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1. SUMMARY 

Many areas of microbiology and biotechnology 

are directly concerned with the isolation, study or 

engineering of cells capable of (over)producing 

metabolites of commercial significance. Yet the 

study, production or improvement of such strains 

has often been at best semi-empirical. The meta- 

bolic control theory developed by Kacser, Burns, 

Heinrich and Rapoport can provide a rational and 

quantitative basis for the description and improve- 

ment of such processes. 

2. INTRODUCTION 

"It is now becoming generally accepted that understanding 

the control of biochemical processes within living organisms is 

no longer served by qualitative arguments but must involve 

quantitative methods of a very special kind' [1]. 

That the foregoing is something of a truism 

does little to hide our comparative ignorance of 

* To whom correspondence should be addressed. 

the exact way m which living cells, or complex 

ensembles of enzymes derived therefrom, control 

the rate of flux of substrates through metabolic 

pathways of interest to the microbiologist or bio- 

technolo~st. This is in contrast to the rather well- 

developed insights into how rates of reactions 

catalysed by single enzymes are affected by 

changes in the concentration of their substrates, 

products or allosteric modifiers. Yet, apart from 

questions of product recovery and the like, the 

aim in almost every area of biotechnology is to 

maximise the rate of conversion of substrate(s) S 

into product(s) P catalysed by a 'black box' sys- 

tem, the cell, or to maximise the intracellular 

concentration of a product. Thus, a proper under- 

standing of how best in principle to circumvent 

normal metabolic controls so as to lead ultimately 

to the overproduction of a particular metabolite or 

protein is prerequisite to the rational design of 

many microbiological or biotechnological research 

programmes. 

Now, as foreshadowed in the opening quota- 

tion, powerful, general and quantitative methods 

do exist with which one may properly seek to 

characterise the state, control structure and pro- 
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ductivity of (i.e.. flux through) a metabolic path- 

way. However, we are not aware of a single appli- 

cation of these methods, to date, to microbiologi- 

cal or biotechnological processes. Thus, our 

primary aim in the present article is to give a very 

elementary introduction to, and an entrde to the 

literature concerning, these 'methods of a very 

special kind', with a view to fostering their more 

widespread adoption by the microbiological com- 

munity. We believe not only that these methods 

will be of great benefit to the microbiologist, but 

also that the many interesting and 'unnatural '  

systems exploited by the microbial technologist 

will provide an important body of data of use in 

the further development of these methods. 

The approach which we shall describe is, not 

only from a mathematical standpoint [2], of a very 

general kind, and can bc applied to any system in 

which catalytic or energy-transducing centres (en- 

zymes) change diffusible substances from one form 

into another, at rates which depend upon the 

concentrations of all other diffusible intermediates 

in the system. Such systems thus include the pro- 

duction of interferons from corn-steep liquor by 

genetically modified Escherichia coil. and the crea- 

tion of Gross National Product by socioeconomic 

systems on a macroscopic scale. However, we shall 

confine our review to "simple' metabolic systems 

in which a 'cheap' substrate is converted into a 

value-added ' product'. 

The 'metabolic control theory' to which we 

allude in our title actually refers to a formalism, a 

conceptual approach involving a number of ideas, 

definitions and theorems, by which one can obtain 

a quantitative, rigorous and easily interpretable 

understanding of what controls what in a meta- 

bolic pathway. Following contributions by Hig- 

gins [3] and Savageau [4,5], the formalism 

originates with the work of Kacser and Burns [6] 

in Edinburgh, and of Heinrich and Rapoport [7,8] 

in Berlin: we shall hencefort refer to its salient 

ideas as the metabolic control theory. More recent 

reviews of the theory are by Groen et al. [9], by 

Westerhoff et al. [10], by Westerhoff and van Dam 

[11] and by Porteous [12]. It is best illustrated with 

reference to a generalised, unbranched metabolic 

pathway of the type given in Scheme 1: 

I r ....... 7 I 

S', ---, X 2 --' X 3 ~ X4 ---' ,P Scheme 1 
I ~ C~ ¢~ e4 1L 

I 

I I 

In this scheme, an extracellular substrate S at a 

certain, constant concentration is converted via a 

series of intermediates (X~) to an extracellular 

product P at essentially constant concentration. In 

the steady state (d[P]/dt  = constant = J, the path- 

way flux~ and d[Xi] /d t  = 0), every enzymic step is 

turning over at the same rate, and the levels of 

intermediates have adjusted themselves so as to 

achieve this. One might then, as a microbiologist 

or fermentation technologist, ask oneself the tradi- 

tional question of what step is rate-determining to 

the pathway flux, with the implicit assumption 

that the next stage in a mutation and selection (or 

cloning) programme aimed at maximising J should 

be directed at that step. (We shall see, however, 

that the idea of a single rate-determining step is 

inappropriate.) Yet, from observations of a single 

steady state alone one cannot even in principle 

state the extent to which any enzymic step is 

flux-controlling, since of course all are proceeding 

at the same rate. 

3. FLUX-CONTROL COEFFICIENTS 

Now we know, of course, that if we were by 

some means to effect a complete removal of any 

one of the enzymes in the pathway, the pathway 

flux would drop to zero. This is, of course, one 

criterion by which we can assess which enzymes 

are actually in the pathway, but cannot tell us the 

extent to which they are controlling the flux in a 

given steady state. To determine this we must 

make use of what Kacser and Burns [6] call the 

method of modulation. If we were to change the 

amount of an enzyme in the system by a small 

amount, AE, the metabolite concentrations would 

change and the system would relax to a new steady 

state, with a flux J'  different from J by an amount 

A J, so that a measure of the control of enzyme E 

on J would be the ratio AJ/z~E [3]. However, since 

the absolute changes AE and AJ depend on the 

units used to measure them, it is preferable to 

describe this in proportional (and hence dimen- 



sionless) terms, so that, by using such fractional 

terms, the effect is now represented as 

( A J / J ) / ( A E / E ) ,  where J is the initial flux and E 

is the initial enzyme concentration [6,7]. Further, 

since such relationships may be highly non-linear 

(Fig. 1), in the limit of a small (strictly infinitesi- 

mal) change in E we obtain a ratio ( d J / J ) / ( d E / E )  

that is independent of the step size: 

