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Abstract

The results of recent large-scale clinical trials have led us

to review our understanding of the metabolic response

to stress and the most appropriate means of managing

nutrition in critically ill patients. This review presents an

update in this field, identifying and discussing a number

of areas for which consensus has been reached and

others where controversy remains and presenting areas

for future research. We discuss optimal calorie and

protein intake, the incidence and management of

re-feeding syndrome, the role of gastric residual volume

monitoring, the place of supplemental parenteral

nutrition when enteral feeding is deemed insufficient,

the role of indirect calorimetry, and potential indications

for several pharmaconutrients.

Introduction
Nutritional support in the acutely ill is a complex subject.

Several recent studies have led to considerable changes in

our understanding of the metabolic response to critical

illness and of various aspects of nutritional management,

including monitoring of the metabolic response and

the determination of caloric, protein, and micronutrient

requirements. The aims of this review are to summarize

recent findings, to highlight areas of consensus and con-

troversy, and to define priorities for further research.

Metabolic response, inflammation, and anabolic
resistance
The metabolic response to stress is part of the adaptive

response to survive acute illness. During stress, several
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mechanisms that have been well preserved through evolu-

tion are triggered to increase the provision of energy

substrates to vital tissues, including stimulation of the

sympathetic nervous system, release of pituitary hormones

[1], and peripheral resistance to the effects of anabolic fac-

tors [2]. Recent findings suggest that hormones released

from the gut and adipose tissue may be involved as add-

itional triggers of the response to stress and critical illness

[3]. As a result of this complex metabolic response, the

control of energy substrate utilization is only partially regu-

lated by substrate availability. Instead, pathways of energy

production are altered and alternative substrates can be

used. Clinically, one can identify a variety of changes, in-

cluding increased energy expenditure (EE), stress hypergly-

cemia, loss of muscle mass, and eventually psychological

and behavioral problems [4,5].

The role of inflammation in the metabolic response to

stress has been recognized for a long time and is cur-

rently under increased scrutiny after the results of the

trials from Leuven University [6,7], in which the magni-

tude of the inflammatory response was attenuated in pa-

tients who received intensive insulin therapy (IIT) [6]

and increased in patients who received no parenteral nu-

trition during the first week of critical illness [7]. Experi-

mental findings [8,9] have consistently indicated that

high glucose concentrations increase the production or

expression (or both) of pro-inflammatory mediators, ad-

herence of leukocytes, and alterations in endothelial in-

tegrity and decrease chemotaxis and phagocytic activity

and release of reactive oxygen species (ROS) by neutro-

phils, whereas insulin exerts the opposite effects [10].

High doses of insulin were found to reduce levels of

C-reactive protein in critically ill patients [11,12], and

interleukin-6, interleukin-8, and tumor necrosis factor

levels in patients on extracorporeal circulation [13] or

with burns [14]. The expression of adhesion molecules on

the endothelium was reduced as was the transcription of
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inducible nitric oxide (NO) synthase gene in the liver and

muscle of patients randomly assigned to IIT [15]. These

effects in patients treated with IIT could be related to the

anti-inflammatory effects of insulin or to an attenuation of

the pro-inflammatory effects of hyperglycemia or both

[16]. The available clinical data suggest that prevention of

severe hyperglycemia may reduce cell damage; however,

preventing hyperglycemia by using high doses of insulin,

as required in cases of high intake of carbohydrates, can

blunt the early inflammatory response.

Resistance to the anabolic signals leading to loss of

muscle protein and function is a major long-term conse-

quence of stress metabolism [17]. An infusion of amino

acids in healthy volunteers rapidly increases the rate of

muscle protein synthesis [18], whereas in critically ill pa-

tients the rate of protein degradation increases more

than the rate of protein synthesis, resulting in a negative

muscle protein balance [19]. Kinetic studies have dem-

onstrated an impairment in the amino acid transport

systems and increased shunting of blood away from the

muscles [20]. The underlying mechanisms have been

partially unraveled and include a relative resistance to

insulin [21], which is further amplified by physical in-

activity [22,23]. In theory, omega-3 fatty acids, pentoxi-

fylline, growth hormone, testosterone, and beta blockade

could also preserve muscle strength and dampen protein

catabolism [2] and thereby help to prevent the long-

term muscular consequences of the metabolic response

to stress.

