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and ketone bodies, but FAs and glucose are the principal 
energy substrates in cardiomyocytes. The energy production 
pathways include (1) glycolysis (in the cytosol), and (2) 
glucose oxidation, (3) FA oxidation, (4) the tricarboxylic 
acid (TCA) cycle, and (5) electron-transport chain (ETC) 
metabolism in the mitochondria (Figure 2). During energy 
production, nicotinamide adenine dinucleotide (NADH) 
and �avin adenine dinucleotide (FADH2) are generated 
and directed into the mitochondrial ETC to produce ATP 
via redox reactions. The mitochondrial redox reaction also 
produces reactive oxygen species (ROS) as a byproduct 
(Figure 2).8–11

ATP is hydrolyzed (catalyzed) by ATPase into adenosine 
diphosphate (ADP)+ 1 inorganic phosphate (Pi) or ade-
nosine monophosphate (AMP)+ 2 Pi, liberating energy. 
Speci�c energy-producing ATPases include actomyosin-
ATPase in myo�laments, sarcoplasmic reticulum (SR) 
Ca2+-ATPase-2a (SERCA2a), and sarcolemmal Na+/K+-
ATPase.

Cardiomyocyte contraction is determined by energy-
requiring contractile and Ca2+ dynamics. Ca2+-sensitive 
actomyosin-ATPase directly provides the energy for 
myo�lament movement. An additional energy-storage 
compound, phosphocreatine (PCr), generates ATP for 
actomyosin-ATPase during rapidly increased cardiac work 

A
trial �brillation (AF) is the most frequent arrhythmia 
in clinical practice and is associated with increased 
morbidity and mortality.1 However, e�ective 

therapeutic approaches are limited and novel mechanistic 
understanding is required for therapeutic innovation.2 The 
maintenance of cardiac work requires oxygen and nutrient 
supply that matches the needs created by energy expenditure 
(Figure 1); accordingly, excitation-contraction coupling 
and ion channel/pump integrity are closely linked to cellular 
metabolic conditions.3 AF-induced irregular high-frequency 
excitation and contraction alter atrial hemodynamics, 
oxygen delivery, and energy supply, all of which change the 
metabolic state. Recent work has demonstrated substantial 
changes in metabolism-related molecules in AF.4–7 Here, 
we review the evidence regarding the pathophysiological 
role of AF-associated cellular metabolic changes and their 
potential value as therapeutic targets.

Cardiomyocyte Energy Metabolism

Adenosine triphosphate (ATP) is an essential energy source 
for cardiac work, including excitation, contraction, relax-
ation, and molecular synthesis/degradation. ATP is pro-
duced as a principal product of the metabolism of several 
substrates, including fatty acids (FAs), glucose, amino acids, 
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Atrial fibrillation (AF) is the most common sustained arrhythmia in clinical practice and is associated with morbidity and mortality. 

Over the past 2 decades, there have been major advances in understanding AF pathophysiology, but important knowledge gaps, 

particularly about targetable basic mechanisms, remain. Recent metabolomic and proteomic studies have shown changes in the 

expression of molecules involved in metabolic pathways in human and experimental AF, indicating a role for metabolic alterations 

in AF pathophysiology. AF is characterized by irregular high-frequency excitation and contraction that affect atrial energy demands, 

circulation and oxygen supply, and change the balance between metabolic demand and supply, causing metabolic stress. Here, we 

review the information available about AF-induced metabolic changes and their pathophysiological contribution. We also discuss the 

possibilities of developing novel therapeutic strategies that act by modulating cardiac metabolic processes during AF.
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during the action potential (Figure 2).8–11

Glycolysis and Glucose Oxidation
Glucose is taken into the cell via the sarcolemmal glucose-
transporters types 1 and 4 (GLUT1/4) and metabolized via 
glycolysis in the cytosol. Phosphofructokinase catalyzes 

situations under the control of creatine kinase (CK). 
SERCA2a drives Ca2+ from the cytosol into the SR to allow 
muscle relaxation and maintain SR Ca2+-stores. The Na+/
K+-ATPase pumps 3 Na+ out of the cell while transporting 
2 K+ into the cell, maintaining the essential transmembrane 
ionic gradients in the face of ion movements that occur 

Figure 1.  Metabolic gears and cardiac 
work. Coronary blood flow delivers energy 
sources and oxygen, which allow for the 
energy metabolism that drives cardiac work 
production.

