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Obesity is one of the most serious worldwide epidemics of the twenty-first century

according to the World Health Organization. Frequently associated with a number of

comorbidities, obesity threatens and compromises individual health and quality of life.

Bariatric surgery (BS) has been demonstrated to be an effective treatment to achieve not

only sustained weight loss but also significant metabolic improvement that goes beyond

mere weight loss. The beneficial effects of BS onmetabolic traits are so widely recognized

that some authors have proposed BS as metabolic surgery that could be prescribed

even for moderate obesity. However, most of the BS procedures imply malabsorption

and/or gastric acid reduction which lead to nutrient deficiency and, consequently, further

complications could be developed in the long term. In fact, BS not only affects metabolic

homeostasis but also has pronounced effects on endocrine systems other than those

exclusively involved in metabolic function. The somatotropic, corticotropic, and gonadal

axes as well as bone health have also been shown to be affected by the various BS

procedures. Accordingly, further consequences and complications of BS in the long term

in systems other thanmetabolic system need to be addressed in large cohorts, taking into

account each bariatric procedure before making generalized recommendations for BS. In

this review, current data regarding these issues are summarized, paying special attention

to the somatotropic, corticotropic, gonadal axes, and bone post-operative health.

Keywords: bariatric surgery, somatotropic axis, corticotropic axis, gonadal axis, bone metabolism

INTRODUCTION

Obesity is a chronic, progressive, and multifactorial disease involving genetic, metabolic,
psychological, and endocrinology-related factors, among others. Obesity-associated comorbidities
are numerous and are also related to higher mortality. Obesity is a risk factor for a number of other
chronic illnesses related to metabolic syndrome including type 2 diabetes mellitus (T2DM), high
blood pressure, dyslipidemia, cardiovascular diseases (CVD), respiratory disorders, joint diseases,
psychosocial disorders, and even several types of cancer (including esophagus, colon, pancreas,
prostate, and breast) (1).

The World Health Organization (WHO) has defined the term “obesity” as excessive fat
accumulation that is harmful to health. Considered the twenty-first century epidemic, obesity is the
main health problem in developed countries, reducing life expectancy and presenting a challenge
for the global economy. This is a disease with exponential growth, and its rise and prevalence is also
affecting the child population. In the last 40 years the proportion of the population that is obese has
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tripled. In 2016, 39% of adults aged 18 years and over were
overweight and about 13% were obese. If nothing changes, the
growing trend will continue and these numbers will increase in
the coming years (2).

BARIATRIC SURGERY (BS): A TREATMENT
FOR OBESITY

From the point of view of therapeutics, proper dietary re-
education, together with lifestyle modification and physical
exercise as well as psychological specialized support for obesity
treatment are needed. However, studies such as Look AHEAD
showed that weight loss and glycemic control is difficult
to maintain in the long term, even with intensive lifestyle
intervention (3). Thus, bariatric surgery (BS) is the most effective
therapy in the long term for severely obese patients (grade II)
with associated metabolic diseases and for morbidly and super
morbidly obese patients (grades III-IV). In addition, there is
increasing literature that supports the inclusion of BS for the
treatment of T2DM and obese patients (1). In this context, a
global approach developed by a multidisciplinary unit, which
allows a personalized and comprehensive treatment for obese
patients as well as the selection of those patients who can be
benefit from surgical treatment is extremely relevant.

There are different effective surgical methods employed
for obesity treatment and the majority of the most popular
bariatric procedures such as Roux-en-Y gastric bypass (RYGB),
sleeve gastrectomy (SG), mini-gastric bypass, and biliopancreatic
diversion (BPD) are considered safe procedures that are efficient
regarding obesity-associated comorbidities and weight loss (4).
Nevertheless, there are some differences between bariatric
procedures related to the magnitude of changes observed,
complication rates or post-surgery morbidities in the short and
long term (reintervention rates after surgery, gastroesophageal
reflux disease). Due to these differences, an individualized
treatment taking into account the characteristics of each patient
is necessary (5–8).

After BS, many aspects are modified and imply a reduction
in the risk of obesity-associated disorders as well as of all-
cause mortality (9–11). Some of the beneficial effects of BS
are improved physical function (12), sustained weight loss,
reduction of comorbidities such as osteoarthritis and respiratory
dysfunction (13), a more favorable metabolic profile, which
implies an improvement in quality of life, and the resolution
of cardiovascular risk factors (14–19) with lower triglyceride
levels and higher HDL-C levels in most patients 1 year after
surgery (20, 21).

Although there is extensive literature that claims beneficial
health effects with BS, and the post-surgery mortality rate is
<1%, these type of procedures are not exempt from long-
term complications related to nutritional deficiencies. In general,
mainly malabsorptive procedures, e.g., bypass procedures with
duodenal exclusion of nutrients and a concomitant decrease
in gastric acid, will have a higher risk of micronutrient
and macronutrient deficiencies. Consequently, BS patients
are at higher risk of developing nutrient deficiency-related

disorders such as anemia, certain types of neuropathies or
osteoporosis (22, 23).

EFFECTS OF BS ON GLYCEMIC PROFILE
AND MECHANISMS INVOLVED IN T2DM
RESOLUTION

A number of studies have explored metabolic changes after
BS, and the efficiency of BS for the treatment of T2DM is
well-established. BS therefore offers a safe and more effective
alternative to achieve sustained glycemic control in diabetic
obese patients in comparison with intensive medical treatment
(24–26), which involves a decrease in chronic micro- and
macroangiopathic complications (27).

The various surgical procedures usually employed in BS lead
to partial or total T2DM remission of about 34–85.3% depending
on the criteria applied to define T2DM remission, and 95% global
success in glycemic control (28). When the different bariatric
procedures are compared, biliopancreatic diversion (BPD) is the
most effective for T2DM treatment, but this is a more complex
procedure with higher surgical adverse event rates compared
to other bariatric procedures (29). Risstad et al. reported better
outcomes related to sustained weight loss, glycemic control and
improvement in lipid profile after BPD than RYGB 5 years after
surgery (14). Garrido-Sanchez et al. concluded that BPD takes
less time to achieve insulin resistance improvement than SG (30).

RYGB is also a highly effective option for T2DM remission.
Most patients who underwent RYGB did not require
hypoglycemic drugs 1 year post-surgery, and it has been
reported 84–90% and 29–50% T2DM remission one and 5 years
after RYGB, respectively (31–35). However, T2DM remission
rates in the literature vary. Yan et al. reported 56.81% (36.8–
90.3%) T2DM remission in their meta-analysis (36), while Chang
et al. found 95.15% (88.38–98.8%) T2DM remission (37).

Sleeve gastrectomy has gained popularity and appears to
achieve glycemic control rates similar to RYGB but with fewer
surgery-associated complications. The randomized controlled
trial SMBOSS reported 60% T2DM remission rates after SG
compared to 77% remission after RYGB 3 years after surgery
(15). The STAMPEDE study compared the efficacy of intensive
medical therapy alone or intensive medical therapy plus RYGB
or plus SG (5-year follow-up) finding that, 28.6% of patients
who underwent RYGB achieved HbA1c ≤6% in comparison
with 23.4% of patients who underwent SG and 5.3% of patients
who only received intensive medical therapy. The average
improvement in HbA1c was 2.1% in surgery cohorts vs. 0.3%
in intensive medical treatment cohorts (25). The SLEEVEPASS
study showed that the effects of T2DM remitted completely or
partially in 49% of patients who underwent SG and in 57%
who underwent RYGB with no significant differences between
procedures (16). However, it should be mentioned that the
comparison between these two procedures based on the current
literature is difficult due to study heterogeneity and because some
of them are biased. Thus, their findings should be interpreted
cautiously and further randomized controlled trials with a careful
design are necessary (38).
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Mechanisms for T2DM Remission After BS
Many explanations have been put forth for the metabolic
improvements after BS. Early and pronounced improvement in
hepatic insulin sensitivity after RYGB, which could be related to
caloric restriction in the short-term post-operative period and
the reduction in intrahepatic fat, has been reported. Moreover,
an improvement in peripheral insulin sensitivity, which occurs
later, and its relationship with the sustained weight loss has been
described (39, 40).

Nevertheless, it is well-known that the metabolic
improvements after BS take place in the days or weeks after
surgery even before significant weight loss occurs (21, 41, 42).
Therefore, mechanisms other than weight loss that cannot be
explained solely by caloric restriction are likely triggered after BS
and could account for the beneficial metabolic changes observed.
This has promoted the use of the term “metabolic surgery” for
this type of procedures (43).

Several hypotheses have been put forth to explain the
early improvement in carbohydrate metabolism after BS, but
the precise mechanisms for T2DM resolution are not yet
completely understood (Figure 1). Among the factors which
could be determining these improvements, in addition to caloric
and excess nutrient restriction and the weight loss associated
with food malabsorption, are changes in nutrient detection,
improvements in pancreatic islet function, modulation of neural
mechanisms and the secretion of gastrointestinal hormones
implicated in energy and glucose homeostasis (e.g., glucagon-like
peptide-1 (GLP1), peptide YY (PYY), cholecystokinin (CKK),
ghrelin (44), glucagon (45, 46), obestatin levels (47), alteration
in circulating adipokines (leptin decrease and adiponectin
increase) (48, 49), bile acid secretion, or gut microbiota
modulation (50). Most of the mechanisms proposed to explain
the early metabolic improvements that occur independently
from weight loss are related to the anatomic remodeling
of the gastrointestinal tract, which highlights the relevance
of the intestine in carbohydrate metabolism regulation after
BS (51, 52).

