCA-cycle metabo-

lism have also been observed during exercise[35], supporting 
the hypothesis that elevated levels of these metabolites may be 
a result of enhanced breathing and hypoxic metabolism.

In addition to succinate, we also identified several novel dif-
ferential metabolites (ie, inosine, 3,4-dihydroxybenzoic acid 
and phenylalanine) that were not previously reported to be 
changed in asthma[36].  However, we did not detect changes 
in aldehydes and alkanes, which were demonstrated in uri-
nary metabolic profiles to be linked to asthma exacerbation by 
GC-MS in other studies[37].  Moreover, our results did not show 
unique oxidative stress-associated metabolomics profiles, such 
as those reported for children with severe asthma[38].  Ino-

sine, a naturally occurring purine product that results from 
the breakdown of adenosine, is associated with inflamma-

tion, hypoxia and tissue injury[39].  Inosine acting on A2A or A3 

adenosine receptors can regulate ovalbumin-induced allergic 
lung inflammation and is also an endogenous modulator of 
inflammatory processes observed in the lungs of asthmatic 
patients[40].  Elevated inosine in the serum appears to respond 
to hypoxia and may also help modulate the inflammatory pro-

cess in asthma.
Because hypoxic stress is also prevalent in COPD and cys-

tic fibrosis, the metabolic changes that occur in asthma are 
highly likely to be observed in those two diseases.  Indeed, 
the changes in formate, phenylalanine and glutamine previ-
ously reported[22] were also observed in COPD[21, 41].  Similarly, 
inosine change was also reported in cystic fibrosis[24].  Thus, 
because it is not easy to use a single marker (inosine or suc-

cinate) to specifically or accurately predict any one respiratory 
disease, a combination of differential metabolites or a unique 

metabolic profile may be required.
The potential functions of other observed differential metab-

olites (ie, 3,4-dihydroxybenzoic acid and phenylalanine) in the 
development of asthma are not understood; however, they 
all possess high AUC values and may be clinically effective 
for the diagnosis of asthma.  Further studies might be needed 
to focus on the functions of those metabolites in detail and 
exclude the possibility of false-positives.

The urea cycle was dampened in asthmatic patients, with 
lower levels of L-ornithine and L-citrulline, indicating the 
alteration of nitrogen metabolism.  In the arginine metabolism 
pathways, L-arginine can also be catalyzed into L-citrulline 
and nitric oxide (NO) by nitric oxide synthase (NOS)[42].  It 

is interesting to speculate that NO production might also be 
reduced in the serum.  However, by estimating the fraction of 
exhaled NO (FeNO), we know that the NO level is increased 
in the exhaled air of asthmatic patients, which reflects the 
moderate eosinophilic-mediated inflammatory pathways in 
the central and/or peripheral airway sites[43, 44].  These findings 
may not be contradictory, because we detected FeNO mainly 
produced from the epithelial cells of the airways, whereas in 
the serum, the NO level was most likely reduced to maintain 
the balance of nitrogen metabolism within the human body.

Notably, because we only enrolled mild persistent subjects, 
our study may only provide a unique metabolic profile for 
mild persistent asthma.  Because asthma is a very hetero-

geneous inflammatory disease, a larger sample size may be 
required to explore metabolic changes in various different 
asthma phenotypes.

Conclusion
Our GC-MS analysis demonstrates that metabolic alterations 
indeed occur in asthmatic patients, specifically patients with 
mild persistent asthma.  Differential metabolites in the serum, 
such as succinate, inosine, 3,4-dihydroxybenzoic acid and phe-

nylalanine, that possess the highest VIP or AUC values might 
be of great value for the diagnosis of asthma.  The pathway 
and function analysis might provide a comprehensive under-

standing of asthma disease etiology and novel biomarkers for 
asthma assessment and treatment.
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