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Abstract

The evolution of the mitochondria was a significant event that gave rise to the
eukaryotic lineage and most large complex life. Central to the origins of the
mitochondria was an endosymbiosis between prokaryotes. Yet, despite the po-
tential benefits that can stem from a prokaryotic endosymbiosis, their modern
occurrence is exceptionally rare. While many factors may contribute to their
rarity, we lack methods for estimating the extent to which they constrain the
appearance of a prokaryotic endosymbiosis. Here, we address this knowledge
gap by examining the role of metabolic compatibility between a prokaryotic
host and endosymbiont. We use genome-scale metabolic models from three
different databases (AGORA, KBase, and CarveMe) to assess the viability, fit-
ness, and adaptability of potential prokaryotic endosymbioses. We find that
while more than half of host-endosymbiont pairings are metabolically viable,
the resulting endosymbioses have reduced growth rates compared to their an-
cestral metabolisms and are unlikely to gain mutations to overcome these fitness
differences. In spite of these challenges, we do find that they may be more ro-
bust in the face of environmental perturbations at least in comparison with the
ancestral host metabolism lineages. Our results provide a critical set of null
models and expectations for understanding the forces that shape the structure
of prokaryotic life.
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Introduction

The evolution of mitochondria—from independent organism to intracellular
organelle—is exceptional in terms of its physiological significance, ecological
repercussions, and apparent evolutionary rarity [1, 2, 3]. While prokaryotes and
eukaryotes of similar cell size have roughly the same total metabolic rate [4, 5],
the advantages conferred by the mitochondria, such as extra scale-free internal
membrane area [6] along with distributed copies of the metabolic genes [7], may
have facilitated the evolution and spread of large cells and complex multicellu-
larity. Moreover, after establishment of the mitochondria, many branches of the
eukaryotic lineage acquired other intracellular endosymbionts, including plastids
[8], nitrogen-fixing bacteria [9], and methanogenic archaea [10]. The impressive
radiation of Eukaryota and the frequency by which the eukaryotic lineage has
gained intracellular endosymbioses suggests they confer evolutionary and eco-
logical advantages [11, 12]. Nevertheless, despite any possible advantages, the
evolution of mitochondria is one of only a few reported cases of an endosymbiosis
between prokaryotes [13, 14, 15], which is surprising given the opportunities af-
forded by their abundance and long evolutionary history. Why are there so few
documented extant examples of prokaryote endosymbioses and why have they
not achieved anything comparable to the remarkable ecological and evolutionary
success of the eukaryotic lineage?

Historically, these questions have mainly been addressed by identifying pos-
sible barriers to the initial establishment of a prokaryotic endosymbiosis, such as
the absence of phagocytosis in modern prokaryotes [16] or issues with metabolic
compatibility [17]. Yet, the initial establishment is not the only stage at which
a nascent endosymbiosis may encounter limitations. For example, a nascent
endosymbiosis must be fit enough to compete with other organisms in the en-
vironment and it must also be able to adapt in order to spread into other
environments and diversify (see Figure 1). At different stages we may expect
various ecological, physiological, or evolutionary constraints to be more domi-
nant, but we currently lack quantitative approaches or null models to estimate
the magnitude of these constraints or compare their influence. Thus we have a
fundamental knowledge gap concerning the forces that shape prokaryotic evo-
lution, the origin of eukaryotes, and the distribution of endosymbioses in the
biosphere. To address this knowledge gap, we need quantitative approaches that
clarify the relative importance of the various barriers that limit the biosphere’s
production of prokaryotic endosymbioses.

While in principle we could focus on any of the different barriers, one pow-
erful approach is to focus on universal metabolic traits that apply across the
biosphere’s ensemble of species and environments [18, 19]. Since metabolism
plays a central role in many ecological and evolutionary phenomena [20, 21, 22,
23], a quantitative metabolic framework may offer key insights into the evolu-
tion of prokaryotic endosymbioses. Indeed, there are crucial metabolic consid-
erations underlying each stage along the way from initiation to a persistent,
adaptable endosymbiosis. For example, the initial viability of an endosymbiont
depends on whether it can access all of its required molecular compounds from
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Figure 1: Stages in the evolution of endosymbioses. From its inception
a nascent endosymbiosis faces different barriers that challenge the survival and
diversification of its lineage. The schematic organizes these barriers into three
broad stages corresponding to initial viability, persistence, and evolvability. In
each stage metabolic compatibility plays a role in determining which endosym-
bioses will survive. In the viability stage both host and endosymbiont must
be able to grow and reproduce such that the pair can produce offspring host-
endosymbiont pairs. In the persistence stage, the endosymbiosis competes with
other species including its ancestors. In the evolvability stage, the endosym-
biosis must fix beneficial mutations in order to adapt to new environmental
conditions. The evolutionary trajectories that successfully pass through all of
these stages will determine the abundance and diversity of endosymbioses.
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within the host cell, which is governed by the spatial structure of their coupled
metabolisms. Moreover, the fitness and persistence of a host-endosymbiont pair
is determined by whether the two metabolisms compete for the same resources or
are able to synergize their metabolic pathways; and their adaptability is shaped
by the degree to which their coupled metabolisms can harness the effects of mu-
tations. In general it may be difficult to predict precisely the viability, fitness,
and adaptability of a putative prokaryotic endosymbiosis because they depend
on many idiosyncratic factors, such as the physical and ecological environment,
or detailed considerations of which other species co-exist at a particular point
in history. However, we can draw upon the burgeoning wealth of genomic data
and metabolic network models to elucidate the relative extent to which the
metabolic underpinnings of viability, fitness, and adaptability hinder the es-
tablishment, evolution, and radiation of prokaryote endosymbioses across the
biosphere.