Monitoring the metabolic response is a major clinical

challenge because it relies on non-specific clinical and bio-

chemical markers: secondary infections, muscle atrophy

and weakness, respiratory insufficiency, delayed wound

healing, and a high incidence of secondary complications

indicate prolonged catabolism; in contrast, severe hyper-

glycemia, liver steatosis, respiratory insufficiency with se-

vere hypercapnia, and immune depression, again leading

to increased infectious complications [24], can be re-

lated to overfeeding [25]. Recently, metabolomic profil-

ing of body fluid was reported as a promising approach

to better characterize the metabolic derangements of

critical illness [26,27].

Nutritional requirements
It is difficult to predict EE in the critically ill as predict-

ive equations fail to match measured EE in about 80% of

patients [28], and protein losses cannot be estimated

without specific measurement. Most studies have re-

ported a high incidence of unintentional underfeeding

(that is, a lower actual caloric and protein intake than

the amount prescribed). An association between the

amount of calories prescribed and several outcome vari-

ables has been reported by several groups of investiga-

tors [29-32]. Similarly, positive associations between

protein intake and survival have been reported in obser-

vational data collections [33,34]. A major weakness of

these observational studies relates to the heterogeneity

in the severity of illness, a key potential confounder; less

sick patients tolerate enteral nutrition better, are more

adequately fed, and have better outcomes. Moreover,

these findings may be related to informative censoring

[33], and unequivocal confirmation by other recent ro-

bust trials is still awaited [35,36]. Nevertheless, the opti-

mal intake of macronutrients is largely undefined, and

results of the prospective trials discussed below have

given controversial results. This uncertainty is partly re-

lated to the lack of accurate monitoring tools. Comput-

erized information systems may help prevent under- and

overfeeding [37].

Although the effects of energy and proteins are inter-

twined, we discuss caloric and protein requirements sep-

arately. Ideally, future clinical trials should assess the

effects of changes in the intakes of only calories or only

proteins. Likewise, the effects of energy source (carbohy-

drates or fat) should be studied in adequately powered

prospective trials.

Energy requirements

What represents optimal energy intake in critically ill pa-

tients and whether caloric intake should match resting EE

are hot topics of debate [38,39]. However, the assessment

of EE in the critically ill is a major challenge [28,40], even

when using predictive equations, and can lead to over- or

underfeeding especially as EE may be elevated and can

vary over time. Moreover, predictive equations are not suf-

ficiently accurate for reliable use in critically ill patients

[28]. Nevertheless, measurement of EE is feasible using in-

direct calorimetry, and guidelines from both the European

Society for Clinical Nutrition and Metabolism [41] and

the American Society for Parenteral and Enteral Nutrition

[42] recommend use of this technique, although the accur-

acy of different indirect calorimeters has recently been

challenged [43,44]. An association between the amount of

calories prescribed and several outcome variables (for

example, 2-month mortality, length of stay, and rate of

complications) has been reported by several groups of

investigators [29-32]. A large multicenter observational

study in mechanically ventilated patients defined the opti-

mal amount of intake as 80% of that which was prescribed

[32]. Likewise, the Tight Calorie Control Study pilot study

[24] reported improved hospital survival in a per-protocol

analysis of the group of patients in whom caloric intake

matched the measured EE; intention-to-treat analysis,

however, revealed no survival benefit and moreover

showed increased ICU length of stay and duration of

mechanical ventilation together with a higher incidence of

infections in this group. EE should probably be matched

by caloric intake after the early phase of critical illness, but
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the proportion of the measured EE that should be admin-

istered likely varies over time.