C~','def(= cldJei'j-e') ss = ( d i n  [J [ / d  In e~)ss (1) 

where the subscript ss refers to the steady state 

and C~, or C~ is known as the flux-control coeffi- 

cient of enzyme e,. (Because of the independent 

derivations of this approach, the terms and sym- 

bols equivalent to C J have had several different ¢, 
manifestations in the literature; those given here 

accord with the terminology agreed on by the 

originators of the control analysis (see [13]). In 

Eqn. 1, In refers to the natural logarithm, but the 

two natural logarithms may simultaneously be re- 

placed by base-10 logarithms. Thus, the flux-con- 

trol coefficient is the slope of the dependence of 

FLUX 

. dJtdE 

(J,E) 

i"~ _ _ 2  

/~ J2 

i i i i i 
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Fig. ]. The flux-control coefficient of an enzyme E. If the 
amount of an enzyme E in a metabolic pathway is changed by 
an amount  A E then lhe pathway flux J will change by an 

amount  AJ. Because of the non-linear relation between J and 

E, /l J /A E depends not only on the value of (J, E) but  on the 

magnitude and sign of A E. We therefore consider limiting 

(small) changes in E inducing small changes in J, so that the 

flux-control coefficient of enzyme E is defined by C~ = 

( d J / J ) / ( d E / E ) .  Since this = (d In [J I / d  In E) we may also ob- 

tain C~ as the slope of a log-log plot of  J vs. E at the value of 

(log J, log E) prevailing. 
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flux upon enzyme concentration in a doubly-loga- 

rithmic plot. IJI refers to the absolute magnitude 

of flux J; from here on we shall omit the absolute 

magnitude symbol and will consider it implied in 

every logarithm. Importantly, the definition is such 

that the change in J is considered when the con- 

centration (or rather, activity [14]) of enzyme e. 

alone is changed; the concentrations of all other 

enzymes, as well as the. values of all other parame- 

ters (see below) are to be kept constant. 

Most often, flux-control coefficients have values 

lying between 0 (no flux control) and 1 ('com- 

pletely rate-limiting enzyme'), although negative 

values (e.g. [15]) and values greater than one are 

possible. The important point, however, is that the 

magnitude of the flux-control coefficient gives an 

exact and proper measure of the extent to which a 

given enzyme (i.e., enzymic step) in a pathway 

controls the flux through that pathway. 

3.1. The flux-control summation theorem 

Repeating the above exercise for all the en- 

zymes e t . . .  e4 in the pathway of Scheme 1, we can 

define for each enzyme the extent to which it is 

rate-controlling, regardless, at this stage, of the 

mechanism by which it is exerting its rate control. 

Since we may imagine, correctly, that each enzyme 

in (or affecting) the pathway can potentially con- 

tribute to the flux control, one might imagine that 

the sum of the flux-control coefficients of the 

enzymes in (or affecting) the pathway would, when 

normalised, be equal to 1. Actually, the definition 

of the flux-control coefficients (Eqn. 1) achieves 

this normalisation, so that the sum of the flux-con- 

trol coefficients of the enzymes in (or affecting) 

the pathway = 1, a theorem which is known as the 

flux-control summation theorem, and a proof of 

which is given elsewhere [6,14]: 

C~, + C'  " '"  +C~' = ~ C '  = 1 (2) e 2 e, 
i=1 

It may be mentioned that the flux-control sum- 

mation theorem will only in general be true under 

conditions in which the substrates and effectors 

behave as a freely diffusible pool (for most appli- 

cations this is likely to be approximately true). 

This question is discussed in more detail elsewhere 

[16,17]. 
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3.2. Distinguishing the controllers from the con- 

trolled in steady-state systems 

In discussing metabolic control it is important 

to distinguish clearly between the properties that 

are set by the system itself and those that are set 

by the outside world. In a system with unchanging 

gene expression, for instance, the concentrations 

and kinetic properties of the enzymes are prede- 

termined. In contrast, the concentrations of most 

(i.e., the freely variable) metabolites, and hence 

the reaction rates, are not preset. They only attain 

a constant value as the system reaches its steady 

state. To distinguish between the preset properties 

and the properties only having a constant value 

when the system is in a steady state, we call the 

former parameters and the latter variables. Thus, 

the steady-state magnitude of any variable (the 

'controlled')  is determined by the value of all the 

parameters (the 'controllers'). Appreciation of this 

distinction between variables and parameters 

greatly reduces the confusion which may arise in 

discussions of metabolic control. In fact, the ques- 

tion of how a given variable controls a flux should 

simply not be asked. The following example il- 

lustrates this. 

If we were to increase the concentration [X3] in 

the pathway of Scheme 1 (above) by adding an 

aliquot of X 3 to the system, we would observe that 

the system would initially be perturbed from its 

steady state (V~ will initially exceed V 2 and V4), 

but would then relax back to the same steady-state 

condition which it was in before the extra X 3 was 

added. This is because the steady state of the 

system is completely determined by the parame- 

ters, in this case the concentrations and kinetic 

properties of enzymes 1 to 4 and the concentra- 

tions of S and P. Consequently the control of [X3] 

(or of any other variable) on the steady-state flux 

through the pathway of scheme 1 (or on the 

steady-state value of any variable) is zero. 

It should be noted that not all metabolite con- 

centrations in pathways are variables. Often the 

concentration of the first substrate and that of the 

final product is effectively constant over ' long'  

periods: these concentrations are then parameters. 

The concentrations of ailosteric enzyme effectors 

may also be either parameters or variables; if they 

are metabolites intermediary i- the oathway, we 

call them variables. We then call them internal 

effectors to contrast them with external effectors 

whose concentrations are set by the outside world. 

Added inhibitors are an example of the latter. We 

shall designate variable metabolites by X, exter- 

nally clamped pathway substrates and products by 

S and P and external effectors by I. 

In the preceding two sections we have discussed 

the steady-state control of one type of variable 

(the fluxes or reaction rates) by one type of 

parameter (the enzyme concentration). We shall 

now discuss two other cases of the steady-state 

control of variables by parameters. 