An important tool in quantifying the eco-evolutionary role of metabolism is
the genome-scale metabolic model. Such models use the genomes of an organism
to infer its metabolic repertoire and predict its growth in different environments.
Genome-scale metabolic models are now available for thousands of species and
have been successfully applied to a variety of bioengineering, ecological, and evo-
lutionary problems [24, 25]. Of particular relevance, they have also been used
to accurately predict fitness and adaptive evolution in prokaryotic communities
[26, 27, 28, 29, 30]. In addition to modeling systems that can be experimentally
validated, they have also been used to address questions that extend beyond
our knowledge of and application to extant life. For example, metabolic models
coupled with the network expansion method have been used to propose possi-
bilities for early metabolism on Earth [31], network structure scaling with size
[32], and what metabolisms are likely to exist in distinct planetary conditions
[33]. Such generality and flexibility is ideal for our interest in exploring the
challenges of an event that is possible but rarely seen.

Here we harness the abundance and flexibility of genome-scale metabolic
models to consider putative endosymbioses between random pairs of prokary-
otes. By using different databases for metabolic models along with a large
number of genomes, we are able to quantitatively study general features of
metabolic compatibility in nascent endosymbioses and estimate viability, fit-
ness, and adaptability. In this analysis we assess the extent to which metabolic
compatibility acts as a barrier, independent of other considerations such as
whether endosymbioses form through phagocytosis or via other eco-evolutionary
processes [34]. Ultimately we find that the dominant metabolic barriers to a
prokaryotic endosymbiosis are due to relative fitness effects and adaptability,
not to the initial metabolic viability.

Results

To assess metabolic compatibility in prokaryotic endosymbioses, we need a broad
set of genome-scale metabolic networks (see Methods: Genome-scale metabolic
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model curation). Thus, we collected metabolic models for prokaryotes from
three of the largest databases: AGORA (818 models), KBase (1,637 models),
and CarveMe (5,587 models). A common feature across databases is that models
organize reactions and compounds into compartments; all models have compart-
ments for the cytoplasm and extracellular environment, but CarveMe models are
the only ones with an additional compartment for the periplasm. The databases
vary in what species, reactions, and compounds they include, as well as their de-
scription of how reactions and compounds behave across compartments. Since
the databases also differ in their standards for metabolic model creation and for-
mats, even if the same species appears in multiple databases the metabolic mod-
els are not directly translatable. We manage the variation between databases
by keeping models from different databases distinct and performing analyses
independently on each database. This reduces the risk of introducing errors
and provides an opportunity to assess the extent to which our results depend
on metabolic model formats.

With our broad collection of metabolic networks, we can assess the metabolic
viability of putative prokaryotic endosymbioses. We considered 100,000 random
pairs of networks sampled from each database, which were split into 100 sets
of 1000 to estimate variation. For each pair of networks, we constructed two
metabolic models of the endosymbiosis where networks swapped roles as host
and endosymbiont (see Figure 2A). Importantly, every metabolic network in our
dataset includes an environment—or equivalently a set of available extracellular
compounds—that enable the organism (network) to grow. If we combine the
environments from two metabolic networks, we obtain a joint environment in
which both networks can grow independently. Thus, we can assess viability of
an endosymbiosis by determining whether the host-endosymbiont system can
grow in the joint environment (see Methods: Assessing growth and viability of
metabolisms).

Figure 2B shows that the average percentage of viable host-endosymbiont
pairs varies between 56.2% and 66.2% across the three databases. An analysis
of variance confirms that the averages between databases are statistically differ-
ent (p-value < .001). Such differences between databases may stem from many
possible factors including model format, the set of reactions used, the particular
compounds available in the environment, and/or the composition of species and
their representative environments. We can observe other differences between
databases if we evaluate factors that may predict whether an endosymbiosis
is viable—such as similarity in reactions or biomass compounds between host
and endosymbiont (see Supplementary material: Predicting viability). Yet, de-
spite such differences between databases, all 300 sets of samples have a viable
percentage between 52 — 71%, indicating a similar scale for viability estimates.
Moreover, if we consider both possible configurations of endosymbioses we find
that across databases the majority of pairs, 84 — 92%, have at least one con-
figuration that is viable (see Figure 2C), with most of those pairs (52 — 67%)
having just one, specific configuration that is viable.

Within the context of metabolic models, there are two non-exclusive rea-
sons that host-endosymbiont pairs may be nonviable in an environment where
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Figure 2: Viability of prokaryotic endosymbioses. a) A schematic shows
the nested compartment structure of the two possible host-endosymbiont pairs
considered in our analyses. Each cell has a cytoplasm compartment [c] and
can exchange compounds with its external environment (indicated by arrows).
In endosymbioses the extracellular compartment of the endosymbiont is the
cytoplasm compartment of its host. b) A bar graph with an inset of a violin plot
shows the percentages of paired metabolisms that form viable endosymbioses for
each of the three databases. The percentages are the means of 100 samples of
1000 pairs and are of similar magnitude, 56.2 — 66.2%; however an analysis
of variance confirms the means do differ across databases (p < .001). c¢) Bar
graphs show the percentage of pairings in which neither, only one, or both
configurations of endosymbioses are viable. For all databases there is at least
one configuration viable for 84 — 92% of pairs and the most common scenario is
where only one configuration is viable.
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each can survive separately (see Figure 3A). First, the host may lack a way
of transporting a resource (or waste product) that the endosymbiont requires
(or produces) in order to grow. Overcoming this cause of nonviability requires
transport of a compound (or compounds) between the host’s cytoplasm and the
extracellular environment. Such transport typically occurs in metabolic mod-
els via particular reactions, and so the host-endosymbiont pair could be made
viable by including the appropriate transport reactions. The second cause of
nonviability stems from the endosymbiont needing to perform a reaction whose
compounds never enter the cell. Since the endosymbiont cannot directly ac-
cess the external environment, it cannot perform the necessary reaction. This
obstacle can only be overcome if the endosymbiont has direct contact between
its membrane and the environment, which is infeasible based on the compart-
mental structure of an endosymbiosis. Thus, we focused on the first cause of
nonviability and evaluated how easily host-endosymbiont pairs can be made
viable.