Figure 2.  Energy production system and utilization in cardiomyocytes. CK, creatine kinase; CPT-1, carnitine palmitoyl transferase-1; 
Cr, creatinine; ETC, electron transport chain; FA, fatty acid; FAT, FA transporter; FADH2, flavin adenine dinucleotide; GLUT 1/4, 
glucose transporter type-1/4; NADH, nicotinamide adenine dinucleotide; PCr, phosphocreatine; PDH, pyruvate dehydrogenase; ROS, 
reactive oxygen species; TCA cycle, tricarboxylic acid cycle.
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of 4 enzyme complexes (designated I–IV) and an ATP 
synthase (F0F1-ATPase). Complexes I–IV transfer elec-
trons from electron donors to acceptors via redox reactions. 
The �nal electron acceptor is oxygen, producing CO2. The 
ETC extrudes protons (H+) from the mitochondrial matrix 
to the intermembrane space to create a H+-gradient across 
the mitochondrial inner membrane, driving F0F1-ATPase 
and synthesizing ATP (Figure 2).8–11

Cardiac Work Ef�ciency
Cardiac work e�ciency is de�ned as the ratio of external 
work to oxygen consumption. FA metabolism generates 
more ATP but uses more oxygen than glucose metabolism. 
For example, the complete oxidation of 1 FA palmitate 
molecule generates 105 ATP molecules and consumes 46 
atoms of oxygen (105/46=2.28), whereas oxidation of 1 
glucose molecule generates 31 ATPs and consumes 12 atoms 
of oxygen (31/12=2.58). FA oxidation generates NADH 
and FADH2 but glucose metabolism only generates NADH. 
In the mitochondrial ETC, NADH oxidation at Complex 
I is coupled to ATP production, whereas FADH2 oxidation 
bypasses Complex I and pumps fewer protons across the 
inner mitochondrial membrane.8

Hemodynamics and Energy Demands in AF

A variety of studies suggest a role for relative ischemia in 
AF. Depletion of high-energy phosphates (ATP and/or 
PCr) and reduced activity of phosphotransfer enzymes 
occur in pacing-induced heart failure (HF) dogs with an 
AF substrate.11 Myo�lament loss, glycogen accumulation, 
altered mitochondrial morphology, SR fragmentation, and 
nuclear chromatin dispersion resembling hibernating 
myocardium occur in goats with AF initially induced by 
electrical stimulation but subsequently maintained by 
electrical remodeling.12 Pigs subjected to rapid atrial pacing 
to mimic AF show increased atrial myocardial perfusion 
but also enhanced oxygen extraction.13 Increased venous 

the phosphorylation of fructose-6-phosphate to fructose-
1,6-bisphosphate, a key regulatory step in glycolysis. 
Glycolysis produces 2 ATPs and 1 NADH independently 
of oxygen. Although on its own glycolysis generates limited 
ATP, glycolytic ATP generation becomes critical under 
anaerobic conditions. If oxidative metabolism fails under 
anaerobic conditions, pyruvate cannot be oxidized but 
builds up and  and is converted to lactic acid, which causes 
cellular acidosis and ischemic consequences. Pyruvate, the 
endproduct of glycolysis, moves into the mitochondria 
and is catalyzed to produce acetyl-CoA and NADH by 
pyruvate dehydrogenase (PDH), a rate-limiting enzyme 
for glucose oxidation. PDH activity depends on its 
phosphorylation level; it is inhibited by PDH-kinase and 
activated by PDH-phosphatase (Figure 2).8–11