3.3. Flux control by pathway substrates and external 

effectors 

Changes in the concentration of the pathway 

substrate S or of an external effector will lead, 

potentially, to changes in the pathway flux, just as 

can changes in the concentration of an enzyme. 

Thus, the metabolic control theory defines flux- 

control coefficients for the control of pathway flux 

by pathway substrate S or by external effector I ,  

in the same way as it defines the flux-control 

coefficient of enzyme e i, dropping square (con- 

centration) brackets and absolute magnitude signs 

for clarity: 

= d-S'-J- s s = ( d l n J / d l n S ) s s  (3) 

, a~f( dJ l . )  = ( d l n J / d l n l n ) s s  (4) 
C t "=  . d I , , ' J - . s s  

It may be noted that in the absence of an external 

effector (I,, = 0) the flux-control coefficient for the 

control of pathway flux by that effector equals 

zero. 

3.4. Concentration-control coefficients and their 

summation 

Complementarily, the level or activity of en- 

zymes can effect ( 'control ')  the concentrations of 

metabolites and, by interaction with enzymes, any 

external effector can control (affect) the con- 

centration of any metabolite. Thus, the metabolic 

control theory defines a family of concentration- 

control coefficients. The concentration-control 

coefficient for the control exerted by enzyme e, on 

metabolite X~ is given by: 



c x ' d e f (  d x l "  e---L) = ( d l n X J d l n e i ) s s  (5) 
, d e, X~ ss 

and the concentration-control coefficient of path- 

way substrate S on metabolite Xj by: 

C,..; , = x  der t [ dXJds xjS ) ss = (d In X J d S ) s  s (6) 

The concentration-control coefficients, like the 

flux-control coefficients, also obey a summation 

theorem. In this case, however, their sum equals 

zero [8]. For the control on the concentration of 

any metabolite X: 

c x + c x + C x = 0 ( 7 )  
e l  2 " " " ~ n  

It may be noted that this implies that at least one 

of the enzymes must exert a negative control on X, 

in the sense that an increase in the activity of that 

enzyme will lead to a decreased steady-state con- 

centration of X. Intuitive considerations of the 

control structure of metabolic pathways are in line 

with this theorem. 

4. ELASTICITY C O E F F I C I E N T S  

We have noted that steady-state reaction rates 

(fluxes) and metabolite concentrations are func- 

tions of the parameters of the system (such as 

concentrations and kinetic properties of the en- 

zymes) but not of the variables such as concentra- 

tions of (most) intermediary metabolites. Yet we 

know that when we change the concentration of a 

metabolite, the ' instantaneous '  reaction rate of at 

least the enzyme for which it is a substrate changes. 

Although this change will disappear as the system 

returns to its original steady state, its magnitude is 

nevertheless important for describing the control 

structure of the metabolic system. In metabolic 

control theory, this initial change in rate relative to 

the causative change in metabolite concentration 

(both taken as fractional changes) is called an 

elasticity coefficient. In contrast to control coeffi- 
cients, where changes between steady states are 

considered, an elasticity coefficient relates a change 

in a reaction rate to a change in one of the 

enzyme's effectors, at constant magnitude of all 

other factors which may affect the reaction rate. 
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The product concentration, for instance, is consid- 

ered fixed if one considers the elasticity coefficient 

of an enzyme e, for its substrate X,. In this sense 

as elasticity coefficient shares features with an 

'apparent  K,. '  or '$1/2'. Thus we have: 

~x',= lim / - - I / /  (8) 
8x 40~ V i ]/ ~ .[Sl.iPl.lXjl.letl 

Through the definition of partial differentials, this 

may be rewritten in two different ways: 

v, [x,] C av, ) 
x, v, / isl.fPi.fx, le  

ln lV , 
(9) 

In these equations, the subscript variables and 

parameters are to be held constant in the differ- 

entiation. Indeed, elasticity coefficients differ from 

control coefficients in that they are partial deriva- 

tives (~), measuring a change with all other poten- 

tial variables kept constant. The control coeffi- 

cients are total derivatives (d) because they take 

account of the total change in the variable con- 

cerned, allowing for effects through changes in all 

other variables. A second important difference be- 

tween elasticity coefficients and control coeffi- 

cients results: at given metabolite concentrations, 

the former are properties of single enzymes (they 

are ' local '  properties) whilst the latter are proper- 

ties of the system as a whole. 

A convenient device by which one may more 

clearly discern the meaning of the shorthand em- 

bodied in the symbols for these control and elastic- 

ity coefficients is to note that their subscripts 

relate to the ca~es of a potential change, and their 

superscripts to an effect. Thus the symbol C J is e, 
the flux-control coefficient of enzyme e, on the 

flux J, and Ce'x, or C'x, is the elasticity coefficient of 

enzyme e i with respect to metabolite X i. 

The turnover number of many enzymes may of 

course be modulated not only by the concentra- 

tion of their substrate(s) (and product(s)) but by 

other (usually allosteric) metabolites or ' internal 

effectors', substances which, in formal terms, may 

be some distance from the primary pathway of 

interest. Thus, an enzyme will have a family of 
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elasticity coefficients towards metabolites X j, de- 

fined exactly as in Eqn. 9: 

+v t 
×,= v, 0[xj] tsHPHx HE  ,,,+ 

(10) 

Up to this point, we have only considered the 

direct effects on reaction rates of changes in vari- 

ables, i.e., concentrations of internal metabolites. 