Several hypotheses have been raised regarding the implication
of the gastrointestinal system as a metabolically active organ:

- The “foregut hypothesis” is based on the exclusion of
the duodenum and proximal jejunum from the nutrient
traffic across the gastrointestinal tract, which may inhibit
“anti-incretin” signal production such as gastric inhibitory
polypeptide (GIP). The removal of this signaling would
favor direct antidiabetic effects with a reduction in insulin
resistance (53–55).

- The “hindgut hypothesis” posits that nutrients reach the distal
jejunum quickly, ensuring optimal digestion and nutrient
absorption as well as metabolic improvement and weight loss
through stimulation of L cells in the distal ileum and proximal
colon which secrete GLP-1, PYY, oxyntomodulin, and other
hormones (56). This response leads to an improvement in
insulin secretion by pancreatic β cells and a reduction in
glucagon production and hence, to a better post-prandial
response to glucose and lower insulin resistance. By contrast,
various BS procedures have shown heterogeneous effects on

circulating GIP levels, ranging from moderate to unnoticeable
and sometimes even leading to a decrease (46, 57–60).

- Other possible mechanisms have been elucidated from the
results of SG. Although it would initially be considered a
purely restrictive bariatric procedure, evidence has highlighted
that its effects cannot be explained by caloric restriction
alone. SG also leads to complex hormonal changes such as
diminished ghrelin levels, which enhance weight loss and
improve post-prandial insulin response together with lower
post-prandial glucose levels (61, 62), as well as higher post-
prandial GLP-1 and PYY responses induced by a short
intestinal transit after surgery (63).

- The modulation of bile acid circulation has been postulated
as a feasible mechanism to explain some of the metabolic
effects of BS. Bile acids could be involved in both weight
loss and the improvement in glycemic control by the
stimulation of intestinal L-cell secretion of GLP-1, PYY,
and oxyntomodulin which favors insulin response and the
feeling of satiety (64, 65). Human and animal studies support
the key role of bile acids in glucose metabolism regulation
by means of pathways activated by the interaction of bile
acid with the nuclear and membrane receptors farnesoid
X receptor (FXR) and Takeda G protein-coupled receptor
5 (TGR-5), which are present in a number of tissues and
organs such as the gut, liver, pancreas, adipose tissue, and
skeletal muscle. By means of these receptors, bile acids lead
to an increase in insulin secretion by pancreatic β cells,
improvements in glucose tolerance, enhancement of glucose
uptake by adipose tissue, decrease in gluconeogenesis, increase
in glycogen synthesis and promotion of hepatic glucose
catabolism (20, 66–68).

- Another intestine-related effect of BS which could be involved
in the BSmetabolic effects is themodulation of gut microbiota.
Gut microbiota composition has previously been associated
with obesity, T2DM and other metabolic diseases (55).
Thus, it has been proposed that the modulation of gut
microbiota composition by BS might be, at least in part,
responsible for the post-surgical metabolic improvements.
In agreement with this hypothesis, significant changes in
gut microbiota composition have been reported after BS
(50), but results from different studies are heterogeneous
and no clear conclusions have been drawn (69). RYGB has
been associated with an increase in Proteobacteria (70–72),
while others described a concomitant decrease in Firmicutes
and Bacteroidetes (70, 71). However, other studies found
different shifts in gut microbiota profile after BS. Kong et al.
showed a decrease in bacteria belonging to Firmicutes phyla
at 3 and 6 months after RYGB in obese women (most
of them without T2DM) (72) and a recent study found
that RYGB lead to a decrease in Bacteroidetes 1 year post-
operatively in obese diabetic patients (73). More detailed
information regarding changes in specific bacterium groups
have been recently reviewed elsewhere, giving an idea of
the heterogeneous results (69, 74). Independently of the
specific changes in bacterium groups, an increased bacterial
diversity (previously related to the healthy status) post-
surgery was reported (72, 75). Few studies have analyzed
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FIGURE 1 | Mechanism for T2DM resolution. Mechanisms and modifications of main gastrointestinal hormones involved in T2DM resolution after bariatric surgery.

Several mechanisms have been proposed to explain the metabolic improvement after bariatric surgery. However, due to the fact that each bariatric procedure does

not involve the same gastrointestinal tract modifications, it has been suggested that each procedure acts by means of different mechanisms to achieve T2DM

resolution, including differential shifts in gastrointestinal hormones levels. It has been proposed that the exclusion of the duodenum and proximal jejunum in bariatric

procedures such as RYGB or BPD would inhibit the “anti-incretin” signaling (“foregut hypothesis”). This kind of remodeling would also reduce the time that nutrients

take to reach distal jejunum which could imply an early activation of incretin-secreting L-cells in the distal ileum and proximal colon (“hindgut hypothesis”). Incretins

such as GLP-1, PYY, or oxyntomodulin improve pancreatic insulin secretion and reduce glucagon release. By contrast, the main gastrointestinal hormonal shift

expected after SG is the decrease in the levels of the orexigenic hormone ghrelin due to the removal of the gastric fundus and therefore, of the ghrelin-producing

mucosa. However, it has also been described an increase in GLP-1 and PYY levels after SG likely due to a shorter intestinal transit after surgery. Apart from changes in

gastrointestinal hormone patterns, alterations in bile acid metabolism, gut microbiota composition, modification in gastrointestinal vagal signaling or changes in

adipokines levels described after the different bariatric procedures, could be also involved in the bariatric metabolic improvement and T2DM resolution after surgery.

BPD, biliopancreatic diversion; GIP, gastric inhibitory polypeptide; GLP-1, Glucagon-like Peptide 1; PYY, Peptide YY; RYGB, Roux-en-Y gastric bypass; SG, sleeve

gastrectomy; T2DM, Type 2 diabetes mellitus.

other BS procedures than RYGB regarding their effects on
gut microbiota composition (73, 76–78). Similar changes in
gut microbiota composition were found after RYGB and
vertical banded gastroplasty (VBG) (76). However, recent
studies reported differences in post-surgical gut microbiota
profile between RYGB and SG (73) and between RYGB and
laparoscopic adjustable gastric banding (LAGB) (77). The
different design and participant inclusion criteria (gender,
presence of T2DM and other obesity comorbidities or follow-
up after surgery) of the current studies could explain the
discrepancies found. Moreover, the gut microbiota profile
after BS can be also dependent on post-surgery analysis time,
omeprazole intake and diet (73, 79). Despite firm conclusions
regarding the specific intestinal bacterial switch have not
yet been drawn, recent studies suggest that gut microbiota
composition is related to the success of surgical intervention
in terms of excess weight loss or T2DM remission (73, 80).
In view of these results, it can be hypothesized that the inter-
individual response to BS might be, at least in part, dependent
on gut microbiota composition. Furthermore, several studies

have reported that BS is related to the modulation of the
mechanisms presumably involved in the gut microbiota-
host metabolism crosstalk such as LPS translocation and
inflammatory markers (41, 70, 81, 82), regulation of GI
hormone secretion (77, 83), influence on AT function (72,
84), bile acid metabolism (79), or short-fatty acid (SCFA)
production (77). All these evidence point out that there is
a relationship between BS consequences and gut microbiota,
although further homogeneous studies are necessary in order
to get a comprehensive overview of the involvement of gut
microbiota in the metabolic improvement at both the short-
and long-term after BS and the precise mechanisms by which
it can take place.

- Changes in the neuroendocrine system have also been
suggested to be involved in the beneficial effects of BS. As
summarized above, the principal hypotheses about beneficial
neuroendocrine effects of BS include the modification of
gastrointestinal hormone release with well-recognized effects
on food intake and energy equilibrium. Most of these
hormones not only communicate with the brain in an
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endocrine manner, but they also act in a paracrine fashion
by interacting with specific receptors located on vagal afferent
nervous fibers which innervate the gastrointestinal tract and
are in close proximity to gastrointestinal endocrine cells
(85, 86). In addition, vagal afferent endings also respond to
mechanical stimuli such as distension (86, 87). The nucleus
tractus solitarius (NTS; vagal afferent nucleus) senses afferent
inputs to regulate energy balance, including hunger and
satiety feelings by the activation of brain regions involved
in food intake regulation, as well as by vagal efferent inputs
that regulates splanchnic organs such as liver and endocrine
pancreas (87–89). These pathways seem to be altered in
obesity with vagal afferent over-activation likely due to a
decreased sensitivity to stimuli of vagal afferents which
requires higher stimuli to activate proper response to feeding
which leads to hyperphagia (87). Accordingly, interventions
aimed at both depletion or stimulation of vagal afferent fibers
have been shown to improve weight loss and food intake
control (90, 91). The fact that these opposite interventions
as well as the existence of contradictory results regarding
vagotomy suggests that the effect depend on the site where
vagal afferents are intervened (92). Animal studies analyzing
vagal afferent restructuring after BS support this hypothesis.
Different vagal pathway reorganizations are induced after each
bariatric procedure, but behavioral reduced food intake and
increased satiety feelings are common after BS regardless the
procedure (93). Both RYGB and SG involves the damage of
gastric vagal afferent fibers but in different gastric regions
(94). RYGB damages gastric branches close to their origin
resulting in a decreased density of vagal afferents in the NTS,
reduction of synapses and NTS microglia activation (95). It
is noteworthy that other vagal afferent endings to the rest of
the intestine and other splanchnic organs are preserved (96).
By contrast, SG only damages terminal gastric vagal branches
which oppositely results in increased density of vagal afferent
in the NTS and the number of synapses, which has been
suggested to be linked to higher sensitivity to nutrients and
satiety feelings, and then to lower food intake (95). The fact
that blocking of vagal afferent fibers in the band site abolishes
AGB effects on food intake and satiety, highlights the role
of vagal afferent pathways in mediating AGB effects likely
by means of mechanoreception (97). Evidence from human
studies dealing with the involvement of vagal system in BS
effects are limited. Indirect evidence regarding how distension
stimuli, and then mechanosensitivity by vagal afferent fibers,
might be involved in the voluntary food intake reduction after
RYGB and AGB has been reported (98, 99). Sundbom et al.
used pancreatic polypeptide (PP) as marker for vagal efferent
function after RYGB, finding a post-operatively decrease in
ghrelin and PP associated with weight loss that authors
attribute to vagal dysfunction (100). Accordingly, Tamboli
et al. found an attenuation in PP response to ghrelin after
RYGB (101). By contrast, Perathoner et al. did not find
significant differences in satiety score, weight loss, motility
or ghrelin and gastrin levels in RYGB patients with or
without vagal nerve dissection (102). Although not having
being directly related to vagal pathways, significant changes