We assessed how often nonviability stems from the host lacking a transport
reaction by allowing hosts the ability to transport any compounds that exist in
both cytoplasm and extracellular compartments. We attempted to repair 15,000
nonviable endosymbioses in each database and found that the majority can be
made viable (100% for AGORA, 99.7% for KBase, and 82.4% for CarveMe).
Although adding transport mechanisms for all compounds can fix the majority
of nonviable endosymbioses, the likelihood that nonviability can be overcome
depends on the number of transport mechanisms needed for viability. We es-
timated the minimum number of missing transport mechanisms by finding a
set of compounds that fix viability only through their combined transport, i.e.
failure to transport any one of them leads to nonviability. Using a series of
linear programs (see Methods: Fixing viability) on 10,000 randomly sampled
nonviable—yet fixable—endosymbioses from each database, we find that the
majority of nonviable pairings can be fixed by the addition of a single transport
mechanism (Figure 3B). Yet, of those endosymbioses that can be fixed by a sin-
gle transport mechanism the majority (57 — 92%) require a specific compound
without which they cannot be viable (See Figure 3B).

Even if a nascent endosymbiosis is viable it still faces the challenge of com-
peting against a background population composed of its direct ancestors. In
principle the competition can take many forms depending on the nature of selec-
tion. We first consider competition in terms of the ability of metabolisms to re-
main viable in the face of environmental degradation. Since host-endosymbiont
pairs can draw on two sets of reactions, they may be better able to adjust to
changing resource pools so as to have a survival advantage compared to their
ancestors. We evaluated this possibility by randomly choosing 10,000 viable
host-endosymbiont pairs and determining whether they remain viable when a
single compound is removed from their environment. We investigated all pos-
sible environments where a single compound is missing, and in each modified
environment we also assessed the viability of the ancestral host and endosym-
biont metabolisms for comparison.

We observe similar population-level patterns of survival to environmental
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Figure 3: Paths to fixing nonviable endosymbioses. A) A schematic shows
the two causes of nonviability in endosymbioses using metabolic models: 1.
(top) missing transport of an extracellular compound into the cytoplasm and
2. (bottom) no access to compounds that remain in the extracellular compart-
ment. For each we show a typical form of the missing essential reaction and
the percentage of 15,000 nonviable endosymbioses that can be made viable by
providing the necessary type of reaction (colors indicate databases, following
the legend in B). Between the two causes, the first is more frequently a source
of nonviability. We note that within a database the percentages for the two
causes do not sum to 100% because they are not mutually exclusive. B) The
graph shows the minimum number of compounds whose transport needs to be
provided in order to fix nonviable endosymbioses. Each point is the mean of
100 samples of 100 fixable, nonviable endosymbioses and the error bars are the
standard deviations of those samples. For each database, the most common case
is that the endosymbiosis can be fixed by transporting a single compound. The
pie chart inset shows how often that single compound is a specific compound,
i.e. there is only one such compound whose transport makes the endosymbiosis
viable.
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Figure 4: Survival competition between endosymbiosis and ancestral
metabolisms in response to environmental degradation. A) The dis-
tributions show the robustness of 10,000 endosymbiosis metabolisms and their
ancestral metabolisms sampled from the AGORA database (see Figure S3 for
other databases). Robustness is quantified as the proportion of environmental
perturbations survived by a metabolism. The distributions have similar single
peaked shapes with > 80% of the population between the ranges of 85—95%. B)
The bar graphs show the percentage of environmental perturbations for which
all three metabolisms are viable, nonviable, or mixed across the three databases.
In only 3 — 7% of perturbations is there a difference in the viability of the en-
dosymbiosis metabolism compared to at least one of its ancestral metabolisms.
C) The star plot displays the relative frequency of the possible outcomes for
the mixed cases from B. Of the 6 possible scenarios for mixed viability, the
two most frequent feature different survival between the ancestral endosymbiont
metabolism compared to the other two, though which is more robust depends on
the database (see Figure S4). The star plot also shows that the endosymbiosis
survives more environmental perturbations than the ancestral host metabolism
in all databases.
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degradation between the host-endosymbiont pair and its ancestral metabolisms
(see Figure 4A and Figure S3). Furthermore we find that the metabolisms act
identically in 93 — 97% of perturbations, with the most frequent occurrence
being that all survive (see Figure 4B). Of the 3—7% of environmental perturba-
tions where we see differences in survival between metabolisms, three scenarios
occur most frequently: 1) only the ancestral endosymbiont survives, 2) only
the ancestral endosymbiont does not survive, and 3) only the ancestral host
does not survive (see Figure 4C). As a consequence, the host-endosymbiont pair
survives more environmental perturbations than the ancestral host metabolism
in all databases (see Supplementary Figure S4). The outcome of the host-
endosymbiont pair versus the ancestral endosymbiont metabolism depends on
the database; in KBase models host-endosymbiont pairs survive more often
while AGORA and CarveMe show the reverse (see Supplementary Figure S4).

In addition to survival selection, genome-scale metabolic models enable us to
consider competition in terms of population growth rates. Instead of simply con-
sidering a binary outcome of viable versus nonviable, we can use a metabolism’s
computed maximum rate of biomass production as a proxy for its population-
level growth rate. Actual growth rates may depend on many additional factors
including gene expression profiles, regulation, and other cell physiological states.
To control for some of this variability we compare the endosymbiosis to its con-
stituent metabolisms and avoid comparisons across endosymbioses. Computing
the fitness of viable host-endosymbiont pairs, we find that they grow slower
than both the ancestral host and endosymbiont metabolisms in over 85% of
samples for each of the three databases (see Figures 5A-D). In the rare cases
where the host-endosymbiont pair grows faster than its ancestors, its average
growth-rate advantage is smaller in magnitude than its average disadvantage
when the ancestral metabolisms grow faster. For example, in the AGORA
database when the host-endosymbiont pair grows faster than the ancestral host
metabolism its mean advantage is 18.9% relative to the host, but when the an-
cestral host metabolism grows faster its mean advantage is 66.9% relative to the
host-endosymbiont pair.