The rationale for adequately matching caloric intake

with caloric expenditure lies in the accelerated muscle

catabolism that occurs when caloric supply is restricted,

especially in patients confined to bed rest [45] and on

the associations between caloric debt and poor outcome

[29-31]. Arguments against the matching of calorie

intake to EE during the early phase of critical illness in-

clude physiological evidence (that is, continuous en-

dogenous production of glucose matching 50% to 75% of

EE for the first few days after injury) and the suppression

of autophagy by exogenous macronutrients. However,

macronutrients can exert different effects on autophagy

[46]. In particular, the inhibitory role of protein on au-

tophagy has been reported [47] and could have contrib-

uted to the findings of worse outcome in the early

parenteral nutrition group of the Impact of Early Paren-

teral Nutrition Completing Enteral Nutrition in Adult

Critically Ill Patients (EPaNIC) study [48]. Moreover, the

results of other prospective interventional trials have

consistently shown either increased morbidity when cal-

oric supply was increased [7,24] or no immediate benefit

associated with supplemental parenteral nutrition in pa-

tients intolerant to early enteral nutrition (EEN) during

the first 3 days of ICU admission [49]. Other recent

interventional studies [50-53] were unable to show an

improvement in outcome following an increase in cal-

oric and protein intake. Of note, these trials were not

designed or powered as equivalence studies and do not

provide definitive data to inform clinicians about how

much nutritional support is enough [54]. However, a

post hoc analysis of the EPaNIC trial suggested that the

smallest amount of nutrients was associated with the

fastest recovery, and any higher dose was associated with

a delay in recovery [55]. Moreover, this observational

study tackled the issue of duration of ICU stay being as-

sociated with a higher likelihood of additional complica-

tions and higher amounts of nutritional intake by

analyzing nutrition given over identical time spans of 3,

5, 7, 10, and 14 days. The findings related to early sup-

plemental parenteral nutrition should not discourage at-

tempts to optimize energy delivery by the enteral route

[56], even though it was not associated with clinical

benefit, or the need to identify patients at high mortality

risk due to pre-ICU malnutrition [57].

Protein requirements

The issue of optimal protein intake is no simpler than

that of caloric intake. Essentially, the pool of free amino

acids is fueled by the degradation products of tissue pro-

teins, de novo synthesized amino acids, and nutritional

intake. These amino acids are incorporated into pro-

teins, involved in the regulation of specific pathways, or

oxidized and removed as urea. The minimal protein re-

quirement can be defined as the amount required to

maintain a neutral tissue protein balance, at least in

physiological conditions [58]. During critical illness,

however, the breakdown of proteins is markedly in-

creased and the types of protein synthesized differ con-

siderably from healthy conditions. Recently, Rooyackers

and colleagues [59] demonstrated that protein synthesis

was markedly increased in patients with multiple organ

failure. In addition, several pathways potentially regu-

lated by amino acids are activated, and the mechanisms

of clearance, including renal function, are often im-

paired. Therefore, the optimal amount of protein in crit-

ically ill patients cannot be deduced from data recorded

in healthy subjects.

In critical illness, the loss of lean body mass, together

with physical inactivity, is associated with increased pro-

teolysis via the proteasome/ubiquitin pathway [60].

These findings generated the hypothesis that increased

protein requirements are related to (a) the need for a

greater amount of amino acid to achieve the same mus-

cular synthesis rate, as a result of the anabolic resistance;

(b) the need for amino acids for the synthesis of acute-

phase response proteins; (c) the need for cysteine, the

rate-limiting step of glutathione synthesis, in order to

limit oxidative stress [61]; and (d) the prevention of glu-

tamine depletion in muscle and plasma [62,63], and in-

creased utilization [64].

Recent observational data suggested that a large intake

of protein (1.2 to 1.5 g/kg per day) was associated with

better outcomes in one study and contradictory effects

in another [33,34]. In a landmark study, Ishibashi and

colleagues [65] showed that 1.5 g/kg per day was associ-

ated with the least negative total body protein balance.

A protein dosing trial has recently been completed, but

until the results are available and in the absence of high-

quality prospective trials designed to specifically address

the issue of optimal protein intake [66], data from the

large interventional trials using supplemental parenteral

nutrition can be used to try and provide some answers.

Post hoc analyses of the results of three recent trials

[7,17,24] suggested better outcomes in patients who re-

ceived less protein.

The discrepancies between the results of clinical stud-

ies suggest that there is no fixed energy-to-nitrogen ratio

that could be applied in all physiological and patho-

logical conditions. Ambulatory or exercising patients re-

quire a higher energy intake in contrast to bedridden or

critically ill subjects. Furthermore, inactivity and sys-

temic inflammation can induce or exacerbate anabolic

resistance, itself leading to muscle atrophy, increased fat

mass, and decreased metabolic rate.