FA Metabolism
Circulating FAs enter cardiomyocytes via the FA trans-
porter, FAT/CD36. Carnitine palmitoyl transferase-1 
(CPT-1) allows FA entry into mitochondria for FA 
oxidation. Each FA oxidation cycle produces acetyl-CoA, 
NADH and FADH2. Malonyl-CoA is a potent CPT-1 
suppressor and is inhibited by acetyl-CoA carboxylase 
(ACC). Both FA oxidation and glucose oxidation produce 
acetyl-CoA, and are interdependent such that increased 
FA oxidation suppresses glucose oxidation and vice versa 
(Figure 2).8–11

TCA Cycle
Acetyl-CoA is the main substrate for the TCA cycle, a 
series of metabolic processes that generate energy sources 
(guanosine-triphosphate, GTP, NADH, and FADH2) via 
oxidative reactions. NADH and FADH2 feed into the 
mitochondrial ETC to generate ATP (Figure 2).8–11

Mitochondrial ETC
The ETC is the �nal metabolic process in the inner mito-
chondrial membrane. The ETC requires the coordination 

Figure 3.  Metabolic imbalance and 
metabolic stress in atrial fibrillation (AF).
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body metabolism in AF, likely as an anaplerotic mecha-
nism.5

AMPK Activation
AMP-activated protein kinase (AMPK) acts as an energy 
sensor and regulates cellular metabolism. AMPK is acti-
vated (phosphorylated) by upstream kinases (e.g., liver 
kinase B1 (LKB1), calmodulin kinase kinase) in response 
to energy depletion. AMPK compensates for energy 
depletion by increasing energy production and suppressing 
energy consumption.22 AMPK promotes FA oxidation by 
inhibiting ACC, the rate-limiting enzyme for malonyl-CoA. 
AMPK activation increases the expression of GLUT1/4 
and promotes its tra�cking into the sarcolemma, increasing 
glucose uptake. AMPK also phosphorylates phosphofruc-
tokinase-1, enhancing glycolysis.22 AMPK is activated in 
atrial tissues of dogs with electrically maintained AF and 
in canine atrial cardiomyocytes subjected to increased rate 
pacing.23 AMPK activation has also been shown in the 
atrial myocardium of AF patients compared with sinus-
rhythm controls, associated with increased FAT/CD36 
expression and FA uptake.24

Mitochondrial Dysfunction and ROS Generation
AF has been reported to impair mitochondrial function, 
decreasing ATP production. AF-related mitochondrial 
dysfunction causes redox imbalance, increasing ROS 
production.25 Excess ROS injures vital genes and proteins, 
impairs cardiomyocyte function, and promotes AF-related 
remodeling associated with in�ammation.26,27 Mitochon-
drial ultrastructural changes occur in the atrial tissue of 
AF goats.28 Rapid atrial pacing increases the expression of 
3-nitrotyrosine, an oxidant agent, in canine atrial tissues.29 

Mitochondrial morphology changes (i.e., pale, swollen) in 
cardiomyocyte cell-lines that are subjected to rapid pacing, 
accompanied by decreased ATP production and increased 
ROS production; high-frequency excitation per se causes 
mitochondrial dysfunction.30

Altered transcription of mitochondrial oxidative phos-
phorylation-related proteins and increased myo�lament 
oxidation have been shown in permanent AF patients.21,31  
Downregulation of ETC activity, increased proton leakage, 
and increased ROS production are also identi�ed in AF 
patients undergoing cardiac surgery.32,33 Mitochondrial 
Complex II/III activity is decreased in permeabilized atrial 
�bers obtained from patients who developed POAF, 
corresponding to decreased expression of the gene cluster 
for mitochondrial oxidative phosphorylation.34 Cox5b, an 
enzyme complex of mitochondrial ETC, is responsible 
for the biosynthesis of ATP. Cox5b protein expression 
decreases in atrial tissue from AF patients compared with 
sinus-rhythm controls, suggesting impaired mitochondrial 
ETC function and energy production.7