in neural response (specifically reduction of the activation
of brain areas linked to the mesolimbic reward pathway)
to food cues have been reported in morbidly obese patients
undergone RYGB (103). Ten Kulve et al. suggested that the
reduction in brain activation to food pictures and to the
intake of palatable food in patients who underwent RYGB
could be mediated by the post-operatively GLP1 increase,
although precise mechanism linking GLP1 and brain activity
response to food remains unknown (104). In view of these
results, neural modifications that affect patient behavior
regarding feeding habits could be induced by the different
bariatric procedures. Nevertheless, the limited evidence in
humans make difficult to confirm the relevance of these
neural remodeling and whether are cause or consequence of
BS effects.

BS also alters hormone levels other than incretins such
as glucagon. Patients who underwent RYGB had decreased
glucagon levels (105). This decrease was similar to the reduction
due to general weight loss. However, other studies did not find
a significant decrease in glucagon levels after other surgical
procedures (106).

Obestatin levels have also been described to be implicated
not only in food intake and gastric emptying but also to have
beneficial effects on pancreatic β cells by reducing apoptosis
and promoting proliferation, increasing insulin secretion and
decreasing insulin resistance, which have a positive effect
on systemic glucose homeostasis. It has been suggested that
obestatin may play a role in T2DM remission (47).

Increased adiponectin levels after BS have also been described.
Adiponectin is an anti-inflammatory hormone that improves
insulin sensitivity, and its rise after BS has been correlated
with higher T2DM remission rates in patients who underwent
BPD (48, 49).

Despite the general overview that BS improves carbohydrate
metabolism, there are also studies that have reported T2DM
recurrence 5 years after surgery in 50–95% of patients who
had achieved T2DM remission. This recurrence was associated
with weight regain and a longer history of T2DM previous
to the surgery (107, 108). Thus, more studies are necessary
in order to provide clinical recommendations on the use of
oral antidiabetic drugs in patients who have undergone BS
with anatomical remodeling and the consequent physiological
changes. Another relevant aspect that should be considered
is neuroglycopenic hypoglycemia in BS patients, which could
be related to the foregut hypothesis and low production
of “anti-incretin” signals needed to counteract the dominant
incretin action after surgery together with the hyperinsulinemia
triggered by the increased incretin response in the distal
intestine (55).

NON-METABOLIC BS-INDUCED
ENDOCRINE ALTERATIONS

Aside from the well-known metabolic effects of BS, these surgical
procedures also induce changes in other systems with further
endocrine consequences (Table 1).
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TABLE 1 | Endocrine consequences of bariatric surgery on somatotropic, corticotropic, and gonadal axes.

Study Surgery Design Follow-up Sample

size

Population Primary

outcome

Results

Somatotropic

axis General

trend:

Somatotropic

axis restoration

Mittempergher

et al. (109)

BPD LAGB Observational,

prospective

study

1 year 88 (34/54) Obese patient

(male/female)

GH

IGF-1

Higher effects of mainly

malabsorptive techniques

than restrictive

techniques.

Camastra

et al. (110)

RYGB Observational,

prospective

study

6 months 23 (16/7) Severely obese

and non-obese

controls.

GH Significant increase in GH

secretion.

De marinis

et al. (111)

BPD Observational

prospective

study

16 and 24

months

30 (15/15) Obese females

and non-obese

females.

IGF-1

GH peak

after GHRH

Slower IGF-1 secretion in

response to BS possibly

attributed to underlying

catabolic status, as GH

response to GHRH

severely increased.

Mancini

et al. (112)

RYGB Observational

prospective

study

6 months 10 Non-diabetic

premenopausal

severely obese

women

GH Partial recovery of

somatotropic axis.

Britt Edén

Engström

et al. (113)

RYGB Observational

prospective

study

6 and 12

months

63 (54/9) Obese patients

(female/male)

GH

IGF-1

Increase in GH and IGF-1

levels.

Savastano

et al. (114)

LAGB Observational

prospective

study

6 months 254

(104/36)

Moderately and

severely obese

patients

(female/male)

GH

IGF-1

GH peak after

GHRH plus

arginine (ARG) test

Higher weight loss and

improvement of body

composition profile in

subjects who recovered

GH response to stimulus

and with normal IGF-1

levels after surgery.

Di somma

et al. (115)

LAGB Observational

prospective

study

6 months 72 Severely obese

females

GH peak after

GHRH plus

arginine test.

IGF-1

IGFBP-3

Postoperative IGF-1 levels

were the strongest

determinant of body

composition profile. So,

recovered GH axis is

related with higher

success of surgery.

(Continued)
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TABLE 1 | Continued

Study Surgery Design Follow-up Sample

size

Population Primary

outcome

Results

Corticotropic axis

General

trend:

Short-term:

cortisol

increase

immediately

after BS

(acute stress)

Long-term:

corticotropic

axis activation

(although

there are

controversial results)

. Manco

et al. (116)

BPD Observational

prospective

study

2 years 10 Fertile

non-diabetic

obese women

CBG,

Plasma cortisol

suppression with

dexamethasone

suppression test

A significant decrease in

circulating CBG levels and

an increase in the free

cortisol fraction in obese

women. No difference

was found in cortisol

suppression after BS.

Morrow

et al. (117)

RYGB Observational

prospective

study

2 and 5

months

24 (10/14) Obese patients

with presence or

absence of

night-eating

syndrome

undergoing BS

Fasting plasma

cortisol

Decrease in fasting

plasma cortisol in obese

patients without

night-eating syndrome

after BS.

Larsen

et al. (118)

LAGB Cross-

sectional

study

34 (16/18) Obese women

with and without

binge syndrome

Salivary cortisol Lower salivary cortisol

levels during the day in

obese women with binge

syndrome than without

binge disorder.

Guldstrand

et al. (119)

LAGB Observational

prospective

study

∼12

months

(“After a

stable

body

weight

after BS”)

8 (7/1) Obese and

non-diabetic

patients

(female/male)

Plasma cortisol Reduction in cortisol levels

in response to

hypoglycemic clamp

technique after

BS-induced weight loss in

comparison to the

presurgical state

characterized by

exaggerated HPA axis

activation.

Ruíz-Tovar

et al. (120)

SG Observational

prospective

study

6 and 12

months

40 Morbidly obese

patients

Serum cortisol,

CRP

Cortisol levels decreased

from 6 months after BS.

CRP levels decreased

significantly 12 months

after BS.

Valentine

et al. (121)

BPD

RYGB

LAGB

SG

Observational

prospective

study

6 and 12

months

24 Obese female

participants

Salivary cortisol A significant rise in

morning salivary cortisol

levels after BS, but no

differences in nighttime

salivary cortisol levels and

the salivary cortisol

awakening response.

Hulme

et al. (122)

RYGB

LAGB

SG

Observational

prospective

study

3 and 6

months

17 (14/3) Obese patients

(female/male)

Saliva Cortisol No effect of BS on cortisol

secretion daily patterns

but morning cortisol

showed a slightly

non-significant increase.

(Continued)
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TABLE 1 | Continued

Study Surgery Design Follow-up Sample

size

Population Primary

outcome

Results

Gonadal Axis

General trends

In women PCOS:

Improvement in

gonadal function,

menstrual

irregularities and

fertility. Androgen

and hirsutism

reduction.

Sarwer

et al. (123)

RYGB

LAGB

Observational

prospective

study

1 and 2

years

106 PCOS obese

women

Total testosterone,

estradiol, FSH, LH

and SHGB levels

Significant improvements

in general sexual quality,

functioning and hormonal

levels after BS.

Jamal et al.

(124)

RYGB Observational

prospective

study

46.7

months

20 Obese female with

≥ 2 of 3 diagnostic

criteria for PCOS

Hormonal levels

(Testosterone,

SHBG, LH, FSH,

estradiol levels),

menstrual cycles,

hirsutism

An improvement in

gonadal dysfunction in

82% of patients with a

recovery in menstrual

irregularities, 89%

hirsutism resolution, and

50% achieve conception.

Eid et al.

(125)

RYGB Observational

prospective

study

27.5 ± 16

months

24 PCOS obese

women

Menstrual cycles,

hirsutism,

hormonal levels

Improvements in

PCOS-associated

symptoms including

menstrual alteration

resolution, and hirsutism.

Successful conception

was achieved by 5

patients.