Changes in parameters may also produce direct 

effects upon reaction rates, effects which are also 

quantified by means of elasticity coefficients. Thus, 

one has an elasticity coefficient of enzyme e. with 

respect to the external inhibitor I , ,  defined by: 

,im +v) ,1,, 
\ sn .~0  61I , ]  Vi tSl.tr'l.tX,lx.Km.U 

If the external inhibitor is already present in the 

system (I n :~ 0), then this definition may be rewrit- 

ten as: 

c v, ( 0 l n l V ' l  ) (12) 

Regarding elasticities, changes in two types of 

parameter  warrant extra attention. One is a change 

in total enzyme concentration. Here we will not 

pursue enzyme-enzyme interactions and mono- 

mer-dimer equilibria. The elasticity coefficient of 

an enzyme with respect to itself then becomes 1 

and its elasticity coefficient with respect to any 

other enzyme becomes 0: 

v, I (13) 

V, 
% = 0 if i 4:j (14) 

The other change is one in a Michaelis constant 

for a substrate or a product. In almost all rate 

equations, the concentration of every metabolite 

(substrate, product or internal effector) occurs as 

its ratio with respect to its Michaelis or binding 

constant. As a consequence, the elasticity coeffi- 

cient of an enzyme with respect to the concentra- 

tion of a metabolite equals m i n u s  its elasticity 

coefficient with respect to the corresponding 

Michaelis or binding constant, here designated as 

g 3: 

c v' - c  v' (15) 
xJ  = K, 

Like control coefficients, elasticities are dimen- 

sionless quantities. For simple reactions not close 

to equilibrium, the elasticity coefficient for the 

substrate tends to lie between 0 and 1 and that for 

the product between 0 and - 1. For reactions that 

are close to equilibrium, these elasticity coeffi- 

cients can become much greater than 1, and much 

lower than - 1 ,  respectively. If the kinetic rate 

equation of an enzyme-catalysed reaction is known, 

its elasticity coefficients may be calculated directly 

by partial derivatisation (differentiation) in line 

with Eqns. 9-11. For instance, for the simple 

irreversible, product-inhibited reaction rate: 

vj 
V j -  Xj Xj+ 1 (16) 

+ - -  
r 

Kj K] + t 

one finds: 

It is seen from this that if the concentration of the 

product of reaction j is far above its product 

inhibition constant K++ 1, the elasticity coefficient 

for the substrate X~ tends to 1. If the enzyme is 

saturated with respect to its substrate, however, its 

elasticity coefficient for the substrate X~ tends to 

zero. Importantly, the elasticity coefficient of an 

enzyme (towards a given effector) is not a cons tan t  

property of that enzyme; it is a property that 

depends upon the conditions (including the 

metabolite concentrations) under which the en- 

zyme is working. Indeed, this is the reason why the 

extent to which an enzyme controls the flux 

through a pathway may vary with conditions (see 

e.g. [18]). Of course, since in any steady-state 

situation the concentrations of metabolites are de- 

termined by the values of the parameters, the 

elasticity coefficients are also ultimately functions 

of the parameter values. 

Now, we are well aware that these terminolo- 

gies, by their unfamiliarity, and the above equa- 

tions, with their many subscripts, superscripts and 



Greek letters, may (as they did to us) appear 

daunting on the first reading. However, we hope 

that the beauty, power and rigour of the metabolic 

control theory of Kacser, Burns, Heinrich and 

Rapoport,  and the improved understanding of 

metabolic control (and how to circumvent such 

control) which it brings, will more than com- 

pensate the short time necessary to become 

acquainted with these notions. Armed with the 

definitions above, we are now in a position to see 

how we make use of the theory in real life. How- 

ever, we begin with one other crucial set of theo- 

rems, the connectivity theorems. 

5. THE CONNECTIVITY THEOREM(S) 

Enzymes which have high elasticities tend to 

have low flux-control coefficients, a statement 

which may be most simply visualised as follows. 

Imagine that we inhibit a given enzyme e, by a 

small amount, as we do when assessing its flux- 

control coefficient. The initial effect will thus be 

an increase in the concentration of its substrate 

X~, which in turn will either serve significantly to 

increase the flux through the step catalysed by 

such enzymes ('if X i < or = Km' ) or will fail to do 

so (' X i >> Kin')" The former circumstance is associ- 

ated with a high elasticity coefficient (significant 

change in rate for small change in X i), whilst the 

latter implies a low elasticity with respect to the 

substrate (small change in rate for a given change 

in X i). By extending such qualitative notions to all 

enzymes in the pathway we have the flux-control 

connectivity theorem: 

c~ .G  + c~ ' .G-- .  +cd.,~,= 0 (18) 

o r  

n 

i = 0  (19) E c : . ,×  
i = l  

where e~. . .e  n are any enzymes which are related 

or connected to each other by sharing any inter- 

mediate pool X, which may be any metabolite or 

internal effector [6]. 

In particular, for two adjacent pathway enzymes 

lacking feedback inhibition, such as enzymes 1 

and 2 in Scheme 1, Eqns. 18 and 19 reduce to: 
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c ~ .  ~, + c L .  : :  = 0 (20) 
{ X 2  . X2 

o r  

J J e~ e I Q/Ce:  = -c~2/{x: {21) 

In other words, the flux-control coefficients of two 

adjacent enzymes in a metabolic pathway tend to 

be inversely related to their elasticity coefficients 

to their common metabolite. 

Similarly, there are two connectivity theorems 

[10,19] which relate metabolite concentration-con- 

trol coefficients to elasticity coefficients: 

L cX . . . .  1 (22) e, " { X  

i = l  

and 

L Cx e, = 0 (23) 
"e, " { Y  

i = l  

where in the latter case X and Y are different 

metabolites. Finally, for a specific external effec- 

tor I acting on any enzyme e i, it may be shown [6] 

that: 

C i C j e' (24) = e, " { l  

It may be noted that in the absence of any exter- 

nal effector (I = 0) this equation is trivially satis- 

fied. Groen et al. [9] have shown that in that case 

the following non-trivial equation holds: 

d l n J  I / ( a l n V i ]  ( d J ]  / ( 3 V i  

cd = (d-GTn i Jss/t a~-~-n i f = t h-i-/.~s/t ~i- ) (25) 

5.1. Expressing the flux-control coefficients in terms 

of the elasticity coefficients 

For an unbranched pathway, the connectivity 

and summation theorems provide sufficient equa- 

tions to solve for the control coefficients. For the 

pathway given in scheme 1, with the possibility of 

feedback inhibition of X 4 on e 2 one finds [20]: 

C~ = P2 P3 P 4 / Z  (26) 

CJ = 03 P4/~_, (27) 

C J3 = O , / E  (28) 

C J = ( I + P 4 - ~ ) / y ' ~ 4  (29) 
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Table 1 