Mitochondria possess their own mitochondrial DNA 
(mtDNA), encoding proteins required for essential func-
tions. Patients with mtDNA deletions have increased AF 
prevalence and decreased concentrations of atrial ATP.35 
On the other hand, AF patients have increased mtDNA 
mutation rates and evidence of atrial oxidative injury.36 In 
patients undergoing cardiac surgery (22 children/adolescents 
and 66 adults), mtDNA deletions were increased in the 
adult AF patients compared with those in sinus rhythm. 
Pediatric and adolescent patients did not show mtDNA 
deletions; thus, mtDNA deletion seems to be associated 
with aging.37

lactate concentrations in the atrium, indicative of relative 
ischemia, result.13 ATP concentrations tend to decrease 
during acute stretch-related AF in rabbits.14

Abnormalities in atrial blood supply have been shown 
by several studies. AF acutely increases atrial oxygen 
consumption while causing atrial distention, higher atrial 
pressures and lower atrial �ow reserve.15 A study using 
intracoronary Doppler �ow measurements showed impaired 
atrial perfusion and limited coronary �ow reserve in lone 
AF patients, suggesting microvascular dysfunction.16

Pacing-induced AF acutely increases mitochondrial 
F0F1-ATPase activity in sheep atria.17 Acute AF in goats 
decreases PCr without changes in ATP and metabolic 
enzyme activity, suggesting increased myo�bril energy 
consumption.18 Thus, the literature indicates that AF is 
associated with metabolic changes related to decreased 
oxygen/nutrient delivery and/or increased energy demand.

Figure 3 summarizes the various factors that have been 
implicated in AF-related metabolic stress. These include 
changes increasing metabolic needs (enhanced cardiac work 
and energy consumption) as well as alterations that limit 
energy supply (limitations on coronary reserve, energy 
substrate supply and oxygen delivery).

Cellular Metabolic Changes in AF

Fetal Phenotype
During fetal development, glycolysis is a major energy 
source for proliferating cardiomyocytes. FA oxidation 
becomes predominant as cardiomyocytes mature and 
mitochondrial oxidative capacity increases. Glucose metab-
olism is more energy e�cient, so with pathological stresses, 
energy metabolism switches to a more fetal phenotype.19

A transcriptomic study demonstrated that patients with 
permanent AF have more fetal phenotypes of metabolism-
related gene expression than patients in sinus rhythm, show-
ing a marked increase in glycolysis-related gene expression.4 
The activity of 1,6-bisphosphate aldolase, a glycolytic 
enzyme, increases in permanent AF patients (in whom AF 
continues inde�nitely).20 Decreased glycolytic endproducts 
(alanine, lactate) relative to FA metabolism endproducts 
(acetate) correlate positively with the early onset of post-
operative AF (POAF) after cardiac surgery, suggesting 
that decreased glucose metabolism may facilitate AF.20

Myo�lament isoform-switching occurs from α-myosin 
heavy chain (α-MHC) to β-MHC in atrial tissues from AF 
patients.21 α-MHC (predominant in adult cardiomyocytes) 
produces higher-velocity muscle movement at a cost of 
more ATP and oxygen consumption than β-MHC (which 
predominates in embryonic hearts), so this switch improves 
metabolic economy. In addition, β-chain tropomyosin 
(slow-contracting myo�lament with low energy consump-
tion) and myosin light-chain embryonic muscle/atrial 
isoform expression increase in the atrial tissue of permanent 
AF patients.20