George

and Azeez.

(126)

SG Retrospective

analysis

132 PCOS Obese

women

Clinical dates:

menstrual cycles,

hirsutism,

hormonal levels

and radiologic

ovary pattern

Resolution of menstrual

irregularities pattern in the

majority of the cases, of

hirsutism in 80% and of

the radiologic pattern in

PCOS in 81%.

Skubleny

et al. (127)

BPD

RYGB

LAGB

SG

Meta-

analysis

1-year 2130 PCOS Obese

women

Hormonal levels

and clinical

sequelae of

PCOS: menstrual

cycles, hirsutism,

and infertility.

PCOS significantly

decrease from 45.6%

pre-operatively to 6.8% 1

year post-operatively.

Shekelle

et al. (128)

BPD

RYGB

LAGB

SG

Meta-

analysis of

cohort

studies,

case series

and

individual

case

reports.

57 articles

analysis

Obese and

reproductive age

women

Fertility,

contraception,

pregnancy, weight

management, and

nutritional

deficiencies.

Menstrual regularity was

recovered in 71%; with an

association between

weight loss and ovulation

recovery. Data suggest

improvement fertility after

BS with minimal nutritional

deficiencies for mother

and child and without

higher complications in

post-surgery pregnancies.

(Continued)
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TABLE 1 | Continued

Study Surgery Design Follow-up Sample

size

Population Primary

outcome

Results

In MOSH men:

MOSH is

supposed to be a

reversible situation

in the majority of

cases with

normalization of

serum

testosterone

levels, fertility

improvement in

male severe

obesity, but there

are discrepancies

about

spermatogenesis.

Reis et al.

(129)

RYGB Prospective

randomized

controlled

trial

24 months 20 (10/10) Obese men in 2

groups with life

style modification

and RYGB

IIEF test, serum

estradiol, PRL, LH,

FSH, free and total

testosterone

Improvements in sexual

functioning and hormonal

levels (total testosterone,

FSH and PRL).

Mora et al.

(130)

RYGB

SG

Prospective

observational

case series

study

1 year 39 Obese men IIEF score,

Testosterone,

SHBG, estradiol,

gonadotropins,

inhibin B, PRL.

Improvement in sexual

aspects (IIEF score and

significant increment in

testosterone level).

Sarwer

et al. (131)

RYGB Prospective

cohort

study

4 years 32 Obese men SHBG, IIEF,

Testosterone

Increase total testosterone

and SHBG levels 4 years

post-operatively, but

improvements in sexual

dysfunction were not

significant during the

follow-up.

Facchiano

et al. (132)

BPD

RYGB

LAGB

Prospective

study

6 months 20 Obese men LH, FSH, Total and

Free testosterone,

SHBG, estradiol,

Increase in total

testosterone, SHBG, LH

and FSH levels with a

relevant drop in estradiol

levels.

Luconi

et al. (133)

BPD

RYGB

LAGB

Longitudinal

study

6 and 12

months

24 Morbidly obese

male

Free-testosterone,

SHBG, LH, FSH

Increase in total and free

testosterone levels as well

as SHBG and

gonadotropins

(simultaneous increases in

LH and FSH).

Aarts et al.

(134)

RYGB

LAGB

Observational

study

1-year 24 (13/11) MOSH and

eugonadal Obese

men

Free-testosterone Increase in

free-testosterone in both

MOSH and eugonadal

groups.

Samavat

et al. (135)

BPD

RYGB

LAGB

SG

Cohort

study

55 (29/26) Morbidly obese

men (with MOSH

and 26 without)

Total testosterone;

Free testosterone;

Gonadotropins.

SHBG and

estradiol levels.

Increase in androgen

levels (total and

free-testosterone) only in

patients with

hypogonadism.

Decreased estradiol levels

only in eugonadal

patients. MOSH reversal

that occurred early after

surgery and was nearly

complete.

BPD, Biliopancreatic diversion; SG, Sleeve gastrectomy; RYGB, Roux-en-Y gastric bypass; LAGB, Laparoscopic adjustable gastric band; IGF-1, Insulin-growth factor-1; GH, Growth hormone; GHRH, Growth hormone-releasing

hormone; CBG, Corticosteroid-binding globulin; CRP, C-reactive protein; HPA axis, Hypothalamic-pituitary-adrenal axis; BS, bariatric surgery; PCOS, Polycystic ovary syndrome; MOSH, Obesity-associated secondary hypogonadism;

IIEF, International Index of Erectile Function; PRL, Prolactin; LH, luteinizing hormone; FSH, Follicle-stimulating hormone; SHBG, Sex hormone binding globulin.
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Somatotropic Axis: Growth Hormone
(GH)/Insulin-Growth Factor-1 (IGF-1)
After BS
GH is mainly regulated by two hypothalamic peptide hormones:
GH-releasing hormone (GHRH) and somatostatin. However,
other brain signaling pathways such as those related to sleep
regulation are also involved in the regulation of GH secretion
(136). Obesity is associated with an acquired functional reduction
in GH secretion and in GH response to stimulus (e.g., insulin-
induced hypoglycemia, arginine, arginine-GHRH, sleep, or
exercise), which is reversible after significant weight loss (137,
138). Likewise, adiposity acts as a negative determinant for GH
secretion frequency and width, and has been associated with
an increase in GH removal, which implies a lower GH half-life
(109). A combination of multiple somatotropic axis alterations
might be responsible for the different grades of GH and IGF-1
deficiency in obese subjects. However, the physiological role of
GH in obesity and the mechanisms that lead to the perturbations
in its levels are not completely clear. Among the underlying
neuroendocrine alterations of low plasma GH levels in obesity,
hormonal GHRH, somatostatin, or ghrelin dysregulation have
been proposed (136, 139). It should be also noted that gender
is a relevant regulatory factor of GH secretion in healthy
subjects (113).

Reports regarding serum IGF-1 levels in obesity have
shown contradictory results with both normal (109, 140, 141)
and decreased IGF-1 levels in obese subjects having been
described (142). Recent studies have suggested that inflammatory
mediators could play a relevant role in the decrease in IGF-
1 bioactivity (143), which could be related to obesity which
is characterized by a chronic low-grade inflammation. Obesity,
specifically abdominal obesity, appears to be associated with a
decrease in free IGF-1 levels. This finding is highly interesting
since visceral fat mass plays a key role in the development of
obesity-related diseases, and low IGF-1 levels have also been
related to T2DM and CVD (144, 145).

Somatotropic axis alterations in obese subjects, similar to
those in patients who have a GH deficit, are associated with a
higher prevalence of cardiovascular risk factors and alterations
in body composition (muscle mass and bone density reduction
and rise in fat mass) (146–148). Concordantly, Di Somma
et al. found that obese patients with severe somatotropic axis
alterations showed an exacerbated cardio-metabolic risk with
more serious sequelae compared to obese subjects without GH
deficiency (114).

Several studies have reported a restoration of somatotropic
axis alterations in severely obese patients after BS. A significantly
increased secretion of GH after BPD has been described
(110), as well as partial recovery of the somatotropic axis
after RYGB (112). Mittempergher et al. determined that the
GH increase after BS was higher after mainly malabsorptive
procedures (2.7-fold increase) than after mainly restrictive
procedures (1.4-fold increase) with parallel improvements in
cardiovascular profile and BMI reduction. Therefore, in view
of these results, malabsorptive procedures might be better
recommended for patients with somatotropic deficiencies (109).

However, further research is necessary in order to confirm
these recommendations.

Britt Edén Engström et al. determined that GH secretion and
IGF-1 levels, previously compromised in severe obese subjects,
were augmented at 6 months in women and at 12 months in
both women andmen after RYGB. A concomitant BMI reduction
was reported in men and women at 6 months, which was further
improved at 12 months after surgery (113). Savastano et al. and
Di Somma et al. reported significant correlations between body
composition and GH response to stimulus (GHRH + arginine)
before and after surgery in subjects who underwent LAGB,
and also found higher success with surgical treatment (weight
loss and improved body composition profile) in those subjects
without somatotropic axis alterations as well as in patients who
recovered GH response to stimulus after surgery (114, 115). BS-
derived benefits can be influenced by presurgery GH response
to stimuli and by previous IGF-1 levels adjusted for sex and
age. Thus, these factors could be interesting markers of surgery
success in weight loss and body composition improvement.
Likewise, a somatotropic axis study may constitute a useful tool
for obese patient follow-up after BS (115).

Although some discrepancies have been found in the literature
(109, 149), IGF-1 secretion displays a slower response to BS,
similar to that of non-surgical weight loss, and this can be related
to an underlying catabolic status induced by BS (malabsorptive
effects, pronounced restriction in caloric intake, etc.) (111, 113).
Few studies have analyzed tissue response to GH in obesity. Some
have described a more pronounced IGF-1 response in obese
individuals compared to lean subjects (150, 151). Nevertheless,
these findings were not confirmed by others (152). Britt Edén
Engström et al. observed that most obese subjects showed high
IGF-1 levels with regard to their GH status. Altogether, these
findings may indicate that there is a specific tissue adaptation
in obesity with higher GH sensitivity, especially to its anabolic
effects (113). In view of these results, the acquired dysfunction in
GH secretion secondary to obesity appears to be reversed after
BS. The somatotropic axis status could constitute a useful tool for
initial and post-surgery follow-up of BS patients as a marker of
surgery success in terms of weight loss and body composition.

