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Abstract

Background: The aims of this study were to characterize the metabolite profiles of triple negative breast cancer

(TNBC) and to investigate the metabolite profiles associated with human epidermal growth factor receptor-2/neu

(HER-2) overexpression using ex vivo high resolution magic angle spinning magnetic resonance spectroscopy (HR

MAS MRS). Metabolic alterations caused by the different estrogen receptor (ER), progesterone receptor (PgR) and

HER-2 receptor statuses were also examined. To investigate the metabolic differences between two distinct receptor

groups, TNBC tumors were compared to tumors with ERpos/PgRpos/HER-2pos status which for the sake of simplicity

is called triple positive breast cancer (TPBC).

Methods: The study included 75 breast cancer patients without known distant metastases. HR MAS MRS was

performed for identification and quantification of the metabolite content in the tumors. Multivariate partial least

squares discriminant analysis (PLS-DA) modeling and relative metabolite quantification were used to analyze the MR

data.

Results: Choline levels were found to be higher in TNBC compared to TPBC tumors, possibly related to cell

proliferation and oncogenic signaling. In addition, TNBC tumors contain a lower level of Glutamine and a higher

level of Glutamate compared to TPBC tumors, which indicate an increase in glutaminolysis metabolism. The

development of glutamine dependent cell growth or “Glutamine addiction” has been suggested as a new

therapeutic target in cancer. Our results show that the metabolite profiles associated with HER-2 overexpression

may affect the metabolic characterization of TNBC. High Glycine levels were found in HER-2pos tumors, which

support Glycine as potential marker for tumor aggressiveness.

Conclusions: Metabolic alterations caused by the individual and combined receptors involved in breast cancer

progression can provide a better understanding of the biochemical changes underlying the different breast cancer

subtypes. Studies are needed to validate the potential of metabolic markers as targets for personalized treatment of

breast cancer subtypes.
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Background
Triple negative breast cancer (TNBC) is a heterogeneous

subgroup of breast cancer characterized by the absence

of expression of estrogen receptor (ER), progesterone re-

ceptor (PgR) and human epidermal growth factor

receptor-2/neu (HER-2). TNBC represents approxi-

mately 15-20% of all breast cancer cases and is generally

considered as the most severe subgroup of breast cancer.

Patients diagnosed with TNBC are largely unresponsive

to currently available targeted therapies, such as Tamoxi-

fen and Trastuzumab, in addition to having a higher risk

of relapse and a higher mortality rate compared to other

breast cancer subtypes [1]. Treatment with protein in-

hibitors against PI3KCA and HSP90 have shown to be

efficient in only a subset of TNBC [2]. Therefore, there

is an urgent need to identify new molecular targets for

treatment of TNBC to improve treatment care and sur-

vival of this breast cancer subgroup.

Classification of breast cancer according to molecular

subtypes is highly relevant and may provide significant

prognostic information related to patient outcome. Sev-

eral studies have investigated the underlying genomic

and transcriptomic characteristics of TNBC [3-5]. The

results suggest the existence of a variety of TNBC sub-

types including basal and non-basal, p53 mutated and

high genomic instability, among others [3]. For example,

five distinct subtypes of TNBC have been suggested

based on gene expression profiles [5]. In a recent study,

TNBC was subdivided into basal or 5-negative pheno-

type dependent on the expressions of assorted basal

markers, including cytokeratin 5 (CK5) and epithelial

growth factor receptor (EGFR) using immunohistochem-

istry (IHC) and in situ hybridization [6]. The validation

of reliable markers for breast cancer sub-classification is

still ongoing.

Altered energy metabolism is a new emerging hall-

mark of cancer [7]. Increasing evidence suggests that al-

terations in cancer metabolism, especially choline

phospholipid and amino acid metabolism may provide

potential targets for treatment of breast cancer. To our

knowledge, the metabolite profiles of TNBC and the

metabolic influences of HER-2 overexpression have not

yet been investigated in detail. Metabolomics, defined as

a systematic study of the metabolism, has proven to be

an important tool for the identification of new bio-

markers for targeted treatment, treatment evaluation

and prediction of cancer survival [8-11]. Previous studies

have shown the potential and benefit of combining the

different OMICS approaches, e.g. transcriptomics and

metabolomics, for better molecular characterization and

stratification of breast cancer [12-15].