Since an endosymbiosis has to sustain two metabolisms, it could be that
comparing its growth rate to those of an isolated ancestral host or endosym-
biont metabolism is not a fair comparison. We address this possible issue by
computing the growth rates of all three metabolisms when grown together in
the same environment (see Methods: Growth rate calculation of communities).
In short, we maximize each metabolism’s growth rate assuming that the total
flux of metabolites through the system is maximal. We restrict our analyses to
models from AGORA and CarveMe because models from the KBase database
often yield multiple possible growth rates. Figure 5E shows that in the majority
of cases (88% of samples) the host-endosymbiont pair grows more slowly than
both ancestral metabolisms. It is rare (< 1%) that the host-endosymbiont pair
can grow faster than the ancestral endosymbiont metabolism. In the 8 — 9%
of samples where the host-endosymbiont pair grows faster than the ancestral
host metabolism, the growth rate advantage is smaller in magnitude than its
concomitant disadvantage compared to the ancestral endosymbiont metabolism

10
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(see Figure 5F).

Even if endosymbioses grow more slowly than their ancestors, they may
be competitive if they are more adaptable. We evaluate this possibility by
determining the effects of mutations on metabolisms when they are independent
or in an endosymbiosis (see Methods: Adaptability assessment). Since we are
interested in adaptability we focus on mutations that increase the bounds on
reaction fluxes, which will either have no effect on a metabolism’s growth rate
(neutral mutations) or increase it (beneficial mutations). We randomly sample
1000 endosymbioses that grow more slowly than their ancestors and compute
the effects of all possible single mutations in host and endosymbiont reactions.
We identified beneficial mutations in models from the AGORA and CarveMe
databases but found none in models from KBase, because reaction bounds do
not limit growth in KBase models. The adaptability analyses will thus rely
only on models from the AGORA and CarveMe databases, though we did find
similar results in KBase after imposing reaction bounds that do limit growth
(see Methods: Adaptability assessment).

For mutations in host reactions, we find a similar number are beneficial in
an endosymbiosis as in the ancestral host metabolism (Wilcoxon signed rank
test, p~ .07 in CarveMe and p~a .27 in AGORA, see Figure 6A). In contrast,
mutations in endosymbiont reactions are less often beneficial in an endosym-
biosis than in the ancestral endosymbiont metabolisms (Wilcoxon signed rank
test, p< 1076 for both databases, see Figure 6B). Of the mutations that are
beneficial in an endosymbiosis, few increase the growth rate beyond those of
the ancestral metabolisms—only 5.0 — 5.6% of beneficial mutations in host re-
actions and 17.0 — 18.1% in endosymbiont reactions. Moreover, the majority of
endosymbioses do not have any mutations that increase their growth rate above
their ancestral metabolisms (see Figure 6C & D). It could be possible that,
though rare, an endosymbiosis may have access to mutations that offer substan-
tial growth benefits compared to its ancestral metabolisms. We evaluated this
possibility by comparing the maximal growth rate reached by mutations in the
ancestral metabolisms versus the endosymbiosis and found no such example in
either database.
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Figure 5: Growth-rate competition between endosymbioses and ancestral
metabolisms. A) The bar graph shows the result of a growth-rate competition be-
tween the endosymbiosis and the ancestral host metabolism. The host grows faster for
a majority of comparisons (85 — 94%). B) The histogram shows the relative growth
rates of endosymbioses versus their ancestral host metabolisms, sampled from the
AGORA database (see Figure S6 for other databases). When the endosymbiosis grows
faster than its ancestral host cell, the fitness advantage is typically smaller in mag-
nitude compared to its fitness disadvantage when it grows more slowly. C) The bar
graph is similar to A but the comparison is between the endosymbiosis and the an-
cestral endosymbiont metabolism. Again the endosymbiosis grows more slowly in the
majority of comparisons (88—92%). D) The histogram shows the relative growth rates
of endosymbioses versus their ancestral endosymbiont metabolisms, sampled from the
KBase database (see Figure S7). As in B, the typical growth advantage is smaller
in magnitude than the growth disadvantage for endosymbioses. E) The bar graph
shows the result of a growth-rate competition between the endosymbiosis and its an-
cestral metabolisms when all share the same environment. In both databases the
most likely scenario is that the endosymbidsis grows more slowly than both ancestral
metabolisms (88%). F) The relative fitness of the endosymbiosis versus its ancestral
metabolisms from E is plotted using the CarveMe database (see Figure S8 for the
AGORA database).
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Figure 6: Adaptability of endosymbioses versus ancestral metabolisms.
A) The histogram shows the difference in the number of beneficial mutations be-
tween the endosymbiosis and its ancestral host metabolism (data from AGORA
database, see Figures S9 and S10 for CarveMe data). All mutations occur in
host metabolism reactions and are deemed beneficial if they increase the growth
rate. A sign-rank test supports the null hypothesis that the endosymbiosis and
its ancestral host metabolism do not systemically differ in the number of bene-
ficial mutations. B) The histogram is similar to A but compares the endosym-
biosis and its ancestral endosymbiont metabolism for mutations in their shared
reactions. Here, a sign-rank test rejects the null hypothesis, such that the an-
cestral endosymbiont metabolism has more beneficial mutations (p < .01). C)
A bubble chart shows the frequency of mutations, in endosymbiosis vs ancestral
host metabolisms, that increase the growth rate above that of ancestral host
metabolism (data from CarveMe, see Figures S11 and S12 for AGORA data).
There are more such mutations in ancestral host metabolisms than those in en-
dosymbioses. D) The plot is similar to C except it is in terms of the ancestral
endosymbiont metabolism. Again, there are more such mutations in ancestral
endosymbiont metabolisms than those in endosymbioses.
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Discussion

An endosymbiosis between two prokaryotes gave rise to eukaryotes and likely
facilitated the evolution of large complex organisms, but this is one of only a
few examples of prokaryotic endosymbioses. While studies have identified pos-
sible obstacles to the formation of prokaryotic endosymbioses, there is a lack
of quantitative frameworks that allow us to estimate their influence. Here we
introduce a quantitative framework using genome-scale metabolic networks that
evaluates the role of metabolic compatibility in the different stages of prokary-
otic endosymbiosis evolution: viability, persistence, and evolvability. We find
that over half of random pairs of metabolisms can form viable endosymbioses;
however, the resulting endosymbioses often face fitness costs in terms of growth
that they are unlikely to overcome through mutations.