A calculated example of flux-control coefficients for the case of 

scheme 1 in the absence and presence of feedback inhibilion by 

X a on e 2 

Assumed magnitudes for the elasticity coefficients were zero 

except for c ~ 2 = - 0 . 9 ;  Cx  ,=0 .5 ;  ~x~" = - 0 - 2 :  ~x~3 =0.7: Cx~- 

= 0 (no feedback inhibition) or - 1  (feedback inhibition); 

3 -0.1;  and a 0.9. 
~ X 4  ~ I [ X a =  

No feedback inhibition Feedback inhibition 

Ci ~ 0.30 0.19 

C J 0.53 0.34 

C~ 0.15 0.10 

('~ 0.02 0.38 

with 

def I[ 2 

E -= P2 P3 P4 + P3 P4 -t- 1 + P4 _"~ ( 3 0 )  
I[ 4 

and 

def 
i - i - t  (31) 

Pi = -- Cx, /CX, 

O~ is thus the ratio of the two elasticity coefficients 

of the adjacent enzymes with respect to metabolite 

Xi, i.e., that to which X, is a substrate and that to 

which X. is a product, respectively. Most often 

values of 0 exceed 1. A negative ~] implies that X 4 

inhibits e z. By way of a numerical example, we 

have calculated the flux-control coefficients for a 

case without and with feedback inhibition of X 4 

on e 2. The results, which are perhaps counter-in- 

tuitive, are given in Table 1. 

6. A BIOTECHNOLOGICAL QUESTION 

Taken together, the summation and connectiv- 

ity theorems provide the microbiologist and bio- 

technologist with a tool suitable for finding 

quantitative and mechanistic answers to questions 

such as: 'which enzymes are most rate determin- 

ing to the flux through a metabolic pathway (and 

why)?' and 'what  manipulations should I do to 

increase the flux through a certain pathway?' (e.g., 

a pathway synthesising and excreting a desirable 

substance) or 'what  should I do to increase the 

intracellular concentration of a certain metabo- 

lite?' (e.g., if the substance is to be obtained by 

harvesting and lysing the cells). We shall here 

address the former types of question. 

Let us suppose that we have a pathway like that 

of Scheme 1 : 

Q 
r . . . . . . . . .  "1 

S - ~ X 2 - ~  X 3 ~ X 4 - - * P  
~I ~2 e~ c 4 

From unspecified evidence, we may (i) suspect X 4 

to exert a significant feedback inhibition on e 2. 

There may also be other reasons why, from tradi- 

tional considerations, we may expect that reaction 

2 in the pathway may be providing a bottleneck, 

such as (ii) the concentration of X 2 may be much 

lower than the S~/2 of enzyme 2 for X 2 (i.e., 

enzyme 2 is operating far below its maximum 

capacity) or (iii) the 'concentration' of enzyme c 2 

(in terms of V,~ or k~t) is much lower than that 

of the other enzymes in the pathway. Since enzyme 

2 is perceived as the bottleneck, a general strategy 

directed at increasing the flux through the path- 

way would seem to be to increase the concentra- 

tion of enzyme 2, for instance by placing its 

synthesis under the control of a stronger promoter. 

More specifically, for case (i) above one might 

seek to modify enzyme 2 so that it is less subject to 

feedback inhibition, whilst for case (ii) one might 

opt to modify enzyme 2 so that it has a lower K m 

(or higher k~t/K m) for its substrate. 

Given the availability of modern methods of 

genetic and protein engineering, the question arises 

as to which of these is the best strategy, or is there 

perhaps a set of strategies we have overlooked? 

Metabolic control theory allows us to obtain a 

clear and quantitative answer, 

Suppose we might in one strategy be able to 

decrease the binding constant of enzyme 2 for X 4 

(which we shall call K 2) by a%. If a is small, 

equation 17 gives the effect of the decrease in K 4 

on the flux: 

d In J = - C~,. c~,~. a% (,32) 

With the help of Eqn. 15 we may also write this 

as~ 

d l n J = C ~  .~2 .a% (33) 
2 X 4  

Similarly, the strategy which would decrease the 

K m of enzyme 2 for its substrate by b% (whilst 

keeping the Vm~ ~ constant) would lead to an in- 

crease in the steady-state flux of: 

d In J C J = ~ . ~  .b% (34) 



If the third strategy were to increase the con- 

centration of enzyme 2 by c%, it would increase 

the steady-state flux by: 

d In J = C~. c% (35) 

Consequently, a rational choice between these 

strategies would be to compare the magnitudes 

a, 2, to b,2x: to c, and pick the largest. 

I f  intuit ion had not already done so, the meta- 

bolic control theory analysis would tell us that i f 

indeed enzyme e 2 is subject to strong feedback 

inhibit ion by metabolite X 4, the strategy of in- 

creasing the concentration of enzyme e 2 is prob- 

ably not the best. As suggested by Eqn. 29 (at high 
2 3 

q / ' 4 )  and demonstrated by our numerical exam- 

ple in Table 1, such a feedback inhibition will 

actually shift the flux control to enzyme 4. Conse- 

quently, in a case with such feedback inhibition it 

may be wiser to increase the concentration of 

enzyme 4 or even (depending upon the magnitude 
4 

of Cx,) decrease the K m of that enzyme for X 4 

than to increase the concentration of enzyme 2. If 

d% and e% are the percentage changes we are able 

to impose on the K m of enzyme 4 for X 4 and the 

concentration of enzyme 4 respectively, the 

quantitative evaluation should consider: 

d In J = - C~J • 4 . d% (36) 
X4 

d i n  J =  - C  J . e %  (37) e4 

Thus far we have only considered changing 

parameters which a combination of intuition and 

control theory most obviously suggest. We may 

still have overlooked changes which may be even 

more effective in increasing the flux. Elsewhere 

[20] we develop a completely systematic strategy, 

which also incorporates matrix forms of the 

metabolite concentration-control and connectivity 

theorems. We illustrate this approach [20] here for 

the case of a linear 4-enzyme pathway such as that 

of Scheme 1. The largest element of the following 

matrix turns out to correspond to the best strategy: 

"8. In(K]) "8 ln(K ) 

ln(X ) ln(K ) 
-C{.,x:S "81n(K?) -CJ't3x,'81n(Kj 

-CJ.¢4..Sln(K ) -C4J-c4 .81n(K;) 

-C~. 