Ex vivo high resolution magic angle spinning magnetic

resonance spectroscopy (HR MAS MRS) can be used for

the identification and quantification of the metabolite

content in a biological tissue sample. HR MAS MRS is a

non-destructive technique meaning that the tissue re-

mains intact after examination and can be used for

other OMICS approaches, thus allowing for a compre-

hensive and detailed study of the molecular compos-

ition of the tissue. By using HR MAS MRS, more than

30 metabolites can be detected and assigned simultan-

eously in breast cancer tissue [16]. HR MAS MRS has

been widely used to study cancer related pathways,

including choline phospholipid metabolism, glycolysis

(the Warburg effect), amino acids, lipids and polyamines,

among others [17-19]. The metabolite profiles acquired by

HR MAS MRS have shown to correlate to hormone re-

ceptor status, treatment response and survival in breast

cancer [20-24].

Analysis of HR MAS MRS spectra can be challenging

due to the high number of collinear variables (exceeding

tens of thousands of data points per sample). Multivari-

ate data analysis is a suitable method for analyzing the

complex and high dimensional MRS data. Partial least

squares discriminant analysis (PLS-DA) can be used to

identify metabolic differences between distinct classes by

finding linear relationships between the spectral data

and class variables, e.g. receptor status [25]. In addition

to multivariate modeling, quantification of the individual

metabolites can be achieved by calculating the area

under the peak signal.

Most studies have compared TNBC with non-triple

negative breast cancer, most commonly ERpos/PgRpos

breast cancer subtype, in those studies the effects of

HER-2 overexpression were not considered. In this

study, we have investigated the metabolic differences be-

tween TNBC tumors and tumors with ERpos/PgRpos/

HER-2pos status, which for the sake of simplicity is called

triple positive breast cancer (TPBC). We have also ex-

amined the influences of ER, PgR and HER-2 receptors

status individually on breast cancer metabolism and ex-

plored the metabolite profiles associated with HER-2

overexpression. Metabolic alterations caused by the indi-

vidual and combined hormone and growth receptors

may help identify potential targets for treatment of

breast cancer subtypes.

Methods

Patients and tumor receptor status

Included in this study were patients (n = 75) aged 34 to

90 diagnosed with breast cancer without known distant

metastasis. The patients did not receive any pre-surgical

therapy for their cancer disease. The biopsies were ex-

tracted immediately after surgical removal of the tumor.

Parts of the tumor were used for routine analyses, in-

cluding tumor grade, ER, PgR and HER-2 status

(Table 1). Tumors were considered positive for ER and

PgR when more than 10% of tumor cells showed positive
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staining by IHC. The samples were tested for HER-2

gene expression using a validated dual probe fluores-

cence in situ hybridization (FISH) assay (HER-2 IQFISH

pharmDx/HER-2FISHpharm Dx) or for protein overex-

pression using a validated IHC assay (HercepTest, DAKO).

The HER-2 gene was considered amplified if the gene to

chromosome 17 ratio was larger than 2.0 analyzed by

FISH or evidence of protein overexpression by IHC score

3+. Another part of the tumor was snap frozen immedi-

ately during surgery and stored in liquid nitrogen for MRS

analysis. All patients have signed a written informed con-

sent, and the study was approved by the Regional Ethics

Committee, Central Norway.

Imprint cytology

Cytological imprint was performed to confirm the pres-

ence of tumor cells in the sample before HR MAS MRS

and was used as an inclusion criterion and not as a

quantitative measurement [26]. This technique is fast

and requires minimal preparation. In brief, the tissue

was gently pressed on a glass slide and air-dried for ap-

proximately 10 minutes. The imprints were fixed in

ethanol and stained with May-Grünwald-Giemsa stain

(Color-Rapid, Med-Kjemi, Norway). All imprints were

reviewed by a well-trained pathologist. Samples with ab-

sence of tumor cells were excluded from further

analysis.