Hypothalamic-Pituitary-Adrenal (HPA) or
Corticotropic Axis:
Corticotropin-Releasing Hormone
(CRH)/Corticotropin (ACTH)/Cortisol
After BS
The HPA axis is a relevant pathway in the response to
physiological stress which regulates cortisol secretion. Cortisol
has a number of effects on the organism, including energy reserve
mobilization to promote survival and to comply with metabolic
requirements during stress. Cortisol is secreted by the suprarenal
cortex after HPA axis activation in response to physiological
or psychological stress and high cortisol levels are associated
with intense emotional responses to stressful stimuli (153).
However, cortisol metabolism is not only centrally regulated,
but type 1 and 2 11-β- hydroxysteroid dehydrogenase enzymes
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also regulate cortisol in tissues (154, 155). Food intake also
increases cortisol levels and an individual may feel a decrease
in anxiety with eating (156). Thus, both high cortisol levels
and distressed emotions, appear to be modulated by calorie-rich
food intake. Once this neuroendocrine-behavioral response to
chronic stress is initiated, it could become a habit that favors
weight gain. The non-pathological HPA axis is characterized
by a distinctive circadian profile that is disrupted when the
HPA axis is deregulated (157, 158). The declining curve of
daily cortisol secretion is usually less pronounced in chronic
health disorders such as obesity (159, 160). During chronic
stress, HPA axis adaptation results in a higher and more
prolonged cumulative exposure to glucocorticoids, which are
associated with negative effects including metabolic disorders
and cardiovascular mortality (161–166). Emerging data suggest
that metabolic syndrome patients could have a hyperactive HPA
axis which would lead to “functional hypercortisolism.” However,
there are some controversial and heterogeneous findings in the
studies analyzing this relationship (154, 155, 167). Moreover,
there are disorders associated with HPA axis dysregulation that
are more highly prevalent among obese subjects compared to the
general population such as night-eating syndrome, binge eating
disorder, sleep, and hormonal disorders as well as psychological
symptoms (168–171). It is worth of mentioning that treatment
for weight loss in obese subjects with these disorders is less
successful than in obese individuals without these types of
disorders (168, 172).

Very few studies have examined HPA axis regulation before
and after BS in humans. The most commonly held idea is
that weight loss tends to normalize cortisol levels and possible
alterations in the HPA axis (173). Nevertheless, some studies
suggest that long-term weight loss could be lessened when
methods based on caloric restriction are employed, since caloric
restriction could activate the HPA axis and increase circulating
cortisol levels and these are associated with higher food intake
and body weight (174–176). An increase in HPA axis tone during
weight loss through food restriction can weaken behavioral
modifications, which would make patient compliance to the
prescribed diet and sustained weight loss in the long term difficult
(177–179). Current evidence suggest that BS can affect HPA axis
regulation, but controversial results have been found regarding
the direction of this regulation (116, 119–121). Cortisol increases
immediately after BS due to the acute stress caused by the surgery
itself (180). However, the long-term effects of BS on cortisol have
not yet been elucidated. Moreover, the few studies dealing with
HPA axis after BS used different methodology for assessing HPA
axis, whichmakes difficult to have clear conclusions regarding the
effect of BS on HPA axis.

Morrow et al. studied HPA axis modulation in 24 severely
obese participants (BMI = 40–70 Kg/m2) without associated
comorbidities who underwent RYGB. Participants were classified
according to the presence or absence of night-eating syndrome.
A decrease in fasting plasma cortisol levels 5 months after surgery
was reported in patients without night-eating syndrome, but an
increase was seen in the subgroup of patients who had night-
eating syndrome. However, the two groups did not differ in
weight loss or waist circumference (117). By contrast, Hulme

et al. found that BS did not affect daily cortisol secretion patterns
during the first 6months after surgery, althoughmorning cortisol
showed a slightly non-significant post-operative increase (122).

Valentine et al. also found a significant rise in morning
saliva cortisol levels 6 and 12 months after BS (54.2% after SG;
16.7% after LAGB; 12.5% after RYGB, and 8.3% after duodenal
switch) in 24 obese women, but no differences were found in
nighttime saliva cortisol levels or in salivary cortisol awakening
response (121). High morning cortisol could be associated with
an improvement in physiological health after BS that is expressed
by the narrowing of the decreasing curve of diurnal cortisol
secretion in contrast to plainer curve characteristics in chronic
health disorders.

Larsen et al. analyzed salivary cortisol levels in obese women
after LAGB and found that neuroendocrine regulation after BS
differs in these patients depending on the presence or absence of
binge eating disorder. Obese women with binge eating disorder
had significantly lower salivary cortisol levels during the day than
patients without binge disorder. It is of note that a normal weight
control group was not included in this study (118).

Manco et al. described a significant decrease in circulating
corticosteroid-binding globulin (CBG) levels and a concomitant
increase in the metabolically free cortisol fraction in obese
women 2 years after BPD (116). The increase in free cortisol
fraction may contribute to adaptive enterocyte hyperplasia
in the long term, favoring better functional morphology as
cortisol is a regulator of crypt enterocyte proliferation (181).
Likewise, hypophyseal response, and/or suprarenal sensitivity,
assessed by intravenous dexamethasone infusion, differed
between the patients who underwent BPD and the normal
weight control group. Nevertheless, there were no differences
in cortisol suppression induced by dexamethasone before and
after BS (116).

Guldstrand et al. studied HPA axis changes after LAGB
in 8 non-diabetic severely obese patients. For this purpose,
cortisol levels were analyzed in response to hypoglycemic
clamp technique and a reduction in counter-regulatory hormone
(cortisol among them) response was observed during the
sustained hypoglycemic state after BS-induced weight loss in
comparison to the pre-surgical state characterized by exaggerated
HPA axis activation (119).

Ruiz-Tovar et al. reported sustained high serum cortisol levels
up to 6 months after BS in 40 morbidly obese patients who
underwent laparoscopic SG. However, cortisol levels decreased
and were directly associated with the CVD risk predictor
triglyceride/HDL ratio from 6 months after BS (120).

In view of these studies, obesity-induced corticotropic axis
activation is reduced after BS and a normalization in HPA
circadian rhythms might be also occurring. This effect has not
been described for caloric restriction, which could add value to
the use of BS for obesity treatment. However, although current
evidence suggest that BS can affect HPA axis regulation with
improvement in axis physiological health, controversial results
have been found regarding the direction of this regulation.
Therefore, more studies on this issue are needed to homogenize
criteria concerning which variables should be used to monitor
corticotropic axis status.
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Modifications in Gonadal Axis or
Hypothalamic/Pituitary/Gonadal Axis:
Gonadotropin-Releasing Hormone
(GnRH)/Follicle-Stimulating Hormone
(FSH), Luteinizing Hormone
(LH)/Testosterone, and Estradiol After BS
The incidence of sexual dysfunction, reproductive disorders, and
infertility increase with age. The relationship between sexual
dysfunction and other medical conditions such as obesity (182),
diabetes (183, 184), high blood pressure (185, 186), metabolic
syndrome, CVD or smoking (187) is widely accepted.

It is also well-known that adipose tissue plays a relevant
role in the metabolism of hormones, including sex hormones,
secreted by different glands (188). Obesity-associated gonadal
dysfunction is one of the most prevalent comorbidities in
obese subjects who seek to lose weight (29% for women and
45% for men) (189). These disorders are particularly common
in severely obese subjects who have undergone BS (190).
Similar to other obesity comorbidities, the higher the BMI, the
higher the risk of gonadal dysfunction (191–193). A number
of recent studies have dealt with this issue. Sarwer et al.
studied gonadal dysfunction prevalence in 250 obese patients
(141 who were interested in BS and 109 in lifestyle changes)
finding differences according to the preferred treatment for
weight loss achievement. Among individuals interested in BS,
51.4% of women (according to the Female Sexual Function
Index) and 36.4% of men (according to the International
Index of Erectile Function) had sexual dysfunction. By contrast,
40.9% of women and 20% of men who sought lifestyle
modifications had sexual dysfunction. These differences were
mainly related to BMI discrepancies. Sexual dysfunction was
associated with quality life and other psychosocial functions,
particularly in women (192). Interestingly, the significant
improvement found in sexual functioning occurred mainly in
women (130, 187, 194).

It has been widely described that BS leads to an improvement
in sex hormone and sexual hormone binding globulin (SHBG)
levels in morbidly obese patients (132, 133, 193, 195), even higher
than the effect attributable to weight loss alone (133). Thus, this
supports the hypothesis that factors derived from excess adipose
tissue maymodulate the gonadal axis (196). An increase in SHBG
and a modification in serum estradiol levels are detected after
BS in men and women. This could be due to the effect on
estrogen production from testosterone and steroid precursors
mediated by aromatase (an enzyme whose higher activity has
been associated with gonadal dysfunction pathology in obesity)
in reduced adipose tissue after BS (197).

The main evidence found in this context are due to: (1)
excess androgen in obese women, mainly associated with
polycystic ovary syndrome (PCOS) (36%) and with idiopathic
hyperandrogenism (198), and (2) androgen deficiency in
obese men that is termed male obesity-associated secondary
hypogonadism (MOSH). A recent meta-analysis highlights that
PCOS and MOSH are among the most common comorbidities
in severely obese patients who have undergone BS (36 and 64%,
respectively) that are usually resolved after BS (96% of women

with PCOS and 87% of men with MOSH), as highlighted by a
recent meta-analysis (191).

This improvement in gonadal profile occurs in parallel
with insulin resistance improvement and metabolic disorder
resolution (191).

Sex-specific changes induced by BS have been reported as
described below.