A major result of our work here is that in the first stage towards a success-
ful endosymbiosis— initial viability— metabolic compatibility produced only a
very limited barrier, with over half of endosymbiotic configurations being vi-
able. On the one hand, this is surprising given the substantial biochemical and
metabolic diversity of prokaryotes. On the other hand, all cells share a metabolic
core (e.g. the TCA cycle), facilitating the compatibility of metabolic networks
[35, 36, 37]. Additionally, syntrophies and mutualisms in prokaryotes are com-
monplace, highlighting the relatively high likelihood for metabolic compatibility
between prokaryotic cells configured in extracellular arrangements [38]. Exam-
ples include the occurrence of remarkably sophisticated exo-symbioses, such as
aggregates of archaea and bacteria in which anaerobic methane oxidation is
apparently achieved by passing an electron extracellularly [39, 40], close associ-
ation symbioses in biofilms and microbial mats (e.g. [41, 42]), and ecosystems
defined by effective supermetabolisms (e.g. [43]) . Similarly, the frequent ex-
change of entire metabolic pathways via horizontal gene transfer [44, 45, 46] and
the widespread success of plasmids in bacteria [47], which can be thought of as
genomic endosymbionts, also point to the frequency of successful metabolic pair-
ings. Since over 84 percent of species pairs had at least one viable configuration,
the small barrier to metabolic viability seems to reflect more the spatial struc-
ture of paired metabolic networks, rather than the composition of the networks
per se.

While metabolic compatibility did not provide a significant challenge to vi-
ability, it did emerge as a substantial filter during the persistence and adapt-
ability stages, when endosymbioses compete with their ancestral metabolisms.
Whether metabolisms competed to grow the fastest or survive environmental
perturbations, an endosymbiosis rarely held a competitive advantage over both
of its ancestors (< 1% of cases). In addition, mutations in endosymbioses rarely
produced a growth advantage over ancestral endosymbionts (17 — 18.1%, Fig.
6D) or ancestral hosts (5 — 5.6%, Fig. 6C) These outcomes may be surprising
given that all-else-being-equal increased network size should confer increased ro-
bustness to environmental perturbations, increased growth rates, and increased
capacity to adapt [4, 5, 48]. However, unlike their ancestral metabolisms, en-
dosymbioses must satisfy the biomass requirements of two metabolisms. Within
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this context, it is then somewhat expected that an early endosymbiosis may be
at a fitness disadvantage compared to its ancestors, especially in the absence
of any mechanism to coordinate or divide labor. Furthermore, the need to sat-
isfy two sets of biomass requirements can limit or mask the effects of beneficial
mutations, making it difficult to overcome initial fitness disadvantages.

Examining the rare cases when an endosymbiosis has higher fitness than
its ancestors can shed light on the conditions in which it can persist. When
subjected to environmental perturbations, the endosymbiosis has a competitive
advantage against its ancestral host species. Similarly, when a premium is put
on fast growth, the endosymbiosis is more likely to outcompete its ancestral
host species than the ancestral endosymbiont species. Taken together, these
results suggest that if an endosymbiosis were able to persist it would likely
replace its ancestral host. This result is supported by the current ecological
distributions of microbial eukaryotes and prokaryotes. Microbial eukaryotes of-
ten coexist with the ancestral lineage of their mitochondrial endosymbiont, the
alpha-proteobacteria [49, 50], but they seldom coexist with the ancestral lineage
of the host, presumably of archaeal origin— likely a Lokiarchaeota [51, 52, 53,
54]. Moreover, our competition analyses suggest that while an endosymbiosis
almost never grows faster than both of its ancestors, an appropriate combina-
tion of perturbed environments may allow a nascent endosymbiosis to survive
when both its ancestors do not. These results are consistent with the argument
that, compared to bacteria, eukaryotes may have been K-selected with slower
rates of reproduction and limiting nutrient supplies [55]. The results are also
corroborated by the observation that the few other documented prokaryotic
endosymbioses are found in relatively nutrient-poor environments [56, 14, 15],
e.g. the bristles of a scale worm near a deep hydrothermal vent [56] or in a
specialized organ of a sap-feeding mealybug [15].

We have used our metabolic framework to make general predictions about
the role of metabolic compatibility in shaping nascent prokaryotic endosym-
bioses. The quality of more specific predictions about particular species and
environmental conditions will likely depend on the accuracy of metabolic net-
work models. Here we drew conclusions using three different metabolic network
databases; and although they broadly agreed about many aspects of metabolic
compatibility in endosymbioses, there were some key differences. For exam-
ple, the outcome of survival competition between a host-endosymbiont pair
and its ancestral endosymbiont metabolism depended on the database: the en-
dosymbiont won more often in the CarveMe and AGORA databases but not
in KBase. Differences between databases could stem from many factors includ-
ing the organisms, environments, or procedures used to construct the networks
themselves. Indeed, research into metabolic network construction and valida-
tion is very active and there will likely be much future development. While
we expect this future development to lead to refinements in our quantitative
predictions, it is unlikely to change the broader conclusions that were com-
mon to the three databases considered here. Given the diverse formats and
modes of construction of metabolic networks in the three databases, the com-
mon findings are likely to be universal features of metabolism. Regardless of
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this expectation, our metabolic endosymbiosis framework could readily accom-
modate future advances in the field of metabolic networks—it simply requires
rerunning the computations with updated networks or different environmental
conditions. Thus, our quantitative framework is adaptable and should continue
to make useful predictions concerning the role of metabolic compatibility in the
evolution and ecology of prokaryotic endosymbioses.