High resolution magic angle spinning

To minimize the effect of tissue degradation on the me-

tabolite profiles, the samples were prepared on ice block

and within a short period (5 ± 1 min). The biopsies

(13 ± 3 mg) were cut to fit 30 μl disposable inserts

filled with 3 μl phosphate buffered saline (PBS) in

D2O containing 1.0 mM TSP for chemical shift refer-

encing and 1.0 mM Format for shimming. The HR

MAS spectra were acquired on a Bruker Avance DRX600

spectrometer equipped with a 1H/13C MAS probe with

gradient (Bruker Biospin GmbH, Germany) using the

following parameters; 5 kHz spin rate, 4°C probe

temperature, cpmgpr1D sequence (Bruker Biospin GmbH,

Germany) with 273.5 ms total echo time, a spectral width

of 20 ppm (−5 to 15 ppm) and 256 scans (NS). For some

patients, more than one biopsy (taken from different

places in the tumor) were prepared and analyzed by HR

MAS MRS.

Data analysis

Following acquisition, the spectra were Fourier trans-

formed into 65.5 k after 0.3 Hz line broadening and TSP

was calibrated to 0.00 ppm (Topspin 3.1, Bruker Biospin

GmbH, Germany). The following spectral preprocessing

steps were carried out using Matlab R2009a (The

Mathworks, Inc., USA). Spectral regions containing sig-

nals from chemical contaminations (e.g. ethanol), water,

and lipids were removed before multivariate data analysis.

Baseline offset was corrected by setting the lowest point of

each spectrum to zero. The spectra were normalized to

equal total area to account for differences in sample size.

Furthermore, the spectra were peak aligned using icoshift

[27]. The spectral region between 1.5 – 4.7 ppm, contain-

ing the majority of low-molecular weight metabolites, was

used as the final input for the multivariate models.

PLS-DA and metabolite relative quantification were

performed to evaluate the metabolic differences between

the tested groups using Matlab and PLS_Toolbox 6.2.1

(Eigenvector Research, USA). The spectra were mean-

centered before the PLS-DA modeling. The classification

results were calculated using random cross validation

(20% for testing and 80% for training, repeated 20

times). In cases where there were multiple spectra from

the same patient, all of these spectra were either used

for training or testing. The number of latent variables

(LVs) used for all repetitions was chosen by leave one

patient out cross-validation of the whole data set. Per-

mutation testing, carried out by randomly assigning the

class labels, was performed to evaluate the statistical sig-

nificance of the classification results [25]. The permuted

classification result was calculated as described for the

PLS-DA models and repeated 1000 times. Metabolites

importance in the PLS-DA loading were identified by

variable importance in the projection (VIP) scores [28].

Relative metabolite quantification was performed by

peak integration using mean normalized spectra after re-

moval of water, lipids and contaminations. Statistical

Table 1 Patient characteristics n = 75 patients

Age (avg ± SD) 64 ± 19

Grade I 6

II 22

III 30

NA 17

Lymph node status Pos 47

Neg 25

NA 3

ER Pos 44

Neg 31

PgR Pos 32

Neg 43

HER-2/neu Pos 30

Neg 45

TNBC 20

TPBC 11

NA: not available, ER: estrogen receptor, PgR: progesterone receptor, HER-2/

neu: human epidermal growth factor receptor-2, TNBC: triple negative breast

cancer, TPBC: triple positive breast cancer.
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differences between the groups were tested by Wilcoxon

testing with Benjamini Hochberg correction for multiple

testing. P-values ≤ 0.05 were considered significant. The

p-values adjusted for multiple testing are given as q-

values. While P-values are used as an indicator of the

false positives in all tested values in the dataset, the q-

values are used to interpret the false discovery rate

(FDR) among significant p-values. To give a more accur-

ate indication of the FDR both p- and q-values are listed

in the results. The quantification results are illustrated

by heat maps (Matlab R2009a).

Results
Spectra from biopsies with absence of tumor cells and

low spectral quality with high noise and severe chemical

contamination were excluded from further analysis

(n = 4). In total, 106 biopsies from 73 patients were

included in the data analyses. A representative metabolite

spectrum of breast cancer tissue obtained by HR MAS

MRS is shown in Figure 1. The metabolite data shows no

significant association with tumor grade and lymph node

status by PCA and PLS-DA modeling (data not shown).