Modifications in the Gonadal Axis in Obese Women

After BS

Excess adipose tissue in obese women may contribute to
excess androgens by stimulating both ovary and hormonal
secretion by the suprarenal glands as secondary effects of insulin
resistance and compensatory hyperinsulinism. Specifically,
abdominal adiposity may feed a vicious circle in which excess
androgens favors body fat deposition and this visceral fat
promotes ovary and adrenal-derived excess androgens in PCOS.
However, for PCOS to develop in response to obesity and
visceral fat accumulation, women must have a primary defect
in steroidogenesis that promotes excess androgen secretion,
predisposing to androgen excess disorders (199). In contrast,
women without this primary defect in androgenic secretion do
not develop excess androgens or PCOS, even in the case of
extreme obesity or insulin resistance (198). Renowned authors in
the field consider that obesity is one of the secondary phenotypes
of PCOS, and in these cases, gonadal dysfunction improves and
even resolves with weight loss (200). A recent meta-analysis
has demonstrated that PCOS significantly decreased from 45.6%
pre-operatively to 6.8% 1 year after surgery (127). A decrease
in serum androgen levels (total testosterone) associated with a
reduction in androsterone and sulfate dehydroepiandrosterone
(DHEA) as well as with resolution of hirsutism and menstrual
irregularities (53 and 96% of cases, respectively) has been
reported. Improvements in estradiol, FSH and SHBG have also
been described (191, 193, 201–203).

Studies dealing with fertility recovery in women with PCOS
that have assessed fertility before and after BS are scarce.
The existing studies suggest that female fertility improves after
bariatric procedures and intensive weight loss. However, most
of these are observational studies with high variability in age,
in the bariatric procedure employed and without a control
group. This makes reach a consensus about the role of BS in
fertility management difficult. Accordingly, smarter studies with
a precise design comparing the different bariatric procedures
are required (204). Among the studies dealing with fertility,
Eid et al. demonstrated that RYGB-induced weight loss was
associated with improvements in PCOS-associated symptoms
including menstrual alteration resolution in all the participants
and hirsutism in half of the participants. In addition, successful
conception was achieved by five patients who previous to surgery
failed to conceive (125).

George and Azeez carried out a study that included 132
women with PCOS who underwent SG in whom resolution was
achieved in the majority of the cases of menstrual irregularities,
hirsutism (80%) and radiologic irregularities (81%) (126).

Jamal et al. also observed improved gonadal dysfunction
in 82% of RYGB PCOS patients, with decreased menstrual
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irregularities and resolution of hirsutism in 29% of the patients,
and 50% of patients who were unable to conceive prior to surgery
were successful after surgery (124).

Balen et al. based on low-quality evidence, recommended
BS use in obese PCOS women with a BMI>35 kg/m2 and
comorbidities such as gonadal dysfunction or BMI>40 kg/m2

who had infertility problems despite programmed intensive and
structured treatment (based on dietary-hygienic habit changes)
with no response for at least 6 months. They also recommended
to avoiding pregnancy in the rapid post-operative weight loss
period for at least 6–12 months after BS and at later times,
recommended that these women should be attended in a
specialized multidisciplinary unit due to the risk of BS-associated
nutritional deficiencies (205).

Although PCOS is the most frequent reproductive disorder in
obese women (191), idiopathic hypogonadotropic hypogonadism
has also been associated with higher obesity prevalence in
the female population (206). Several studies have reported
improvements in the gonadotropic axis as well as sexual
functioning after BS in obese women that are not necessarily
related to PCOS. Sarwer et al. reported that after BS, 106
women (80% RYGB and 20% LAGB patients) showed significant
improvements in general sexual quality and functioning as
well as sexual desire and satisfaction 1 year after surgery.
These improvements were maintained up to 2 years after
BS. These changes took place in parallel with psychosocial
improvements, significant weight reduction of 32.7% and
significant improvement in hormonal profile: decreased total
testosterone, estradiol and DHEAS and increased FSH, LH and
SHGB levels (123).

Bond et al. described that in 68% of obese women with sexual
dysfunction (defined by the Female Sexual Function Index score),
this condition resolved after BS. This improvement in sexual
function was not dependent on type of surgery or amount of
weight loss and appears to be an additional benefit for women
undergoing BS (194).

As detailed above, weight loss after lifestyle modification, and
particularly after BS, is associated with significant improvements
in sexual functioning and resolution of both menstrual and
ovulatory disorders that occur in nearly all patients. Thus,
weight loss could also contribute to fertility restoration (191,
194, 201). However, Shekelle et al. pointed out in their review
that most of the reports are observational studies and data
should be interpreted cautiously (128). Moreover, except for
PCOS, the definition of pre-operative reproductive disorders
in obese female patients having undergone BS is not clearly
defined. It is of interest to understanding whether results of these
reports are referring to PCOS or to different and independent
reproductive anomalies to confirm whether BS is also effective
for the resolution of additional reproductive disorders.

Modifications in Gonadal Axis in Obese Men After BS

In obese men, excess adipose tissue appears to contribute
to androgenic deficiency by means of pituitary gonadotropin
inhibition. This suggests central production deterioration
together with reduced gonadal sensitivity to LH and increased
peripheral androgen degradation by their conversion to estrogens

(207, 208).MOSH is characterized by reduced serum testosterone
together with high relative estradiol levels and inappropriately
low or normal levels of LH and FSH (209). Although serum
LH levels and the pulse frequency are similar in obese
and lean subjects, LH pulse width is noticeably reduced
in obesity (210). Among mechanisms involved in MOSH
pathogenesis, gonadotropin inhibition by excess peripheral
estrogen production in adipose tissue has been reported.
However, insulin resistance and the secretion of inflammatory
mediators and adipokines may play a relevant role in MOSH
physiopathology with an inhibitory action at the hypothalamic-
pituitary level (196, 211, 212). Recent data suggest that not only
hyperinsulinemia but also excess liver fat are among the main
inhibitory influences on SHBG secretion in obese subjects, in
a process in which pro-inflammatory cytokines derived from
ectopic adipose tissue are likely implicated (213). Likewise,
hypophyseal dysfunction induced by obstructive sleep apnea
syndrome may also participate in MOSH development (214).

Thus, abdominal adiposity could favor a vicious cycle in
MOSH development by inhibiting hypophyseal gonadotropin
secretion (215–217) and simultaneously, the resulting androgen
deficiency promotes body fat accumulation in parallel to a
decrease in muscle and lean mass (218).

Substantial fat mass loss after intensive weight loss
will likely tend to reduce aromatase activity and regulate
estradiol/testosterone equilibrium, resulting in decreased
estradiol production, and will favor LH increase which
contributes to stimulating testosterone production and substrate
availability for estradiol production. It is thought that the
differences between obese subjects with normal gonadal function
and those with hypogonadismmight be determined by aromatase
expression levels: MOSH would be induced when aromatase
gene expression is elevated. By contrast, testosterone levels would
remain within the normal range when aromatase expression
levels are low (134). Similar to PCOS in obese women, MOSH
is not a generalized condition in male obesity and underlying
mechanisms are largely unknown.

An increase in serum androgen levels (for both total
testosterone and the free testosterone index), which was even
higher than the increase in SHBG levels in men has been
reported (134, 191). Normalization of serum testosterone levels
after BS is associated with improved fertility in severely obese
men. Nevertheless, more specific fertility studies focused on
spermatogenesis and androgen levels are needed given the
discrepancies between the studies published to date (191). Some
studies suggest a deterioration in seminal parameters (219, 220),
while others have observed no effect (202, 221) or even beneficial
effects on sperm quality (222). It has also been postulated
that fat mass reduction associated with weight loss might
reduce abdominal, thigh and scrotal fat depots. This leads to a
decrease in testicular temperature and, consequently, facilitate
spermiogenesis (207).

Chronic testosterone deficiency could reduce post-operative
fat loss and enhance the catabolic effects of BS on muscle and
bone. This would attenuate the positive effects of BS on insulin
sensitivity. A number of recent studies dealing with the changes
and benefits in gonadal dysfunction due to BS in obese men,
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are in agreement with BS-induced improvements in testosterone,
SHBG and LH levels (129, 223, 224). Although diet and lifestyle
changes and BS are associated with a significant increase in
hormone levels, MOSH normalization (increased testosterone
and gonadotropin levels together with decreased estradiol levels)
was more effective with BS than with low-caloric diets. By
contrast, results regarding FSH levels are more controversial
(129, 193, 223).

Reis et al. found significant improvements in sexual
functioning and levels of hormones such as total testosterone,
FSH and prolactin in 10 RYGB patients (129).

Mora et al. observed a pronounced weight loss (77.18% of
excess weight), metabolic profile improvement together with
improvements in sexual aspects such as an improved score on the
International Index of Erectile Function and a significant increase
in testosterone levels 1 year after surgery (RYGB and SG in 46.2
and 53.4%, respectively) in a prospective study carried out in 39
obese men (130).

In agreement, Sarwer et al. reported a concomitant decrease
in patient weight by nearly one third and increase in total
testosterone and SHBG levels 4 years after surgery in their cohort
of 32 men who underwent RYGB and who showed deficient
sexual functioning prior to surgery. Despite this finding and
although improvements in sexual dysfunction were seen in the
short term after surgery, these changes were not significant
during the follow-up (131).

Facchiano et al. reported an increase in total testosterone,
SHBG, LH, and FSH levels with a relevant drop in the initially
elevated estradiol levels at 6 months after BS (10 with RYGB, 8
with LAGB and 2 with BPD) in 20 obese men (132).