_ C  J . 

-c; .  
_ C J . 
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Here K~, is the Kin, Ka or K, of e n z y m e j  for 

metabolite k, 8 In KJk the change in KJk one can 

achieve by genetic manipulation and 8 In ej the 

change in enzyme concentration one can achieve 

by genetic manipulation. In our numerical exam- 

ple with feedback inhibition and assuming equal 

1% changes in all the parameters, the matrix A 

becomes [20]: 

- 0 . 1 7  

0.17 
100 A = 

0 

0 

0 0 0,19 

- 0 . 0 7  - 0 . 3 4  0.34 

0.07 - 0.01 0.10 

0 0.34 0.38 

39) 

Clearly this would plead for increasing e 4 or %, 

decreasing K~ or increasing K~. In this particular 

example these four strategies would be approxi- 

mately equally effective. 

7. M E A S U R E M E N T  OF F L U X - C O N T R O L  CO- 

EFFICIENTS 

From the definition of the flux-control coeffi- 

cient of an enzyme (Eqn. 1), i.e. C J =  ( d J / J ) /  
el 

(dei /ei) ,  it is obvious that a more or less direct 

measurement of C J comes from a study of the 

effect of (small) changes in enzyme concentration 

on the pathway flux. One way to change the 

concentration of an enzyme is of course by genetic 

means, and Kacser and his colleagues (e.g., [21,22]; 

see also [23]) have used this approach with Neuro- 

spora crassa by creating heterokaryons expressing 

different amounts of the enzyme of interest. The 

principle is illustrated in Fig. 3. Possible pitfalls in 

the simplest type of interpretation of experiments 

of this type include the presence of pleiotropic 

effects (see below). Nonetheless, this experimental 

program has given a very clear explanation for the 

fact that most mutations in diploid organisms are 

recessive: since the flux-control coefficient of most 

1 " S l n ( K ~ )  C ~ . d l n e t  ~X4 

.Sln(K ) C: .d ne2 X4 

4,.a ln( 2) C -O lne  

~' .aln(K~) C~.dlne4 X4 

(38) 
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RATE OR 

TURNOVER 

NUMBER 

OF 

ENZYME 

i I J 

ESUBSTRATE (OR EF'FEC]'OR)'I 

Fig. 2. The elasticity coefficient of an enzyme with respect to 

its substrate. The curve shows a hypothetical enzyme (with 

highly non-linear kinetics with respect to its substrate). The 

elasticity coefficient is defined as the fractional change in 

enzyme turnover number divided by the fractional change in 

substrate concentration (activity) as these tend to infinitesi- 

mally small values under conditions in which all other effectors 

are present and maintained at their in vivo levels. Each enzyme 

thus has a family of elasticity coefficients, one for every 

substrate and effector. The elasticity coefficients may loosely 

be thought of as relating to whether the system is operating 

below or above the K m or K, of its substrate or effector. 
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Fig. 3. Estimation of the flux-control coefficient of an enzyme 

by varying its level of expression in a heterokaryotic organism. 

As in Fig. 1, C~ = ( d J / J ) / ( d E / E ) ~  s. 

enzymes is low, decreasing their concentration by 

even 50% has a rather modest effect on the flux 

through the pathway(s) in which they are involved 

[24]. This fact (that the flux-control coefficient of  

most enzymes is relatively small, especially in long 

pathways) might be anticipated from the fact that 

C~ = 1, and also serves to explain why so mare' 

rounds of mutation and selection are generally 

required to produce a 'productive' strain (e.g. 

[25,26]); even the penicillin fermentation, which 

through countless rounds of more or less empirical 

mutation and selection has improved its productiv- 

ity from 2 U / m l  to 50000 U / m l  in the last 40 

years or so, still only converts some 6% of the 

added carbon source to the desired product [27,28]. 

With the modern ability to place the gene 

specifying as individual enzyme under the control 

of  promoters of  different strengths, one now has 

the ability to do very clean and elegant experi- 

ments of  this type so as to measure the flux-con- 

trol coefficient, although we know of only one 

such approach to date [29]. A related approach 

cloning different enzymes of lysine biosynthesis 

into pBR322 was also described [30]. 

A simpler method of obtaining the flux-control 

coefficient is by the use of specific inhibitors (Fig. 

4) if these are available. In the case of a tight-bind- 

ing ('irreversible') inhibitor, the flux-control coef- 

ficient may be read directly from a plot of  the flux 

against the inhibitor concentration [9,10,17], al- 

though for weaker or competitive inhibitors more 

complex expressions must be used [9]. Again, in 

the modern era, one might seek to apply mono-  

clonal antibodies against individual enzymes in 

permeabilised cells (31], so that this method should 

become generally suitable even in the absence of a 

previously known inhibitor. (Pitfalls here may in- 

clude the presence of inhibitor-binding sites differ- 

ent from those of active target enzymes; their 

presence will lead to an underestimation of the 

flux-control coefficients.) 

In the case of mixed cultures or consortia, one 

may similarly describe flux-control coefficients for 

organisms.  Since the principles involved are identi- 

cal to those for assessing the flux-control coeffi- 

cients of enzymes,  we do not here consider this 

topic further. 

As we have seen, an assessment of each of the 
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(flux) 

3 

(flux) 

I I I I I 

A 

-- 

[ inhibi tor]  41' 
i m a x  --- [ E i ]  

! I i I I 

B 

[ inhibitor] 'I L 

Imax - [ E i ]  

Fig. 4. Estimation of the flux-control coefficient of an enzyme 

by titration of the pathway flux with a specific inhibitor. Since 

one is usually interested in the flux-control coefficient of an 

enzyme in the absence of inhibitor, equation 25 is the preferred 

method of analysis. For a tight-binding, all-or-none type of 

inhibitor (A) the titration of the rate V, at constant metabolite 

concentrations would give the line of open circles; a v i / a I  

would amount to tan(r ) .  The point I ,~ ,  may be obtained 

reasonably accurately by simply extrapolating the lower region 

of the titration of the steady-state flux. d J / d I  amounts to 

tan(a). For a non-tight-binding inhibitor (B), the titration of 

the enzymic rate at constant metabolite concentrations is not a 

straight line. Consequently, tan(a) can only be obtained em- 

pirically or calculated from the rate equation of the inhibited 

enzyme. In both A and B, C J. = tan(a)/tan(B). 

flux-control coefficients will tell us which steps are 

the most rate-limiting and to what extent. To find 

out why we must measure the elasticity coeffi- 

cients. 