Biomarkers of optimal protein and amino acid intake

include whole body or tissue protein balance, circulating
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protein or amino acid levels, physiological functions

(muscle strength, immune competence, insulin sensitiv-

ity, glutathione, and oxidative stress), and ultimately

clinical outcome. The use of techniques to assess lean

tissue by ultrasound [67] or computed tomography scan

[68] could help to more accurately tailor the amount of

protein, but this needs to be studied further.

Micronutrient requirements

The European critical care population is characterized by

suboptimal preadmission micronutrient status: the trace

elements particularly affected are selenium, iron, and zinc

[69,70]. Micronutrients are often overlooked during nutri-

tional assessment and this may result in provision of

suboptimal nutrition in ICU patients. Micronutrients,

such as zinc, selenium, copper, and vitamins C, E, and B,

are involved in various metabolic processes, either acting

as catalysts or facilitating various enzymatic functions.

Micronutrient deficiency can result from pre-existing mal-

nutrition, severity of current illness, and adverse effects of

therapeutic regimens or procedures. Several critical care

conditions and therapies worsen this precarious status

with micronutrient-containing biological losses, such as

major burns, major trauma, pathological intestinal losses,

and during continuous renal replacement therapy. The in-

flammatory response further causes a redistribution of

micronutrients from the circulating compartment to or-

gans involved in acute phase-related synthetic mecha-

nisms [71]. Confronted by an elevated oxidative stress,

patients are not able to develop normal antioxidant and

immune defenses.

Consequences of inappropriate feeding
Underfeeding

Observational studies have shown the association be-

tween negative energy balance and poor outcome

[29-32]. Heyland and colleagues [32] showed that the

best survival was observed when calorie intake was

around 80% of the prescribed target. Recent prospective

randomized controlled trials (RCTs) have been criticized

for comparing underfed with very underfed patients

[72,73] or for overfeeding patients [7,24]. The controver-

sial issues related to energy requirements were discussed

earlier in the dedicated section.

Re-feeding

The re-feeding syndrome is the result of re-initiation of

enteral or parenteral feeding in a previously malnour-

ished patient. Complications of this syndrome include

electrolyte abnormalities (hypophosphatemia, hypokal-

emia, and hypomagnesemia) along with sodium and fluid

retention potentially leading to heart failure, respiratory

failure, and death. Severe hypophosphatemia, in particular,

is an early warning sign, and serum phosphate levels

should be closely monitored in patients at risk of the

re-feeding syndrome.

Starvation for a period as short as 48 hours and poor

nutritional status can already predispose to the re-

feeding syndrome. Patients at risk should be fed slowly,

and electrolyte and other micronutrient levels should be

closely monitored and supplemented as required [74]. In

contrast to general recommendations to slowly increase

calorie intake in malnourished patients to prevent a re-

feeding syndrome, several RCTs have demonstrated re-

duced mortality with early initiation of enteral nutrition

[75]. It is likely that many patients are malnourished as a

result of prolonged starvation before ICU admission.

Therefore, it is unclear whether ICU patients with risk

factors for re-feeding syndrome can tolerate more ag-

gressive nutritional support while controlling for the

possible re-feeding syndrome by providing optimal elec-

trolyte supplementation, controlled fluid balance, and

monitoring of organ function. This issue is currently be-

ing investigated in a phase II randomized clinical trial

(Australian and New Zealand Clinical Trials Registry

number 12609001043224).

Overfeeding

Provision of macronutrients in excess of metabolic demand

is deleterious. In critically ill patients, enteral nutrition is

frequently associated with underfeeding and intolerance,

whereas parenteral nutrition has been associated with a

greater risk of infectious complications and overfeeding

[7,24,25,76]. Overfeeding may be associated with hypercap-

nia and re-feeding syndrome [77,78] and may occur in up

to 19% of mechanical ventilation days [79]. High doses of

protein intake may lead to azotemia, hypertonic dehydra-

tion, and metabolic acidosis [25]. High doses of glucose in-

fusion may result in hyperglycemia, hypertriglyceridemia,

and hepatic steatosis [80], although these metabolic abnor-

malities can be prevented to a large extent by insulin treat-

ment targeting normoglycemia [81].