An overarching goal of our work has been to assess factors responsible for
the relative rarity of prokaryotic endosymbioses. We have focused on metabolic
compatibility because it was amenable to existing methodology and plays a
role in the initiation, persistence, and adaptation of endosymbioses. While our
results reveal significant limitations imposed by metabolic compatibility, it is
unlikely that metabolic compatibility alone accounts for the relative rarity of
prokaryotic endosymbioses. If it were the dominant barrier then it would imply
that metabolic compatibility is far less often an issue when the host is a eukary-
ote. We can gain some insight into this possibility by considering the abundant
examples of endosymbioses with eukaryote hosts [57, 58]. We expect that mul-
ticellular eukaryotes can more easily accommodate intercellular endosymbionts
because they can manipulate the space between their cells to create specialized
metabolic environments for their endosymbionts, such as light organs in bobtail
squid [59, 60] or hindguts in termites [61]. If, instead, we consider only intra-
cellular endosymbionts which can be found in both multicellular and unicellular
eukaryotes [57, 58, 11, 62, 63, 64], then many of these also involve specialized
spaces, e.g. bacteriocytes [65] or vacuoles [10]. The fact that so many eukaryotic
endosymbioses involve specialized compartments suggests some adaptive bene-
fit to controlling the metabolic exchanges between species, i.e. they may not
be innately synergistic—though it is unclear whether these spaces evolved prior
to or in conjunction with the endosymbiosis. Moreover, we may expect that
the increased presence of structured compartments could create potential issues
with transport, which was the primary source of nonviability in the initiation
stage of our prokaryotic endosymbioses. Thus, it seems likely that some other
factor(s) works in conjunction with metabolic compatibility to make prokaryotic
endosymbioses rare.

Of the other factors limiting the emergence of prokaryotic endosymbioses,
the one that has often been invoked as substantial is the difficulty of inter-
nalizing a cell within another in the absence of phagocytosis [16]. Indeed, the
ubiquity of phagocytosis in eukaryotes creates significantly more opportunities
to initiate an endosymbiosis, e.g. amoeba frequently engulf different bacteria
that can resist digestion [66]. However, phagocytosis may not be the only physi-
ological mechanism for a cell to internalize another cell (e.g. [67, 16, 34]). Many
other studies have demonstrated the plasticity of prokaryote membranes and
cytoskeletal architecture [68, 69, 51, 70] suggesting the absence of phagocytosis
may not be as dominant a barrier as once thought. And the continuing discov-
ery of new functions, traits, and morphologies in prokaryotes also emphasize the
importance of evaluating multiple barriers, not just phagocytosis. Indeed, re-
markably, phylogenetic analysis of prokaryote endosymbiosis within mealybug
cells suggests that the endobacterial symbiosis may have originated multiple
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times during mealy bug diversification [15], despite the prokaryote host lacking
an obvious capacity for endocytosis. It thus seems highly probable that many
more similar examples of such endobacteria symbionts remain to be discovered,
especially given that this prokaryotic endosymbiosis was previously overlooked
[71] and the microbiomes of millions of invertebrate species have not been in-
vestigated.

Ultimately, given the functional diversity and abundance of microbes on
Earth, the expanding list of discoveries that soften phagocytosis as a barrier,
and the metabolic viability of many potential endosymbiosis, a reasonable in-
terpretation of our results is that hundreds to thousands or more prokaryote
endosymbioses remain to be discovered. However, the reduced metabolic ro-
bustness, growth rates, and evolvability that these endosymbioses likely face
severely limits their persistence and potential to radiate spectacularly. The high
rates of extinction and low rates of speciation resulting from these metabolic
considerations would sustain only a relatively low diversity of extant prokary-
otic endosymbioses confined to environments in which they are less likely to be
outcompeted by ancestral host or endosymbiont lineages, such as nutrient-poor
environments.

Methods

Genome-scale metabolic model curation

We obtained metabolic models of diverse prokaryotes in .xml format made avail-
able in [72] from the AGORA[73], KBase[74], and CarveMe[75] databases (see
Supplementary Table S1 for details). We used the COnstraint-Based Recon-
struction and Analysis Toolbox (COBRA) [76] to create .mat files for further
analysis using MATLAB [77]. The .mat format of a metabolic model includes
a stoichiometric matrix of compounds and reactions, a list of compound names,
lower and upper bounds for reaction fluxes, an objective function that identifies
the biomass reaction, a right hand side vector that indicates how each com-
pound is balanced, and other identifying information. Metabolic models are
partitioned across two compartments (cytoplasm [c] and extracellular [e]) ex-
cept those in CarveMe which include an additional periplasm [p] compartment.
All models come with an implicit environment—determined by the bounds on
reaction fluxes and right hand side vectors—that make a set of extracellular
compounds accessible so the metabolism is viable, i.e. it can synthesize all of
its biomass compounds. Determining whether a metabolism is viable requires
performing flux balance analysis and solving the associated linear program. We
used the Gurobi optimization software [78] to solve all linear programs and con-
firmed that all metabolic models are initially viable, where viability is defined
as having an objective function value (growth rate) above a tolerance of 0.001.

For each database, we restructured the metabolic models to facilitate analy-
ses of possible endosymbioses. First, we identified all compounds and reactions
used within a database and reformatted the stoichiometric matrices (S) for the
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metabolic models so that the same row corresponds to the same compound
across models. Second, we changed how environmental compounds are made
available to metabolic models. Initially, metabolic models access environmen-
tal compounds through source/sink reactions whose upper and lower bounds
on flux determine how much of the compound is available. We replaced these
reactions with mathematically equivalent constraints on the amount of com-
pound available. So a source/sink reaction flux r; for compound ¢; with lower
and upper bounds /; and u; respectively would be replaced with the equivalent
constraint on the compound concentration, I; < ¢; < u;, note ¢; = >, Sj k7.
This modification makes it easier to create joint environments using different
metabolic models. Finally, for each metabolic model, we created different stoi-
chiometric matrices depending on its role as either host or endosymbiont. When
the metabolism is a host, its stoichiometric matrix (Sg) is the same as if it were
growing in isolation. When the metabolism is an endosymbiont, its extracellu-
lar compartment is identical to the cellular compartment of the host. Thus, we
partitioned the stoichiometric matrix depending on whether the compounds are
strictly within the endosymbiont (Sg) or within the host (Sg_m).