8. MEASUREMENT OF ELASTICITY COEF- 

FICIENTS 

From the definition of elasticities given in equa- 

tion 8 (c v', = (Xj /V i ) / (oVi /o  X j ), at constant con- 

centrations of all other effectors), we find that the 

elasticity of an enzyme towards metabolite or ef- 

fector Xj = the relative change in turnover number 

caused by a small relative change in the concentra- 

tion of metabolite Xj. For some enzymes the kinetic 

rate equations have been determined and the elas- 

ticity coefficient can be calculated by differentiat- 

ing this rate equation with respect to the effector 

considered. The most common expressions, devel- 

oped by Heinrich et al. [14] and Groen et al. [9], 

may also be used to make rough estimates of 

elasticity coefficients even if the properties of the 

enzyme are only approximately known (e.g. if 

S ~ K, n and P ~ 0.1 Kp and the enzyme catalyses 

an 'irreversible' reaction). 

Preferably, one would determine the elasticity 

coefficients experimentally. This might be done by 

isolating the enzyme, either physically or function- 

ally, incubating it under what one thinks to be the 

in vivo conditions (of pH, metabolite concentra- 

tions, temperature, etc) and measuring its rate 

before and after adding a small concentration (i.e., 

8Xj)  of Xj (see Fig. 2). This approach has some 

difficulties, but perhaps less than might be anti- 

cipated. There is the obvious problem that during 

isolation e, has been damaged and its kinetic 

properties (and hence its elasticity coefficient) 

changed. Also, allosteric effectors influencing the 

activity in vivo might be absent in vitro. On the 

other hand, the fact that the activity coefficient 

(3') of the metabolite for which the elasticity coef- 

ficient is measured probably differs from that in 

vivo is not generally in fact a very severe problem: 

because relative changes are considered, 3' tends 

to drop out. In the definition of elasticity coeffi- 

cients, the effect of a change in say X j, is sought in 

:he absence of changes in the concentration of the 
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other intermediates. In an in vitro system, this is 

readily achieved. 

One may also measure elasticity coefficients in 

systems closer to the in vivo situation (e.g., non- 

growing, washed cell suspensions). The problem 

then becomes to perturb the concentration of a 

specific metabolite at constant concentrations of 

the other metabolites and measure the effect on 

the reaction rate of interest. In an intact system, 

however, it is often impossible to measure a change 

in reaction rate before the concentrations of cer- 

tain metabolites have changed. There are two ways 

round this problem. The first [6,32] uses two dif- 

ferent steady perturbations. For the reaction rate 

of enzyme 3 in scheme 1 the following equation 

holds: 

3 .8  In[X3] + ~ .  ~ ln[X4] (40) 8 In V3=(  3 

This equation remains valid for the transition to a 

new steady state. Two different (i.e., one from the 

left and one from the right) stationary perturba- 

tions give two equations from which the two un- 

known elasticity coefficients may be calculated. 

The second method [33] can be used when a 

branch is present in (or can be introduced into) 

the pathway. If we consider: 

S-* X2---,, X3--~ X4--. P 

X5 

then one may vary both e4 and e 5 such that X 4 is 

varied, V 3 changes but X 3 is constant, c] then 

equals ~ In V3/~ In X4. 

Yet another way to determine the elasticity 

coefficient is by measuring the control coefficients 

and then calculate 'backwards '  to the elasticity 

coefficients. This may seem to introduce a cir- 

cularity if later these elasticity coefficients are to 

be used in calculations of flux-control coefficients. 

This is not always so, however. If one keeps the 

initial part  of a pathway the same but varies its 

terminal stages then elasticity coefficients of the 

initial enzymes do not vary but their control coef- 

ficients do. An extensive example of the estima- 

tion of elasticity coefficients by combinations of 

the above methods for gluconeogenesis may be 

found in [34]. 

9. MORE COMPLEX PATHWAYS 

From a consideration of simple linear path- 

ways, albeit incorporating feedback loops and al- 

losteric effectors, we have seen (i) how the flux- 

control coefficients give us a direct measure of the 

extent to which a given enzymic step is rate-con- 

trolling; (ii) how the elasticity coefficients give us 

quantitative mechanistic information about why a 

step exerts strong rate control; and (iii) how flux- 

control, elasticity and concentration-control coeffi- 

cients are related to each other by connectivity 

theorems. These are the fundamental parts of the 

metabolic control theory. We have also seen how 

the theory provides a simple, natural and rational 

explanation for why one has to go through so 

many rounds of mutation and selection to obtain 

highly overproducing strains, since flux control is 

shared by all enzymes in a pathway [16]. 

The theory may be extended to treat metabolic 

pathways of arbitrary complexity, and in this sec- 

tion we draw attention to some situations of more 

particular interest to the biotechnologist. We have 

thus far only discussed steady states. However, 

transients between (asymptotically stable) steady 

states may also be treated [14,35]; experimental 

difficulties connected with the rapid measurement 

of fluxes and metabolite concentrations in tran- 

sient conditions suggest that the transient analyses 

will not find as much use as steady-state analyses, 

although it should be suitable for the study of the 

enhanced productivities of continuous cultures of 

certain bacteria when operated under non-steady- 

state conditions, an area of intense current interest 

[36,37]. 