To avoid overfeeding, some advocate measurement of

EE using indirect calorimetry [28]. However, as discussed

earlier, the optimal amount of energy that should be ad-

ministered to ICU patients is not yet determined. In

addition, caloric needs may change during the ICU stay,

increasing the difficulties of determining the exact

amount of calories to prescribe [28]. If such monitoring

is unavailable, a feeding protocol may limit the risk of

overfeeding [82].

Autophagy

Insufficient autophagy in prolonged critical illness may

cause inadequate removal of damaged proteins and

mitochondria [83]. Incomplete clearance of cellular

damage, inflicted by illness and aggravated by hypergly-

cemia, possibly explains the lack of recovery from organ
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failure in patients with prolonged critical illness and pro-

vides potential perspectives for therapies that activate

autophagy [83]. In animal experiments, impaired core

autophagy machinery may, in concert with downregu-

lated chaperone expression and protein synthesis, col-

lectively affect the proteostasis in skeletal muscle and

exacerbate disease progression in critical illness myop-

athy [84]. Administration of parenteral nutrients, in par-

ticular protein- and lipid-enriched parenteral feeding

rather than glucose, in the early phase of critical illness

has been shown to suppress autophagy in vital organs

and muscle and to increase the accumulation of dam-

aged mitochondria and toxic protein aggregates [47]. In

humans, such suppression of autophagy with early par-

enteral nutrition was also shown to increase muscle

weakness and to impair recovery thereof [48]. Whether

activation of autophagy, using synthetic pharmacological

agents or glutamine, as shown in an animal model of

critical illness [85], will have therapeutic potential in pa-

tients remains to be investigated.

Pharmaconutrition and immunonutrition
The concept of ‘immune-enhancing formulas’ or ‘immuno-

nutrition’ has been used to characterize solutions enriched

with several different nutrients thought to boost the im-

mune response, whereas ‘pharmaconutrition’ was more re-

cently introduced to define the addition of any specific

nutrient to a standard formula, at any dose. Although these

concepts have exciting implications, their importance re-

mains controversial. Studies have shown that various nutri-

ents have effects on the immune system, metabolism, and

gastrointestinal structure and function. Such nutrients

may be macronutrients that exert specific effects, such as

the amino acids glutamine and arginine or lipids like

omega-3 fatty acids; they may also be micronutrients, such

as antioxidant vitamins A, C, and E and the minerals selen-

ium and zinc. These pharmaconutrients have been added

to commercially available products to produce so-called

‘immunonutrition’ and ‘immune-modulating’ or ‘immune-

enhanced’ diets. These solutions have been tested in a num-

ber of RCTs to evaluate their impact in critically ill patients.

The largest study, which included 597 patients with differ-

ent underlying diseases, showed that a high-protein formula

enriched with arginine, glutamine, antioxidants, and

omega-3 fatty acids had no significant effect on outcome

[86]. Hence, current evidence does not support the use of

pharmaconutrients [53]. However, the need for each phar-

maconutrient should be assessed separately, as the risk-to-

benefit ratio will be different according to the clinical

circumstances, doses, timing, and type of compound.

Arginine

Arginine stimulates hormonal release and can be me-

tabolized through a family of NO synthase enzymes to

nitrogenous compounds like NO. There is a delicate

balance of NO levels in critically ill patients. In disease

states in which inducible NO synthase is upregulated,

NO production can become excessive and can cause

harm in terms of hemodynamic instability, immuno-

logic dysfunction, and non-specific cytotoxicity. Argin-

ine administration may therefore be deleterious in

critically ill patients [87]. On the other hand, arginine de-

pletion may occur after surgery, even in well-nourished

patients. In an RCT in non-critically ill patients with

gastrointestinal cancer, preoperative oral supplementation

with a specialized diet, including extra L-arginine, was as-

sociated with a significantly lower incidence of postopera-

tive infections and reduced length of hospital stay

compared with the conventional group [88]. A recent

meta-analysis of 32 RCTs showed that 5 days of preopera-

tive arginine and fish oil supplementation reduced the in-

cidence of postoperative infections in non-critically ill

patient populations [89].