Assessing growth and viability of metabolisms

We compute the growth rate of metabolisms, either in isolation or in endosym-
bioses, by performing flux balance analysis and solving the associated linear
program. If the index for the biomass reaction is A then the linear program for
its growth in isolation is:

maximize  x) ~
subject to @ T <b
!

SHZ‘
z < a,

<
<

where Z is a vector of reaction fluxes, [ is a vector of lower bounds for fluxes,
@ is a vector of upper bounds for fluxes, Sg is the stoichiometric matrix, a is a
vector of lower bounds for compound concentrations, and b is a vector of upper
bounds for compound concentrations.

For an endosymbiosis, we denote the fluxes of the host as z and those of the
endosymbiont as §. We use the H and F indices to indicate host or endosym-
biont respectively. The linear program for two metabolisms in an endosymbiosis

is then:
maximize  xy,

subject to  ay +dg < ST + Sp_ gy < by + bg

Sgy=20

ln <& <up

lp<y<ugp

Txg = Yxp-
The Sgg = 0 condition stems from the fact that compounds in the cytoplasm
and periplasm compartments are balanced in the endosymbiont. The last con-
dition z,, = yx, requires that the host and endosymbiont grow at the same
rate.
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Fixing viability

We attempted to fix nonviable endosymbioses through a multi-step process.
First, we determined whether the endosymbiosis could be viable if all transport
between the cytoplasm and extracellular compartments are available. We iden-
tified all environmental compounds that 1) are available in the environment with
nonzero amounts, 2) exist in both environmental and cellular compartments and
3) are usable by the endosymbiont such that at least one reaction has it. We
then added extra reactions in the host-endosymbiont joint stoichiometric matrix
that enabled those compounds to be transported between the host’s [e] and [c]
compartments. We performed flux balance analysis to determine the growth
rate. If the growth rate was below the tolerance .001 it meant that the lack of
viability was also due to the endosymbiont not having access to the external
environment. We then confirmed that viability could be restored by provid-
ing the endosymbiont access to the external environment through creation of
source/sink reactions in Sg for compounds present in the environment at non-
zero amounts. All nonviable endosymbioses could be fixed by a combination
of restoring transport and allowing the endosymbiont to access extracellular
compounds. In cases where viability could be restored by providing transport
reactions alone, we estimated a potential minimal set of compounds following
the algorithm outlined in Figure S5.

Growth rate calculation of communities

We compute the growth rates of the host-endosymbiont pair together with its
ancestral metabolisms in the same environment through a two-step process.
First we compute the maximal flux through the entire community by maxi-
mizing the sum of fluxes through the three biomass reactions: ancestral host
Zx,, ancestral endosymbiont x ,, and host-endosymbiont pair x,. Second we
maximize the flux through each of the three biomass reactions one at a time
while requiring the community flux be held constant at its maximal value (call
it z), i.e. we add the constraint x,, + x5, + zx, = z. We perform the second
step because the solution to a linear program may not be unique, so there may
be multiple partitions of growth within a community that give rise to the same
total community flux. For our analyses we considered only those cases in which
the growth rates of the host-endosymbiont pair and its ancestral metabolisms
are unique when the total community flux is maximal. We determined unique-
ness by requiring that the computed growth rates for metabolisms did not vary
above 10% between its highest and lowest values. We found that the AGORA
and CarveMe databases frequently gave unique values, 99.7% and 98.2% of com-
putations respectively; however, KBase only met this criteria for uniqueness in
0.02% of computations. Despite the lack of uniqueness in the KBase computed
growth rates, the maximal host-endosymbiont pair growth rate rarely exceeded
the growth rates of both its ancestral metabolisms, 3 out of 10000 computations.
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Adaptability assessment

We evaluate the adaptive potential of metabolisms by determining how the
computed growth rate is affected by mutations that increase the bounds of
reactions. Since increasing the bounds of reactions can never decrease growth
rates, the mutations are either neutral or beneficial. For ancestral metabolisms,
either host or endosymbiont, we systematically modify each reaction bounds
one at a time by a factor of 1000. Thus if a reaction flux x; has a lower bounds
I; (where l; < 0) and an upper bound wu; then we transform it the bounds to
10007; < x; < 1000u;. We compute the growth rate following this mutation and
then reset the bounds to evaluate another mutation. For host-endosymbiont
pairs we evaluate both mutations in endosymbiont reactions and host reactions
separately.

While our methodology to assess adaptability was able to identify mutations
that affected growth rate in the AGORA and CarveMe databases, it did not find
any in KBase. The lack of any beneficial mutations in KBase suggests that the
reaction bounds do not constrain the growth rate. We tested this hypothesis by
decreasing the bounds of all reaction rates by a factor of 100 and re-computing
growth rates. We found that that the growth rates did decrease and we could
identify beneficial mutations in the metabolisms of the host-endosymbiont pair
as well as its ancestors. The results are similar to the analyses with AGORA and
CarveMe described in the main text: mutations were more often beneficial in
ancestral metabolisms than host-endosymbiont pairs (87.7% for host reactions
and 78.0% for endosymbiont reactions).
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Supplementary Material

Database information

Database ‘ Number of metabolisms ‘ Number of compounds ‘ Number of reactions

AGORA 818 2072 3815
KBase 1637 1675 3245
CarveMe 5587 2340 4245

Table S1: Summary data for metabolic model databases. AGORA contains
metabolic reconstructions of human gut bacteria comprising over two hundred
genera [73]. KBase is a platform created by The United States Department of
Energy for sharing, integrating, and analyzing data of communities of plants
and microbes [74]. CarveMe is a tool to automate the construction of metabolic
models and circumvent issues with manual curation [75]. Due to its automated
nature, it can used to generate large collections of metabolic models. Together
these three databases represent a large and varied collection of metabolic models.
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Predicting viability