Increased Ketone Body Metabolism
Ketone bodies (acetoacetate, β-hydroxybutyrate, and 
acetone) are energy substrates produced by the liver from 
FAs and amino acids, and utilized by extrahepatic organs 
for energy production. Persistent (continuing >1 week) AF 
patients show increased β-hydroxybutyrate generation, 
with an increase in ketogenic amino acids (tyrosine and 
glysine) and 3-oxoacid-CoA transferase (a key enzyme for 
ketolytic energy production), suggesting increased ketone-
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lation attenuates this phenomenon.45 Ca2+/calmodulin 
kinase type-II (CaMK-II) is an upstream regulator of Ca2+-
handling proteins, and augments cellular Ca2+ dynamics. 
Mitochondrial ROS directly oxidize the enzyme regulatory 
domain of CaMK-II and induce CaMK-II activation.46 
Sustained CaMK-II activation leads to abnormal Ca2+ 
homeostasis, SR Ca2+ leakage and the induction of atrial 
triggered activity that is implicated in AF initiation 
(Figure 4).2

Contractile Remodeling
AF increases the risk of stroke and thromboembolism in 
association with cellular hypocontractility.47 Cardiomyocyte 
contraction depends on cellular Ca2+ dynamics, regulated 
by multiple Ca2+-handling proteins. Actomyosin-ATPase 
and SERCA2a function are linked to cellular metabolism. 
The Ca2+-handling changes associated with metabolic 
stress impair contractility and are attenuated by AMPK 
activation.23 Thus, metabolic dysfunction and compensation 
may be important in AF-related contractile changes 
(Figure 4).

Structural Remodeling
AF induces atrial structural remodeling, characterized by 
atrial enlargement and �brosis. Cardiac �broblasts are 
crucial for extracellular matrix deposition and �brosis.48 
Mitochondrial ROS are associated with �broblast di�er-
entiation and cardiac �brosis, although the mechanisms 
remain to be clari�ed.49 Several studies reported that 
oxidative stress stimulates mitogen-activated protein kinase 

Atrial Remodeling Associated With  
Metabolic Stress

Electrophysiological Changes
The sarcolemmal ATP-sensitive K+ channel (IK,ATP) opens 
when the intracellular ATP concentration decreases. 
Increased IK,ATP hyperpolarizes the membrane and shortens 
the action potential duration (APD), facilitating AF-
promoting reentry. IK,ATP is also activated by 1,3-bisphos-
phoglycerate, a glycolytic intermediate produced by the 
catalysis of glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH).38 Glibenclamide, a IK,ATP inhibitor, does not 
a�ect AF-induced electrical remodeling, arguing against a 
role for IK,ATP.39 IK,ATP channel subunits (Kir 6.2) and IK,ATP 
current density were decreased in persistent AF patients, 
possibly to counteract AF-induced APD shortening.40,41

In a computational model of AF, altered Na+/K+-ATPase 
function changed the APD90, APD restitution, and domi-
nant frequency of spiral-wave reentry.42 However, Workman 
et al reported no di�erence in the Na+/K+-ATPase current 
in atrial cardiomyocytes from patients with vs. those 
without persistent AF.43 Tran et al reported that increased 
atrial Na+/K+-ATPase expression and plasma K+-concen-
tration increase the risk of POAF.44

Atrial cardiomyocyte metabolic stress reduces the L-type 
Ca2+ current, SR Ca2+ stores and cellular contractility.23 
AMPK activation antagonizes these e�ects, and may be 
important for limiting arrhythmogenic APD shortening in 
AF patients.23 Impaired mitochondrial energy production 
induces Ca2+ transient (CaT) alternans; SERCA2a upregu-

Figure 4.  Contribution of energetic dysfunction to pathophysiology of atrial fibrillation (AF). AMPK, adenosine monophosphate-
activated protein kinase; β-MHC, β-myosin heavy chain; FA, fatty acid; TGF-β, transforming growth factor-β; ROS, reactive oxygen 
species; SERCA2a, sarcoplasmic reticulum Ca2+-ATPase type 2a.
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2 diabetes.56 In an vitro study, 4 Hz-paced HL-1 atrial-
derived cardiomyocytes showed increased ROS production 
and myolysis; treatment with metformin prevented these 
abnormalities.56 These results point to the potential value 
of AMPK activation in AF therapy.