Glutamine

Critically ill patients often have decreased glutamine levels

on ICU admission, and low plasma glutamine levels are as-

sociated with increased mortality [62]. Glutamine adminis-

tration may improve gut barrier function as well as

lymphocyte function, and this could potentially reduce in-

fectious complications. Administration of glutamine as a

nitrogen donor for glutathione synthesis may also help to

preserve lean body mass and it is an important antioxidant.

Several small early studies suggested that enteral glutamine

supplementation could reduce infectious complications in

critically ill patients [90,91]. However, more recent studies,

using parenteral administration, have given conflicting

results. These various studies compared very different ap-

proaches in both dosing and timing, had different ratio-

nales and physiological backgrounds, and asked different

questions; they do not, therefore, necessarily represent dif-

ferent sides of a controversy.

In the Scottish Intensive Care Glutamine or Selenium

Evaluative Trial study [92], parenteral administration of

glutamine was not associated with any measurable im-

provement in new infection rates or survival. In contrast,

the Scandinavian glutamine trial [93] indicated a signifi-

cant reduction in mortality in the per-protocol analysis

of patients who received glutamine for more than 3 days.

Recently, Rodas and colleagues [63] suggested that not

only low admission plasma glutamine levels but also

high levels of more than 930 μmol/L were associated

with poor outcome. A recent meta-regression analysis of

temporal trends in mortality in patients given parenteral

glutamine supplementation or controls not receiving this

supplementation showed that the beneficial effects of

glutamine on mortality have decreased over the last

20 years [94]. Another meta-analysis of RCTs concluded
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that publication bias may have explained the reduced

rate of infections reported in some of the studies [95].

The most recent meta-analysis of RCTs of parenterally

administered glutamine supplementation, that did not

include the (Reducing Deaths due to Oxidative Stress

(REDOXS) trial [96], reported that parenteral glutamine

supplementation combined with nutrition support was

associated with reduced hospital mortality and length of

stay [95].

The recent REDOXS trial [96] showed a dramatic in-

crease in mortality rates with high doses of enteral and

parenteral glutamine (0.6 g/kg per day). Even though there

were more patients with three or more organ systems (in-

cluding renal failure) failing in the glutamine group than

in the control group [97], a strong trend toward increased

mortality with glutamine remained after adjustment for

this imbalance [98,99]. In another study, high-protein

enteral nutrition enriched with glutamine and ‘immune-

modulating nutrients’ did not reduce infectious complica-

tions or improve other clinical endpoints versus standard

high-protein enteral nutrition and may have been harm-

ful as suggested by an increased adjusted mortality at

6 months [100]. Therefore, the use of glutamine in ICU

patients should be considered with caution until the

mechanisms behind the harmful effects reported in the

REDOXS study are better understood [101-103].

Omega-3 fatty acids

The ratio of omega-6 to -3 was 0.8:1.0 in the paleolithic

human diet but is 15 to 16.7:1.0 in the present US diet.

The anti-inflammatory effects of immune-modulating en-

teral diets with fish oils have been tested in patients with

acute lung injury and acute respiratory distress syndrome.

A meta-analysis indicated a 60% mortality reduction when

omega-3 fatty acids were administered continuously with

full enteral nutrition [104]. However, recent meta-analyses

including the latest studies do not confirm such benefit

[105,106]. The mode of administration of fish oil, the com-

position of the control solution, and the differing inci-

dences of diarrhea, suggesting differences in absorption,

have been proposed to explain some of the discrepancies

in the results of clinical studies. Alternatively, the diver-

gent results may suggest that pharmaconutrients should

be given as part of complete nutrition or not at all.

Older retrospective studies reported dose-dependent

improvements in outcome of patients receiving intraven-

ous omega-3 fatty acids [107]. Unfortunately, the paucity

of data and the poor methodological quality of the avail-

able trials do not allow a recommendation regarding the

use of parenteral fish oil-based solutions [108,109]. A re-

cent large double-blind randomized clinical trial com-

paring soybean oil-based versus olive oil-based lipid

emulsions failed to demonstrate any difference in out-

come between the two solutions [110].