The PLS-DA classification results of TNBC, ER, PgR and

HER-2 are summarized in Table 2.

TNBC versus TPBC

The PLS-DA shows the highest CV accuracy for separat-

ing TNBC and TPBC (77.7%, p = 0.001). The corre-

sponding score and loading plots show a clear

separation between the two groups. TNBC is character-

ized with higher levels of Choline and Glycerophospho-

choline (GPC), and a lower level of Creatine compared

to TPBC (Figure 2A). Based on the loadings, high levels

of PC and Glycine were observed in some tumors, but

their influence in the classification model are unclear.

Relative quantification shows consistently higher levels

of Choline (p = 0.008, q = 0.041) in TNBC tumors. Lower

levels of Glutamine (p < 0.001, q = 0.001) and higher

levels of Glutamate (p = 0.002, q = 0.015) were also ob-

served in TNBC compared to TPBC tumors (Figure 3A).

Creatine appears to be important for separating TNBC

and TPBC in the multivariate analysis identified by a

high value of VIP score. Lower levels of Creatine were

also found in TNBC compared to TPBC tumors by rela-

tive quantification, however, the q-value was not signifi-

cant (p-value = 0.031, q-value = 0.109).

Hormone receptor status

PLS-DA models show clear separations between ERneg

and ERpos (72.2%, p < 0.001), and PgRneg and PgRpos

(67.8%, p < 0.001) tumors. ERneg tumors show higher

levels of Glycine, Choline, and Lactate compared to

ERpos tumors, as shown in the score and loading plots

(Figure 2B). According to the VIP scores, Glycine ap-

pears to be most important for the discrimination be-

tween ERneg and ERpos. Higher levels of Glycine (p =

0.002, q = 0.010), Choline (p = 0.021, q = 0.067), Lactate

(p < 0.000, q = 0.001), and Glutamate (p <0.001, q <0.001)

and lower level of Glutamine (p <0.001, q <0.001)

were observed in ERneg compared to ERpos tumors by

relative quantification (Figure 3B). PC levels appear to

be high in some tumors from both groups, and could

not be used to discriminate between ERneg and ERpos

tumors. PLS-DA classification and relative quantifica-

tion of PgRneg and PgRpos tumors show similar metab-

olite profiles as ERneg and ERpos tumors (data not

shown).

HER-2 status

HER-2neg and HER-2pos tumors were discriminated by

PLS-DA with 69.1% CV accuracy (p < 0.001). Contrary

to ERneg and PgRneg, HER-2neg tumors have a lower level

of Glycine (p = 0.002, q = 0.012) compared to HER-2pos

tumors (Figures 2C and 3C). Similar to what was

Figure 1 Breast cancer metabolite spectrum and cytology image. (A) A representative metabolite profile of breast cancer tissue acquired

with HR MAS MRS. (B) Imprint cytology slide of breast cancer tissue stained with May-Grünwald-Giemsa staining. β-Glc: beta Glucose, Lac: Lactate,

Gly: Glycine, m-Ino: myo-Inositol, Tau: Taurine, s-Ino: scyllo-Inositol, GPC: Glycerophosphocholine, PC: Phosphocholine, Cho: free Choline, Cr:

Creatine, Gln: Glutamine, Glu: Glutamate, Ala: Alanine.
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observed for ERneg and PgRneg tumors, lower levels of

Glutamine (p = 0.003, q = 0.017) were observed in HER-

2neg compared to HER-2pos tumors detected by relative

quantification. In addition to the changes in Glycine and

Glutamine, HER-2neg tumors also display higher levels of

Alanine (p = 0.010, q = 0.039), and lower levels of Suc-

cinate (p = 0.001, q = 0.012) and Creatine (p = 0.024, q =

0.075) compared to HER-2pos tumors by relative quanti-

fication. In the loading plot, PC levels appear to be

higher in some HER-2neg compared to HER-2pos tumors.

However, the relative quantification result shows no sig-

nificant difference in PC levels between the two groups.

HER-2 metabolite profiles in tumors with different ER and

PgR status

To investigate the metabolic influences of HER-2 status

independently of the hormone receptors status, the me-

tabolite profiles associated with HER-2 status were ex-

amined within ERneg, ERpos, PgRneg, and PgRpos tumors

separately. The PLS-DA results are shown in Table 3.