The findings of Luconi et al. confirmed the already known
relationship between excess adiposity and hypogonadism in
morbidly obesemen. In the same line as previous studies, patients
showed increased total and free testosterone levels as well as
gonadotropins (simultaneous increases in LH and FSH). The
increased testosterone and SHBG levels induced by BS were
higher than those expected for the weight loss alone. Likewise,
the increase in total testosterone may be related to an SHBG rise
and peripheral aromatization reduction that contributes to the
observed fall in estradiol levels. Moreover, the direct effect of
weight loss on Leydig cell function should not be discarded in
the improvement of gonadal profile (133).

Aarts et al. included 24 severely obese men (BMI = 35–59
Kg/m2) in their study, 13 of them with MOSH and 11 eugonadal
morbidly obese patients. One year after BS, an increase in free
testosterone was observed in both MOSH and eugonadal groups.
These levels were inversely related to weight loss. MOSH was a
reversible situation in the majority of cases and this pre-operative
condition was not adversely associated with BS efficiency in terms
of weight, lipid and carbohydrate metabolism or with catabolic
effects of surgery on muscle or bone mineral density (134).

Nevertheless, Samavat et al. in their study with morbidly
obese BS patients (29 with hypogonadism and 26 eugonadal
patients) observed that presurgery testosterone levels appear
to moderate the BS effect on sex hormone recovery as an
increase in androgen levels (total and free testosterone) only
occurred in patients with hypogonadism. Preoperative estrogen

levels were significantly lower in hypogonadal patients than in
eugonadal patients. Moreover, estrogen levels only decreased
after BS in eugonadal patients. Estradiol reduction in eugonadal
patients was not related to testosterone level increment. As in
the previous studies referenced above, Samavat et al. found a
hypogonadism reversal that occurred early after surgery and was
nearly complete. Taking into consideration these findings, the
role of estradiol in obesity-related hypogonadism development
might be limited (135).

All the revised studies, except for the study by Leenen et al.
(225), reported a significant increase in total testosterone levels
with weight loss and visceral fat reduction.

Few long-term studies have focused on the possible recurrence
of gonadal dysfunction after weight regain. Rosenblatt et al.
reported that patients who underwent RYGB from 6 to 16
years ago had high SHBG, total and free testosterone levels
compared to non-surgical obese controls and these levels were
comparable to those found in lean subjects. These findings agree
with androgenic normalization in the long term. Nevertheless,
the erectile function score was lower than in lean controls, which
suggests incomplete functional restoration that may be related to
weight gain and recurrent obesity comorbidities (226).

Recent research suggests reciprocal control between bone
and testicles by means of osteocalcin (a peptide secreted by
osteoblasts). It has been recently proposed that this peptide may
be implicated in male fertility through direct stimulation of
testosterone production by Leydig cells (227–231). Osteocalcin
is decreased in obesity but it can also be produced by adipose
tissue apart from bone production (232). Therefore, the inverse
relationship between BMI and osteocalcin levels could indicate
that only healthy adipose tissue may be involved in osteocalcin
production (233). Weight loss induced by caloric restriction or
BS is associated with the recovery of osteocalcin production.
Samavat et al. analyzed 103 obese men, 76 patients who
underwent RYGB and 27 controls who were waiting for surgery.
The RYGB group showed an increase in osteocalcin, total
testosterone and SHBG levels concomitant to a slight rise in
gonadotropin levels, while estradiol levels fell likely due to
a reduction in aromatase activity or expression. Osteocalcin
levels were significantly associated with the restoration of
testosterone levels in MOSH patients. Thus, osteocalcin may be
an independent predictor for androgen restoration. It should be
noted that no significant changes were seen in the non-surgical
control group that had a slight weight loss. The osteocalcin levels
increase might be explained by changes in leptin and adiponectin
levels that regulate bone turnover in opposite ways. Likewise,
insulin sensitivity improvement may enhance osteocalcin bone
release (234). A recent report from Karsenty et al. supports the
existence of a bone-testicle axis which is parallel to the pituitary-
gonadal axis. In this way, osteocalcin and LHwould act in parallel
in both axes and osteocalcin would also be involved in human
reproduction function (235).

In view of these results, BS is an effective method to treat
gonadal dysfunction including recovery of fertility in comparison
with lifestyle changes and diet-induced weight loss (200, 236,
237). Infertility or gonadal dysfunction could be used as criteria
for indication for BS in obese patients with a BMI > 35
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kg/m2. The considerable resolution rate of PCOS and MOSH,
the most representative gonadal dysfunction disorders in obese
individuals, after BS consistently supports the causal relationship
of both obesity and adipose tissue dysfunction with gonadal
dysfunction in predisposed subjects. However, more long-term
studies focusing on the persistence of gonadal dysfunction
resolution after BS are required.

Modifications in Bone Metabolism After BS
It has been widely described that obese patients are at higher
risk of vitamin D deficiency pre-operatively, although it is
not clear whether this association is more closely related to
obesity per se or to obesity-related diseases such as T2DM
(238). Consequently, secondary hyperparathyroidism due to
vitamin D deficiency has also been extensively reported in obesity
(239). Paradoxically, obese patients are generally characterized by
higher bone mineral density (BMD) and bone mineral content
(BMC), and it has even been suggested that obesity could be
protective against osteoporosis (240). Bone remodeling implies
a continuous process of bone replacement (formation) and bone
removal (resorption). When these two processes are unbalanced,
net bone formation or bone loss, respectively, will occur (241).
Bone remodeling not only promotes bone repair, but also helps
to mechanical stress adaptation. Thus, mechanical bone loading
determines bone strength, size, and mass. This has led to the
suggestion that mechanical bone loading could be responsible
for the protective role of obesity in bone health. Larger bone
size (that can also be due to increased mechanical loading) and
enhanced aromatase activity from adipose tissue have also been
suggested factors favoring BMD in obesity (240–242).

The most common nutritional deficiencies after BS include
folate, iron, vitamin B12, calcium, vitamin D and zinc. Therefore,
post-surgical changes in calcium and vitamin D can lead to
bone loss resulting in higher fracture risk (243). In fact, it has
generally been suggested that BS negatively affects bone health
by diminishing BMD, enhancing bone resorption and impairing
even further vitamin D levels and hyperparathyroidism (244).
Most of the evidence comes from RYGB studies with fewer
studies on other types of BS, but also finding negative effects
from mainly restrictive procedures (245). One of the hypotheses
posited to explain BMD and BMC after BS is mechanical
unloading. A lower mechanical load due to weight loss can
lead to less bone formation followed by a decrease in BMD.
Concordantly, RYGB is associated with bone loss as reflected by
BMD reduction at several sites 6 months (246), 1 year (247–251),
and 2 years after surgery (22, 243, 252). Several studies have been
carried out with longer follow-up periods up to 6 years finding
a persistent bone loss (253–256). BPD has also been related to
a higher incidence of metabolic bone disease 1–5 years after
surgery (257) and Tsiftsis et al. reported decreased lumbar spine
BMD 1 year after surgery (258). This BMD decrease could be site
dependent since Marceau et al. found no changes in BMD in the
hip but did find a decrease in the lumbar spine (259). Prospective
studies comparing BMD at different sites between gastric bypass
and SG, found that both procedures led to decreased BMD in
the lumbar spine and femur. This decrease tended to be less
pronounced after SG in most of the studies (260–262), but

comparable in others (254, 263). Pluskiewicz et al. also reported
a reduction in BMD in the lumbar spine, femoral neck and hip 6
months after SG (264). Results from LAGB are even more scarce.
Decreased BMD and BMC have been reported 1 and 2 years after
LAGB (265, 266). This negative effect seems to be smaller than
that observed after RYGB (23). The effects of LAGB on BMC
were compared to diet-induced weight loss and similar results
were found (267). By contrast, Mach et al. did not find significant
changes in BMC 1 year after LAGB (268).

BMD and BMC are determined by means of dual-energy
X-ray absorptiometry (DXA), and technical limitations should
be considered when data are interpreted. DXA are technically
limited when applied to obese patients, particularly in severely
obese subjects. Modifications in fat mass distribution due to
drastic weight loss could influence measurement accuracy (22,
241, 269). Therefore, the controversial results regarding the effect
of the different bariatric procedures on BMD and BMC could be
due to technical issues.

In addition, it is unclear whether the reported BMD and BMC
decrease after BS, is clinically relevant regarding osteoporosis
incidence and fracture risk. As recently reviewed by Ben-Porat
et al. different studies have found controversial results (245).
In a study with a large sample size (n = 2079) in which most
of the patients underwent LAGB, the risk for fracture was not
increased 2 years after surgery (270). Nevertheless, when most of
the population underwent RYGB, an increased fracture risk was
observed in a retrospective study with a median follow-up of 7
years (271). These results were replicated after gastric bypass for
amedian follow-up time of 3.1 years (272). Studies that compared
BS patients to obese and control patients, found higher fracture
risk 4 years after surgery in the BS group than in the two control
groups, significantly so with BPD. After 12 years there was
also higher fracture risk after mainly malabsorptive procedures
(273). A recent meta-analysis that included six studies concluded
that BS is associated with increased fracture risk compared to
control populations. However, the length of follow-up and the
bariatric procedures were heterogeneous (274). Lack of long-
term prospective studies does not help to elucidate the real effect
of BS on osteoporosis development and fracture risk (245, 269).