Micronutrients

Micronutrient deficiency can impair immunity, wound

healing, and organ function and is associated with in-

creased oxidative stress with increased concentrations of

ROS, which can be overcome by the administration of

high doses of trace elements [111]. Two concepts prevail

in the literature: (1) replacement of losses (from an acute

deficiency condition) with doses remaining within 10

to 15 times the recommended nutritional intake; these

losses have been associated with improved immune re-

sponse, reduction of infectious complications, improved

wound healing, and reduction of hospital stay [112-114];

and (2) supplementation with doses 20 to 50 times

above nutritional doses in patients with sepsis or respira-

tory failure or both [115].

Despite controversy regarding optimal doses, meta-

analyses have repeatedly shown benefits on mortality

and infections of these studies [116-118], most trials

having been conducted in European populations. The

largest prospective trial did not demonstrate any effect

of antioxidant supplementation instituted early in pa-

tients with at least two organ failures (including renal

failure) [96], a finding that is probably explained by the

absence of selenium deficit in the North American

population related to the high soil selenium content.

Hence, data from recent large-scale studies [96,100] do

not support the use of supplemental selenium or vita-

mins in heterogeneous populations of critically ill pa-

tients, as no improvement in outcome was associated

with these interventions, in contrast with previous data

in specific patient groups (see [119] for a detailed discus-

sion of this issue).

Pre-, pro- and synbiotics

The World Health Organization defines probiotics as

‘live microorganisms, which, when administered in ad-

equate amounts, confer a health benefit on the host’

[120]. Prebiotics are basically food for probiotics and are

non-digestible by humans and stimulate the growth of

so-called beneficial bacteria. Common prebiotics are

inulin and carbohydrate fibers (oligosaccharides). A syn-

biotic is a supplement that contains both probiotics and

prebiotics.

Critical illness results in changes to the microbiology of

the gastrointestinal tract, leading to a loss of commensal

flora and an overgrowth of potentially pathogenic bacteria.

Administering certain strains of probiotics to critically

ill patients may restore a balanced microbiota and have

positive effects on immune function and gastrointestinal

structure and function. Theoretical risks of transfer of

antibiotic-resistance genes from Lactobacillus strains re-

sistant to vancomycin to more pathogenic organisms,

particularly Enterococci and Staphylococcus aureus, are

possible but have not been established. Translocation
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resulting in iatrogenic infection has been reported only in

case reports and has uniformly occurred in individuals

with particular risk factors, such as uncontrolled diabetes

and endovascular prostheses. Safety concerns emerged

after publication of the Probiotics in Pancreatitis Trial

[121], which showed increased mortality from gut ische-

mia in the probiotic-treated group. However, significant

protocol violations, ethical concerns, and the use of a

post-pyloric route for a fiber-containing formula limit the

external validity of this trial.

The US Food and Drug Administration has clarified

that their limited review of probiotics as a dietary sup-

plement applies only to consumption by healthy people

and that any use of probiotics to prevent, treat, or miti-

gate disease would define probiotics as a ‘drug’.

Although all trials performed to assess the effects of pro-

biotics during acute illness were included, no risk of

adverse event was found. A recent meta-analysis of 13

RCTs including 1,439 patients demonstrated that probiotic

administration did not significantly reduce duration of

mechanical ventilation or ICU or hospital mortality rates

but did reduce the incidence of ICU-acquired pneumonia

and length of ICU stay [122]. A meta-analysis comprising

data from more than 11,000 patients showed that probio-

tics significantly reduced antibiotic-associated diarrhea in

all types of patients [123]. Despite these results, concerns

remain related to the identification of which critically ill

patients could benefit from this approach.

Early enteral nutrition
The concept of EEN, defined as enteral nutrition initiated

within 24 hours after admission, has been adopted by many

ICUs on the basis of its positive influence on gut barrier

function, increasing secretion of mucus, bile, and immuno-

globulin and favorable effects on gut-associated/mucosa-as-

sociated lymphoid tissue, release of incretins and other

entero-hormones that have a major effect on intermediary

metabolism, gut function, and hepatic functions, and its sig-

nificant effects on morbidity and mortality in RCTs includ-

ing a total of less than 300 patients [124]. In stable patients

on vasopressors, EEN commenced after initial resuscitation

appears to be safe and confers a survival benefit [75,125].

Several independent meta-analyses have confirmed a better

outcome in patients receiving EEN compared with patients

not receiving EEN, even though methodological deficien-

cies were found for some studies [126].