The scores and loadings of PLS-DA models show higher

levels of Glycine in HER-2pos compared to HER-2neg tu-

mors irrespective of ER and PgR status (Figure 4A-D).

Glycine levels determined by relative quantification

showed a trend of higher levels in HER-2pos compared

to HER-2neg tumors in the different ER and PgR status

groups (p < 0.021 and q < 0.133). Glutamine also showed

a trend of higher level in HER-2pos compared to HER-

2neg tumors (p < 0.034 and q < 0.179). In the PLS-DA

models, PC appears to be high in some HER-2neg

tumors. However, PC level was not significantly dif-

ferent between HER-2pos and HER-2neg by relative

quantification.

Discussion

Triple negative breast cancer is characterized as being

estrogen receptor, progesterone receptor and HER-2/neu

receptor negative; it is a heterogeneous breast cancer

subtype that is difficult to treat and is associated with

high recurrence and poor outcome [1]. Several studies

have investigated the underlying genomic and gene ex-

pression patterns of TNBC [2-5] while the metabolite

profiles of TNBC have not yet been investigated in de-

tail. Most studies have compared TNBC with ERpos/

PgRpos breast cancer subtype, which does not take into

consideration the influence of HER-2 status on breast

cancer molecular profiles. In this study we investigated

the metabolite profiles of patients with TNBC compared

to TPBC and showed that these two groups could be

successfully separated based on the metabolite profiles

of tissue biopsies. In accordance with previous studies,

altered metabolite profiles were observed in tumors with

different expression of ER and PgR [21]. Furthermore,

our results show that overexpression of HER-2 might

cause alterations to the metabolite profiles of breast can-

cer independent of hormone receptor status, thus affect-

ing the differentiation between TNBC and TPBC.

The basal-like breast cancer subtype is defined through

gene expression profiling and is considered to be a more

aggressive breast cancer subtype compared to luminal-

like and HER-2 enriched gene expression subtypes. The

majority of basal-like tumors are TNBC, but not all

TNBC are defined as basal-like by gene expression. As

previously published, the discrepancy rate is approxi-

mately 20–30 % [29]. Furthermore, there exists a signifi-

cant overlap between TNBC, basal-like and BRCA-1

breast cancer [30]. In our study, TNBC has significantly

higher Choline levels compared to TPBC, and this is in

accordance with previous findings where higher Choline

levels were detected in the more aggressive basal-like

xenografts and TNBC patients as compared to the less

aggressive luminal-like xenografts and ERpos/PgRpos

breast cancer patients [12]. In another study, a signifi-

cantly higher total Choline (tCho = PC +GPC +Choline)

signal to noise ratio (tCho/SNR) was detected in TNBC

when compared to non-triple negative tumors using

in vivo MRS [31]. Choline-containing metabolites are

involved in cell signaling, lipid metabolism, and cell

membrane synthesis and degradation. The tCho level

detected by in vivo and ex vivo MRS has been suggested

as a biomarker for breast cancer diagnosis and response

to chemotherapy [19].

Patients with basal-like breast cancer have been shown

to be more sensitive to anthracycline-based neoadjuvant

chemotherapy than the luminal subtype and a higher

percentage of patients with a pathological complete re-

sponse (pCR) to the treatment was achieved in the

basal-like compared to luminal subtypes [32]. However,

for patients with residual disease after chemotherapy,

the basal-like subtypes showed worse overall survival

Table 2 PLS-DA classification results of TNBC, ER, PgR and HER-2 status

Total b/p NEG b/p POS b/p CV accuracy % CV Sensitivity % CV Specificity % Permutation p-value