PPAR-α/PGC-1α Pathway
Peroxisome proliferator-activated receptor (PPAR)-α, a 
nuclear receptor protein, functions as a transcription factor. 
PPAR-γ coactivator-1α (PGC-1α) increases the probability 
of a gene being transcribed by interacting with PPAR-α. 
Co-activation of PPAR-α and PGC-1α increases the 
transcription of FA metabolism-related genes. Sirtuin1, an 
anti-aging molecule, and AMPK are upstream regulators 
of the PPAR-α/PGC-1α pathway (Figure 5).

Liu et al demonstrated that the protein expression of 
mCPT-1 and GLUT4 is decreased in atrial tissues from AF 
patients compared with sinus-rhythm patients, indicating 
reduced FA oxidation and glucose transport.57 The protein 
expression of sirtuin1, PGC-1α, and PPAR-α was also 
decreased in AF. AF rabbits showed a similar decrease in 
these molecules; treatment with a PPAR-α agonist (feno�-
brate) restored the expression of mCPT-1 and GLUT4 and 
the activation of the PPAR-α/sirtuin1/PGC-1α pathway, 
suppressing AF inducibility.57

β3-adrenergic receptor (β3-AR) activation regulates energy 

and nuclear factor-κB (NF-κB) pathways,50,51 which interact 
with Ca2+-mediated pro�brotic signaling. The ROS-gener-
ator peroxynitrite induces nuclear translocation of NF-κB 
in �broblasts, leading to �broblast activation and produc-
tion of transforming growth factor-β (TGF-β), �bronectin, 
and collagen-I.52 ROS also activates pro�brotic signaling 
through Smad 2/3, a downstream target of TGF-β1.53

Genetic deletion of LKB1, an upstream regulator of 
AMPK, causes spontaneous AF that progresses into a 
persistent form in mice, mimicking the human disease 
process. LKB1 deletion causes dramatic atrial enlargement 
and �brosis.54,55 AMPK fractional phosphorylation 
increases in paroxysmal (self-terminating) AF patients but 
decreases in long-standing persistent AF.23 These observa-
tions suggest that loss of AMPK-related metabolic adapta-
tion might contribute to atrial structural remodeling and 
therapeutic resistance to AF (Figure 4).

Metabolic Modulation as a Potential  
Therapeutic Strategy

AMPK Activation
AMPK activation with AICAR improves Ca2+-handling 
and cell contraction of metabolically stressed atrial cardio-
myocytes.23 The use of metformin, an AMPK activator, is 
associated with a decreased risk of AF in patients with type 

Figure 5.  Metabolic modulation and potential therapeutic strategy in AF. ACC, acetyl-CoA carboxylase; β3AR, β3-adrenergic 
receptor; eNOS, endothelial nitric oxide synthase; SIRT1, sirtuin-1; PGC-1α, peroxisome proliferator-activated receptor-γ 
coactivator-1α; PPAR-α/γ, peroxisome proliferator-activated receptor-α/γ; TGF-β, transforming growth factor-β; TZD, thiazolidinedione. 
Other abbreviations as in Figures 2,4.
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Trimetazidine is an antianginal agent that inhibits FA 
metabolism and improves glucose utilization by blocking 
3-ketoacyl-CoA thiolase. Trimetazidine also activates 
AMPK signaling in the heart,71 and might have value in 
AF treatment.

Conclusions

There is a close relationship between cellular energy 
metabolism and AF, which is clearly associated with meta-
bolic stress. Relatively little work has been done to explore 
the mechanisms and pathophysiological importance of 
AF-related metabolic stress. A better appreciation of the 
role of cellular metabolic changes in modulating atrial 
electrical, structural, and contractile properties in AF 
might provide important new mechanistic insights and 
therapeutic opportunities for management of this challenging 
arrhythmia.
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