The serum 25(OH)D form of vitamin D, calcium and
parathyroid hormone (PTH) have also been measured to verify
putative effects of BS on bone metabolism. As calcium is
preferentially and actively absorbed in the proximal gut, and
pancreatic secretion and bile acids are required for vitamin
D absorption, bariatric procedures that bypass the duodenum
and proximal jejunum could promote malabsorption of these
micronutrients. Decreased stomach acid after SG and bypass
of the proximal bowel would also reduce calcium absorption
(22, 243). A meta-analysis analyzing 10 gastric bypass studies
found, in addition to BMD reduction, a significant decrease
in serum calcium levels (275). BPD was also associated with
an increased prevalence of hypocalcemia (257). Gehrer et al.
however, found no significant effect of RYGB or SG on serum
calcium levels (276). Serum calcium levels are tightly regulated.
While the intestine is responsible for calcium absorption from the
diet, calcium reabsorption occurs in the kidneys. When these two
mechanisms are insufficient to maintain serum calcium levels,
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calcium is released from the bones, which act as a calcium
reservoir. Thus, despite normal calcium levels, low BMD could
be present (22, 243). A more accurate way to evaluate calcium
alteration after BS could be the direct determination of calcium
absorption. Schafer et al. and Riedt et al. did this and found that
gastric bypass led to a decline in calcium absorption 6 months
after surgery (277, 278).

The tight regulation of serum calcium levels relies on
PTH and the active form of Vitamin D (1,25(OH)2D). PTH
stimulates osteoclast differentiation and survival and calcium
release from the bone matrix when serum calcium levels are low.
Negative feedback avoids uncontrolled PTH-induced bone loss,
by stimulating 1,25(OH)2D synthesis. The active form of vitamin
D inhibits PTH production and stimulates intestinal calcium
absorption and FGF23 expression in bone (which leads to bone
phosphorus loss) (241, 243). Although, it has been described
as a pre-existing condition before BS, hyperparathyroidism has
been reported after gastric bypass, LAGB, SG, and BPD (265,
275, 279–281). The prevalence of hyperparathyroidism increases
with the time after BS, with higher prevalence after gastric bypass
followed by RYGB, LAGB, and SG (281). Nevertheless, Tsiftsis
et al. failed to find differences between pre-operative and post-
operative PTH levels after BPD (258) and Guglielmi et al. found
a decrease in PTH levels 6 months after SG (282). Likewise,
hypovitaminosis D has been widely reported in obese patients
prior to surgery. This status is sustained and even worsened
after BS despite post-surgery vitamin D supplementation (283).
It should be mentioned that BS patients usually receive vitamin
D supplementation, but there is no consensus on the dose
or duration of vitamin D supplementation. This should be
taken into account for inter-study comparisons as this could be
limiting conclusions regarding the magnitude of the effect of
each BS procedure. Some studies compared 25(OH)D levels after
different bariatric procedures in which patients were given the
same vitamin D dose, and no differences were found between
LAGB and RYGB on vitamin D deficiency incidence (284, 285).
However, higher 25(OH)D levels were found after SG than RYGB
after 2 years of follow-up (276, 286).

Vilarrasa et al. could not confirm these results when the
administered doses of vitamin D were higher in the RYGB
than in the SG group (254). This suggests that vitamin
D supplementation should be adjusted depending on the
bariatric procedure as 25(OH)D might be differentially affected
depending on the technique. In addition, previous vitamin
D deficiency and supplementation could be affecting post-
surgical hypovitaminosis D. Furthermore, despite reaching
normal 25(OH)D levels after BS, a higher incidence of bone
diseases was reported after BPD which suggests that mechanisms
other than PTH and vitamin D regulation could be affecting
post-operative bone health (257).

Taking into account the limitationmentioned above regarding
bone health assessment, bone turnover markers may also be
an accurate approach to verify bone resorption and formation
rates after BS. N-terminal propeptide of type 1 procollagen
(P1NP) (cleaved from type 1 procollagen for collagen fiber
assembling when incorporated into the bone matrix), bone-
specific alkaline phosphatase (BAP) (a specific marker of bone

formation osteoblast activity) and osteocalcin (a bone-specific
protein produced by mature osteoblasts during bone matrix
synthesis) are used as bone formation biomarkers. C-terminal
and N-terminal telopeptides of type I collagen (CTX-1 and
NTX-1, respectively; produced as a secondary product of
collagen proteolytic cleavage during bone matrix degradation
by osteoclasts) and tartrate-resistant acid phosphatase (TRACP;
an enzyme highly expressed by osteoclasts) are considered bone
resorption biomarkers (243, 287). SG and gastric bypass led to
an increase in N-telopeptide but SG was also found to increase
bone alkaline phosphatase (260). BPD also increased both bone
formation and bone resorption markers. Despite this, BMD
was reduced after surgery (258, 275). One year after LAGB,
telopeptidases were reduced and correlated with bone loss (265).
RYGB also decreased CTX 1 year after surgery (246). Crawford
et al. recently analyzed the effect of weight loss through intensive
medical therapy or by BS (RYGB or SG) on osteocalcin and CTX
at 5 years. They found that surgical patients had increased levels
of both CTX and osteocalcin, but no significant effect was seen
with intensive medical therapy. Amore noticeable effect was seen
after RYGB than in SG (288).

Although some authors have questioned the mechanical
unloading hypothesis (243), molecular mechanisms have been
proposed to support this. Osteocytes act as mechanostat
and comprise cellular response to environmental response to
bone mechanical stress. Osteocytes sense mechanical bone
deformation for mechanical loading and sclerostin production is
inhibited. Sclerotin negatively regulates osteoblast differentiation
and function and, conversely, sclerotin is upregulated under
mechanical unloading. Thus, mechanical unloading could
impair bone formation by impairing osteoblast function (241).
Malnutrition, particularly after mainly malabsorptive techniques,
has been also suggested as being responsible for bone metabolism
deficiencies such as hypovitaminosis D or hyperparathyroidism
as detailed above. But, further to mechanical stress and
malnutrition, other hormonal mechanisms related to the
well-described hormonal changes after the various bariatric
procedures have been proposed (241). GLP-1, GIP, PYY, and
ghrelin have been shown to act directly in bone (45, 46, 289).
GIP inhibits osteoclast differentiation and its levels have been
associated with bone formation markers (290, 291). Thus, the
reported GIP decrease after BS procedures implies that proximal
gut bypass could be associated with negative effects on bone.
On the other hand, hormonal changes dependent on procedures
involving stomach fundus removal such as SG, could also
impair bone formation since ghrelin directly promotes osteoblast
differentiation and proliferation (292), and its levels drop after
this type of surgery. The relative function of GLP and PYY on
bone metabolism and changes in their levels after BS do not
correlate well, presupposing a harmful effect of BS on bone.
PYY deficiency has been associated with low BMD (293), but
its levels increase after RYGB, LAGB, SG, and BPD. Likewise,
GLP-1 levels also rise after BS procedures such as BPD, but
exogenous administration of GLP-1 and GLP-2 have been shown
to improve BMD (294). Adipokines that decrease after BS, such
as leptin, positively affect bone metabolism (295). On the other
hand, adiponectin, which has been reported to raise after BS, has
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been negatively correlated with BMD (296). Moreover, adipose
tissue is a source of estrogens which decrease bone resorption
and enhance bone formation. Therefore, a weight loss-dependent
estrogen decrease could also be associated with bone metabolism
impairment after BS (223, 296).

All in all, there is sufficient evidence to assume that BS has
an effect on bone metabolism. However, due to the fact that
multiple mechanisms affected by BS could affect bone health
in opposite ways, further research is needed to elucidate the
net effect of each bariatric procedure on bone metabolism.
Consensus on the best way to estimate bone health, taking into
account technical limitations, should also be reached to obtain
clear conclusions about what is really happening to bones in
obese patients before and after surgery. Long-term prospective
studies evaluating fracture risk and bone disease prevalence after
BS, with large sample sizes and considering the type of post-
surgery vitamin D and calcium supplementation, are further
required to confirm BS effects on bone metabolism and to
provide patients with accurate recommendations following each
bariatric procedure.

CONCLUSION

Effects on metabolism and gastrointestinal hormones of BS
are widely recognized, but the precise mechanisms are not yet
completely understood. Moreover, it has been suggested that
the different bariatric procedures are not equally effective in
T2DM remission. However, heterogeneity regarding the criteria
to define T2DM remission after BS makes difficult to state which
surgical procedure is the most recommendable. Furthermore,
other aspects than those exclusively metabolic should be taken
into consideration since many other endocrine effects, but less
explored up to date, are produced secondarily by the different
bariatric procedures affecting corticotropic, somatotropic and
gonadal axes as well as bone metabolism. Nevertheless, study
design and criteria to evaluate the secondary consequences of BS
are also heterogeneous which complicates the characterization of
the precise effects of each bariatric procedure on these aspects.
In addition, only few studies have evaluated BS consequences in

the very long-term finding nutrient deficiency-related disorders,
particularly after mainly malabsoprtive procedures which are
at the same time considered as the most effective regarding
T2DM resolution. Thus, although it is generally considered
that benefits counteract by far the drawbacks of BS, further
studies with homogeneous criteria and design, considering
other bariatric consequences than merely metabolic effects, as
well as the performance of a close long-term follow-up, are
necessary in order to have a wider comprehensive overview of
the consequences of each bariatric procedure. This would be
useful for individualized surgical intervention recommendations
depending on the different obesity co-morbidities previous to
surgery of each patient as well as for preventing health-derived
complications of BS.
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