TNBC vs TPBC 39/30 26/19 13/11 77.7 80.0 75.4 0.001

ERneg vs ERpos 106/73 41/30 65/43 72.2 76.0 68.5 <0.001

PgRneg vs PgRpos 106/73 59/42 47/31 67.8 74.0 61.6 <0.001

HER-2neg vs HER-2pos 106/73 66/43 40/30 69.1 70.2 68.0 <0.001

b = biopsies/p = patients. PLS-DA: partial least squares discriminant analysis, CV: cross validation.
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Figure 2 PLS-DA score and loading plots of (A) TNBC versus TPBC, (B) ERneg versus ERpos, and (C) HER-2neg versus HER-2pos breast

cancer tumors. In the score plots (left), each symbol represents one sample. The score plots show the first and second latent variables (LV), and

are used for interpreting relations between samples, thus similar samples are located close to each other. In the loading plots (right), the symbols

represent metabolites that are significantly important for the discrimination between the groups. Variable importance in the projection (VIP)

scores are illustrated by the heat map. The majority of TNBC, ERneg and HER-2neg samples have positive score for LV1. The PLS-DA model of

TNBC versus TPBC shows best classification results, see Table 2. Gly: Glycine, Lac: Lactate, Cho: Choline, PC: Phosphocholine, Cr: Creatine,

Tau: Taurine.
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Figure 3 Relative metabolite quantification of 14 metabolites and ratio illustrated by heat map. The heat maps illustrate the metabolite

intensities calculated by peak integration. The arrows show metabolites with significantly higher (↑) or lower (↓) levels in (A) TNBC, (B) ERneg and

(C) HER-2neg tumors compared to TPBC, ERpos and HER-2pos tumors, respectively. Statistical differences between the groups were tested by

Wilcoxon testing with Benjamini Hochberg correction for multiple testing.

Table 3 PLS-DA classification results of HER-2 status in tumors with different ER and PgR status

Total b/p HER-2neg b/p HER-2pos b/p CV accuracy % CV Sensitivity % CV Specificity % Permutation p-value

HER-2neg vs HER-2pos
in ERneg

41/30 26/19 15/11 70.1 63.3 76.8 0.013

HER-2neg vs HER-2pos
in ERpos

65/43 40/24 25/19 66.1 67.9 64.3 0.017

HER-2neg vs HER-2pos
in PgRneg

59/42 33/24 26/18 68.8 65.3 72.3 0.006

HER-2neg vs HER-2pos
in PgRpos

47/31 33/19 14/12 70.1 68.3 71.8 0.014

b = biopsies/p = patients. PLS-DA: partial least squares discriminant analysis, CV: cross validation.
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than the luminal-like. These results indicate that chemo-

therapy alone is not sufficient to treat TNBC and that

more advanced targeted therapy is needed to improve

the prognosis of this patient subgroup. Moreover, assess-

ment of clinical response (i.e. changes in tumor size)

alone might not be a good predictive measure for treat-

ment, as it cannot give information about the molecular

state of the tumor. Interestingly, decreased levels of

choline-containing compounds in response to neoadju-

vant chemotherapy have been detected in patients with

Figure 4 PLS-DA score and loading plots of HER-2neg versus HER-2pos status in (A) ERneg, (B) ERpos, (C) PgRneg, and (D) PgRpos tumors.

The score plots show the first and second latent variables (LV). In the loading plot, VIP scores are illustrated by heat map. The majority of

HER-2neg tumors show positive score for LV1, while most HER-2pos tumors show negative score for LV1. HER-2pos tumors contain higher Glycine

level compared to HER-2neg tumors. LV: latent variable, Gly: Glycine. PC: Phosphocholine.
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better survival rate [22,23]. Targeting the genes and en-

zymes involved in the choline phospholipid metabolism

is currently under investigation, and so far the results

have been promising. Down-regulation of choline kinase

alpha (CHKA), the gene regulating the conversion of

Choline to PC, has been shown to decrease cell prolifer-

ation, and to increase the effect of chemotherapy in

ovarian [33] and breast cancers [34], whereas CHKA

overexpression increases drug resistance in breast cancer

cells [35]. The CHKA inhibitor is currently under phase

I clinical trial. Our results suggest that targeting the

genes/enzymes responsible for the choline phospholipid

metabolism may provide new molecular targets for treat-

ment of TNBC.

Alterations in ER, PgR and HER-2 expression have

proven to play a major role in breast cancer progression,

with ERpos and PgRpos tumors having better prognosis,

while HER-2 overexpression is associated with a worse

prognosis. Thus metabolic alterations caused by these

hormone and growth receptors are highly relevant, es-

pecially because the molecular reasons behind their

overexpression/amplification remain largely unknown.