Table 1 Areas of uncertainty – opposing views

Topic/area One viewpoint Opposing view

Optimal caloric intake Early match of EE. Less than EE during the early phase.

Supplemental PN When EN provision is less than 60% in early course
of ICU stay not contraindicated.

Not before day 8 in patients with a
body mass index of at least 17.

Optimal protein intake Equal to nitrogen losses, up to 1.5 g/kg per day. Less than nitrogen losses.

Re-feeding syndrome Slowly increase nutritional support to prevent
re-feeding syndrome consequences even if this
results in increased energy deficit.

Early nutritional support improves
outcome also in malnourished patients;
re-feeding syndrome consequences should
be monitored and immediately treated
if necessary.

Role of indirect calorimetry Yes (patients staying more than 4 days). No.

Autophagy Provision of nutrients should be reduced so as
not to reduce autophagy capacity as early nutrients
provoke a phenotype of suppressed autophagy in
human and animal experiments, with functional
consequences that impair recovery.

Although experimentally autophagy may
be reduced in early critical illness,
pharmacological autophagy activation
remains to be tested clinically.

Antioxidants Supplement in case of low levels of antioxidants. Use pharmacological dosages.

Glutamine In all patients on PN. High-dose glutamine increases mortality
in critically ill patients, regardless of route
of administration.

Omega-3 lipid formulations Use continuous enteral administration and avoid
bolus administration.

Not beneficial in acute respiratory distress
syndrome.

High-dose selenium 800 to 4,000 μg/day High-dose trials (1,000 μg) show greater improvement
than low-dose trials.

Potential for toxicity.

In selenium-replete populations, 800 to
1,000 μg may be ineffective.

Probiotics Safe. Avoid use in pancreatitis patients with multiple
organ dysfunction syndrome.

May be harmful in ICU patients when
given post-pyloric with fiber.

Monitoring GRV Accept GRV of 250 up to 500 mL per 6 hours. Abandon GRV monitoring in medical
patients and consider in surgical patients.

EE, energy expenditure; EN, enteral nutrition; GRV, gastric residual volume; PN, parenteral nutrition.
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Some ICU patients receiving enteral nutrition may

present clinical signs of intolerance such as increased

gastric residual volume (GRV). This problem may be cir-

cumvented by the introduction of post-pyloric feeding

tubes. Another approach is to accept higher amounts

of GRV. The optimal approach is still controversial. A

recent systematic review identified six RCTs and six pro-

spective observational studies analyzing different thresh-

olds of GRV to guide enteral nutrition and to prevent

complications (for example, vomiting, aspiration, and

nosocomial pneumonia) in mechanically ventilated pa-

tients [127]. Because of the heterogeneity in outcome

measures, patient populations, types and diameters of

feeding tubes, and randomization procedures, a formal

meta-analysis was not appropriate. Analysis of high-

quality RCTs in medical patients could not demonstrate

an association between complication rate and the magni-

tude of GRV. The authors concluded that monitoring

of GRV appears unnecessary to guide nutrition in mech-

anically ventilated patients with a medical diagnosis.

Because one observational study [128] suggested an

increased frequency of aspiration if a GRV of more than

200 mL was registered more than once, surgical patients

may benefit from a lower GRV threshold (200 mL). An-

other recent study [129] reported that not measuring

GRV in medical ICU patients was associated with an

increase in nutritional intake without additional risk of

aspiration pneumonia.

Conclusions
Well-established beliefs in the metabolic and nutritional

fields of critical illness have been challenged by recent

findings from large-scale, prospective RCTs. The numer-

ous uncertainties and unresolved issues unraveled by

these recent studies and outlined in Table 1 highlight

the urgent need for more basic and clinical research on

this important topic. For daily clinical practice, aware-

ness of the controversial issues as well as of the areas of

consensus (Table 2) is needed. We hope that this article

can help clinicians understand that take-home messages

are difficult to draw when based on conflicting evidence.

We wrote this article to underline priorities for research

in order to be able to provide more robust evidence to

support recommendations for clinical practice. Mean-

while, updated recommendations, even weak ones, repre-

sent the best tool to guide intensivists through the growing

number of uncertainties.
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