In this section, we assess whether simple heuristics concerning the similarity of
host and endosymbiont metabolic networks may predict viability. We first turn
to the biomass reactions which effectively list all of the compounds required by
the host and endosymbiont in order to grow. If the biomass reactions contain
completely different compounds then we might expect a potential endosymbio-
sis to be nonviable because the host and endosymbiont have different metabolic
needs. For example, if the endosymbiont requires a compound that the host does
not need then the host may lack the ability to transport it from the external en-
vironment into its cytoplasm where the endosymbiont can access it. In contrast,
if the biomass reactions contain the same compounds then both metabolisms
need to make the same products, which would increase the likelihood that the
host transports compounds needed by the endosymbiont. We predict then that
the number of compounds from the endosymbiont’s biomass reaction that are
missing in the host, may increase the likelihood of nonviability. Figure S1 shows
that the AGORA database matches this expectation to some extent—though
the relationship is not strictly monotonic. In the KBase database the probabil-
ity of a viability is actually higher if one compound is missing rather than none.
In the CarveMe database, all biomass reactions contain the same compounds so
the metric of missing compounds is not useful in predicting nonviability (plot

not shown).
1 1p
0.9 AGORA 0.9} KBase
o 0.8 o 0.8}
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205 g5
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0.1 0.1}
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Figure S1: Proportion of missing biomass compounds as an indicator of
nonviability. Each plots shows the proportion of endosymbioses that are viable
as a function of the number of compounds in an endosymbiont’s biomass reaction
that are missing from the host’s. The dashed line in each plot shows the average
proportion of viable endosymbioses across all samples within a database. The
AGORA plot suggests a relationship between the number of missing biomass
compounds and nonviability. KBase biomass reactions belong to a few distinct
classes which makes it difficult to discern any relationship. Indeed the pairs of
metabolisms with one missing biomass compound are more viable than those
with none. All CarveMe biomass reactions contain the same compounds so there
are no missing compounds (plot not shown).
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Next we consider whether the proportion of reactions shared between the
host and endosymbiont is a predictor of viability. If the host and endosym-
biont share many reactions then they may also share metabolic pathways and
higher order metabolic structures, making them more likely to be metabolically
compatible. Figure S2 shows the results of this analysis. The relationships
vary across databases but once a host metabolism has > 75% of an endosym-
biont’s reactions there is an above average probability that they can form a
viable endosymbiosis—although in KBase and CarveMe this relationship is not
monontonic and even shows a dip when the host’s metabolism contains all of
the endosymbiont’s reactions.
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Figure S2: Proportion of shared reactions as an indicator of viability.
Each plot shows the proportion of endosymbioses that are viable as a function
of the proportion of an endosymbiont’s reactions that are shared with the host.
The dashed line shows the average proportion of viable endosymbioses across all
samples within a database. The plots show that the relationship between shared
reactions and viability is not consistent across databases, e.g. KBase has a U-
shaped relationship while CarveMe has a mostly monotonic relationship. One
common feature is that if a host metabolism has > 75% of the endosymbiont’s
reactions then there is a higher than average probability that the resulting
endosymbiosis is viable.

Finally, we note that if we use the same metabolic network for both host and
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endosymbiosis we still find nonviable pairings: 7/818 (or 0.86%) in AGORA,
211/1637 (or 12.89%) in KBase,and 459/5587 (or 8.22%) in CarveMe.
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Figure S3: Companion to Figure 4A. The distributions show the robustness
of 10,000 endosymbiosis metabolisms and their ancestral metabolisms sampled
from the KBase database (top) and the CarveMe database (bottom). As in
Figure 4A, robustness is quantified as the proportion of environmental pertur-
bations survived by a metabolism. The distributions are similar in shape within
databases.
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Figure S4: Companion to Figure 4C. (top) The bar graphs show the results
of comparing the endosymbiosis with the ancestral host metabolism in terms of
surviving environmental degradation. Across the databases the endosymbiosis is
more robust to environmental degradation than the ancestral host metabolism.
(bottom) Similar to the top plot except it compares the endosymbiosis to the
ancestral endosymbiont metabolism. The endosymbiosis is more robust than
the ancestral endosymbiont metabolism in the KBase database and less robust
in the AGORA and CarveMe databases.
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Figure S5: Flow chart for estimating minimum number of compounds needed
to fix viability.


https://doi.org/10.1101/2022.04.14.488272
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.14.488272; this version posted April 14, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Growth-rate selection

4
x10 94.5% worse :5.5% better
4k

frequency
[\ w
T T

Ju—
1

0 1
-4 -2 0 2
relative fitness log, (pair/host)
86.2% worse 213.8% better

8000

[=2]
(=
(=
(=)

frequency
S
o
o
o

2000

-4 -2 0 2
relative fitness log, (pair/host)

Figure S6: Companion to Figure 5B. The distributions are the same as
in Figure 5B except instead of the AGORA database the data is from the
KBase database (top) or the CarveMe database (bottom). Both show that the
growth rate of host-endosymbiont pairs is more often less than the ancestral

host metabolism.
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Figure S7: Companion to Figure 5D. The distributions are the same as in
Figure 5D except instead of the KBase database the data is from the AGORA
database (top) or the CarveMe database (bottom). Both show that the growth
rate of host-endosymbiont pairs is more often less than the ancestral endosym-

biont metabolism.
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Figure S8: Companion to Figure 5F. The plot is the same as in Figure 4F
except instead of the CarveMe database the data is from the AGORA database.

We find a similar pattern in which the host-endosymbiont pair is less fit than
both of its ancestral metabolisms.
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Figure S9: Companion to Figure 6A. The plot is the same as in Figure 6A
except instead the data is from the CarveMe database instead of the AGORA
database.
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Figure S10: Companion to Figure 6B. The plot is the same as in Figure 6B
except instead the data is from the CarveMe database instead of the AGORA
database.
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Figure S11: Companion to Figure 6C. The plot is the same as in Figure 6C
except instead the data is from the AGORA database instead of the CarveMe
database.
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Figure S12: Companion to Figure 6D. The plot is the same as in Figure 6D
except instead the data is from the AGORA database instead of the CarveMe
database.
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