Similar metabolite profiles were observed in tumors

with ERneg and PgRneg, and ERpos and PgRpos status. In

accordance with previous findings, we found a higher

level of Glycine in patients with ERneg and PgRneg tumors

compared to ERpos and PgRpos, respectively [21]. Higher

levels of Choline and Lactate were also observed in

ERneg and PgRneg tumors, which suggest enhanced

glycolytic activity and tumor aggressiveness. ER status is

generally accepted as an independent prognostic and

predictive factor, while the significance of PgR status is

less clear [36].

Although TNBC is considered to be a more aggressive

breast cancer subgroup due to low response to available

treatment, the overexpression of HER-2 itself is associ-

ated with poorer prognosis compared to HER-2 negativ-

ity [37]. Patients identified with HER-2pos tumors are

often treated with Trastuzumab. Noticeably, it has been

reported that about 20-30% of HER-2pos patients fail to

respond to first time treatment with Trastuzumab and

about 15% of patients will develop resistance to this drug

[38,39]. Therefore, there is also a need to identify new

molecular targets for treatment of this breast cancer

subtype. In our study, we found high levels of Glycine

and Alanine to be associated with HER-2pos breast tu-

mors. Alanine is involved in the synthesis of Glycine

from Pyruvate and Serine. High levels of Glycine have

previously been shown to correlate with poor prognosis

in breast cancer [23,40,41]. Glycine is an amino acid in-

volved in the synthesis of proteins, nucleotides and glutathi-

one. The potential role of Glycine as a tumor biomarker

has also been studied in human brain tumors, where it was

found to positively correlate with tumor grade [42,43].

Moreover, the synthesis of Glycine from Glucose has been

shown to correlate with rapid cancer cell proliferation [44].

Interestingly, we found higher levels of Glycine to be

associated with HER-2 overexpression in the ERneg,

ERpos, PgRneg, and PgRpos tumors separately, which sug-

gest Glycine to be a specific marker for HER-2 amplifi-

cation regardless of the ER and PgR status. ERneg and

PgRneg tumors and ERpos and PgRpos tumors show com-

parable results. Tumors overexpressing HER-2 have

shown to acquire resistance to estrogen therapy which

suggests that there exists a crosstalk between ER and

HER-2 status [45]. The p-values for differences in Gly-

cine relative concentration between HER-2pos and HER-

2neg were significant before multiple corrections, while

the adjusted p-values showed trends towards signifi-

cance. However, the chance of false positive result as de-

scribed by the false discovery rate was low. In our

cohort, we could not detect any differences in Glycine

between TNBC and TPBC, possibly due to the high level

of Glycine in ERneg and PgRneg and low level of Glycine

in HER-2neg tumors, which may cancel out the differ-

ences in Glycine between TNBC and TPBC. Based on

our results we suggest Glycine to be associated with

tumor aggressiveness in HER-2pos breast cancer. Re-

cently, there has been an increasing interest in detecting

the circulating HER-2 protein in serum samples for use

as a complementary assay to IHC and FISH analysis for

diagnosis, but also for use as a prognostic marker for

breast cancer recurrence [46,47]. High throughput

screening of serum metabolites, including Glycine, is

feasible using MRS or other laboratory assays and

should be investigated further as a breast cancer prog-

nostic marker.

Furthermore, significant changes in other amino acids

were also observed between the different breast cancer

subtypes. Tumors negative for ER and PgR, and TNBC

tumors contain lower levels of Glutamine and higher

levels of Glutamate compared to tumors with positive

receptor statuses which might result from increased glu-

taminolysis metabolism. Glutamine plays an important

role in nucleotide and protein synthesis and in mito-

chondrial energy metabolism. Increased uptake and me-

tabolism of Glutamine through glutaminolysis can

provide a proliferating cell with significant amount of

NADPH requirement [48]. Some cancer cells develop

addiction to Glutamine and become dependent on Glu-

tamine to support cell growth and activation of signaling

molecules, e.g. mTOR kinase [49]. Recent studies have

explored the potential of targeting amino-oxyacetic acid

(AOA) for inhibition of cell proliferation in breast can-

cer xenograft models [50]. In a recent study, the expres-

sion of glutamine-related proteins was found to be

highest in HER-2 subtypes compared to other breast

cancer subtypes [51]. In our study, we found a higher
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level of Glutamine in HER-2pos compared to HER-2neg

tumors. The role of Glutamine metabolism in breast

cancer prognosis and treatment is still under investiga-

tion. However, increasing evidence suggests that alter-

ations in cancer metabolism, especially the choline

phospholipid and amino acid metabolisms may provide

potential targets for treatment of breast cancer.

In 2010, the American Society of Clinical Oncology

(ASCO) and College of American Pathologists (CAP) is-

sued guidelines that recommended the threshold for de-

termining ER and PgR positivity to be decreased from

10% to 1%, in order to standardize the determination of

hormone receptor status by IHC and also to increase the

number of patients eligible for hormone therapy. In this

study, the 10% cutoff value was used according to The

Norwegian Breast Cancer Group recommendation at the

time of inclusion. There is an ongoing debate about

whether the decrease in ER and PgR threshold has led to

a group of false ERpos tumors. Studies have shown that

the majority of low ERpos tumors (≥1 < 10%) were identi-

fied as basal-like or HER-2 enriched tumors with patho-

logical features more similar to ERneg than ERpos tumors,

while only a minority of low ERneg tumors was classified

as luminal A subtype [52-54]. In a large breast cancer

study by Engstrøm et al., only 24 out of 909 cases (2.7%)

showed positive staining for ER in ≥1 < 10% of the tumor

cells and were classified as ERpos according to the new

guidelines [6]. The authors found little or no change in

the Kaplan–Meier and Cox results when comparing the

new 1% cut-off with the previously 10% cut-off in their

study.

In our cohort, we found no correlation between the

metabolite profiles and tumor grade and also no correl-

ation between the metabolite profiles and lymph node

status. We have previously investigated nodal metastasis

using metabolite data from the primary tumor using

PLS-DA, and the results showed only a weak correlation

with nodal spread [21]. Based on our results, the differ-

ences in the metabolite profiles observed are indeed

resulting from the hormone and growth receptor status

and not dependent on tumor grade or nodal metastasis.

This study is restricted by some limitations including

the small number of samples in each subgroup and the

lack of normal control tissues. Most of the patients in

this study were recruited less than 5 years ago, long term

follow-up is thus yet not available, however this aspect

will be important in future studies. In addition, it would

be interesting to investigate if Ki67 overexpression is as-

sociated with adverse metabolic profiles; Ki67 was not

included, however, as part of the standard histochemical

staining at the time of patient recruitment in our study.

Statins are a class of drugs that reduce the production of

cholesterol by inhibiting the enzyme HMG-CoA reduc-

tase. In a recent study, treatment with Lovastatin was

shown to decrease choline-containing phospholipids and

inhibit the proliferation in breast cancer cells in vitro

[55]. The effects of statins on the metabolite profiles

should also be investigated in more details.

Breast cancer tumor heterogeneity is a common chal-

lenge. To minimize the effect of heterogeneity, we have

chosen to include only tumors with T1/T2 stages (<5 cm

in diameter) without distant metastasis. In this study,

the effect of heterogeneity on the metabolic profile when

sampling multiple biopsies was tested by comparing the

average correlation of 35 random pairs repeated 1000

times versus 35 pairs of sample from the same patient.

Our results show that the variation between patients is

significantly higher than the variation within a patient

(p-value < 0.001).

Conclusion

The classification of TNBC and TPBC tumors were suc-

cessfully separated based on the metabolite profiles.

Choline levels were found to be higher in TNBC com-

pared to TPBC, possibly related to tumor proliferation

and oncogenic signaling. TNBC tumors had a lower

level of Glutamine and a higher level of Glutamate com-

pared to TPBC tumors, which indicates an increase in

glutaminolysis metabolism and suggests the develop-

ment of glutamine dependent cell growth. The classifica-

tion of ER, PgR and HER-2 status were also successful.

We found significantly higher levels of Glycine in HER-

2pos breast cancer, which supports the potential of Gly-

cine as a marker for tumor aggressiveness. Further stud-

ies are needed to validate the potential of metabolic

markers as targets for personalized treatment of breast

cancer subtypes.
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