In Scheme 1 we allowed S and P to diffuse 

across the cell membrane as if by magic; in prac- 

tice, of course, carrier-mediated fluxes can often 

exert a considerable rate-limitation, and a good 

example is given by the improvement in fermentor 

productivity caused by the selective permeabilisa- 

tion of the Corynebacterium glutamicum plasma 

membrane to glutamate (induction of carrier slip 

[38]) by biotin limitation or with certain 

amphiphiles [39,40]. Any reaction step is simply 

incorporated into the metabolic control theory as 

an enzymic step, whether it is associated with a 

chemical transformation or transport. 



Cell growth, even in an exponential culture, is 

not a strictly (stationary) steady state but an ex- 

panding steady state [1]. Only minor modifica- 

tions to the simple theory given above are needed 

to accommodate this, and over short-term periods 

a growing culture may adequately be treated as a 

(stationary) steady state. 

Up to this point our examples have been limited 

to unbranched pathways. This is because for such 

pathways the summation and connectivity theo- 

rems provide sufficient equations to express the 

control coefficients in terms of the elasticity coef- 

ficients. With branched pathways, however, whilst 

the summation and connectivity theorems remain 

valid, additional theorems are needed to obtain 

expressions for the control coefficients in terms of 

elasticity coefficients and flux ratios. The general 

form of these equations [14,19,41,42] is somewhat 

complex; we will here illustrate them for the path- 

way of Scheme 2: 

e2 

S --* X Scheme 2 
e, 

P2 
C3 

The following equations follow from the fact that 

the steady-state production rate of X must always 

equal zero [141: 

8 : v r  - - v z .  4 .  - v , 4 .  - 0 

(41) 

8~ (the Kronecker delta) equals 1 if r = 1, and 0 if 

r :~ 1. For this simple example the equations read- 

ily allow one to solve for the concentration-control 

coefficients. For instance, taking r = 1 we find: 

, 
I/C~' = , ~  + e2.  ~-7 + , 3  x 1 - ~ 7  (42) 

Chen and Westerhoff [42] elaborated a numerical 

example of a more complicated metabolic path- 

way and showed how, using solely equations of 

the type of Eqn. 41, the concentration-control 

coefficients can be expressed in terms of elasticity 

coefficients and flux ratios at the branches [14]. 

Additional equations relate flux-control coeffi- 

cients to concentration-control coefficients. For 
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Scheme 2: 

C~ ~ = , ~ .  C x (43) 

which gives for r = 1" 

,2  V2 ,3 x { 1 _  V2] 
1 / c v ' = l + ' - - T ' V - - + ' - z - ' k  - -  k / }~-I (44) 

Because one may change e 2 and e 3 such that the 

total flux through the two branches does not 

change, the following theorem also holds for 

scheme 2 [41]: 

V 2 • C~' = V 3 • C V' (45) 

Fell and Sauro [41] devised a simple algorithm 

which also uses this equation plus the summation 

and connectivity theorems to express the control 

coefficients in terms of the elasticity coefficients. 

Both the procedure of Heinrich et al. [14] (cf. 

[42]), and that of Fell and Sauro [41] involve 

matrix inversion. However, with the present 

ubiquity of microcomputers this is no longer a 

problem. The take-home message is that, for path- 

ways of arbitrary complexity, the control coeffi- 

cients can be expressed in terms of enzymic prop- 

erties (i.e., the elasticity coefficients) and the flux 

ratios at the branches. 

Although the validity of metabolic control the- 

ory is general, there are a number of caveats, in 

the sense that its definitions should be carefully 

adhered to. For instance, for branched pathways 

care must be taken in assessing the sign of the 

flux-control coefficients. It is easy to appreciate 

this [1,15] by considering a branched pathway of 

the form: _~X4 --' Xs --' P1 
• e4 e5 

S ~ X2 ~ X3 Scheme 3 
el e2 

X7 --' X8 -" P: 
¢~ e7 e8 

In this case, e 3, e 4 and e s will (usually) have 

negative flux-control coefficients with respect to 

the flux towards P2 (and positive flux-control 

coefficients with respect to the flux to Pa), so that 

an experimental program designed to maximise 

the flux to P2 will, of course, have to devote some 

attention to minimising that to P1. Thus, in Scheme 

3, the flux-control summation theorem would ap- 
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parently be violated if we only (and incorrectly) 

considered the pathway leading to P2 (i.e., C~ + 
C J + C 6  J + C J T + C  J = X > I ) ;  however, C J 3 + C J +  

C l - X  leaves the flux-control summation theo- 
5 = 

rem unmodified. Another caveat is that elasticity 

coefficients of enzymes with respect to their prod- 

ucts will tend to be negative (an increase in prod- 

uct concentration usually leads to a decrease in 

reaction rate). 

Control coefficients are defined with respect to 

a change in enzyme concentration. If enzyme con- 

centrations are of the same order of magnitude as 

metabolite concentrations, metabolic control the- 

ory remains valid provided that it is interpreted in 

terms of total enzyme concentration (i.e., [E} + 

[ES] + [EP]) [14]. In the case of monomer-dimer 

equilibria of enzymes where only the dimer is 

active, the definitions should be taken as referring 

to the dimer concentration. Special care must also 

be exercised when enzymes are present that couple 

two reactions with a variable stoichiometry (slip- 

ping enzymes), rate (isozymes) or participate in 

' substrate cycles'. 

The control coefficients have been defined as 

the change in flux (or metabolite concentration) 

relative to a change in enzyme activity at constant 

activities of other enzymes in the system. In real 

systems, amplification of the expression of one 

gene may well lead to an altered expression of 

other genes. In that case, prediction of the result is 

obtained by multiplying the control coefficient of 

each gene (enzyme) affected by the relative extent 

to which its activity has been changed and sum- 

ming the results. 

Perhaps the most serious caveat pertains to 

those metabolic systems where metabolites are not 

freely diffusible but are instead 'channelled' di- 

rectly from one enzyme to another [16,17,43]. Here 

again it may well be impossible to increase the 

activity of one enzyme in a metabolic sequence 

without affecting the activity of others (the en- 

zymes may form a supercomplex, or may even be 

constituted by a single polypeptide chain). In these 

cases, the flux-control coefficient determined by 

increasing the enzyme concentration by a small 

amount will differ from that determined by de- 

creasing the enzyme concentration by the same 

small amount. Sections of metabolic pathways 

that are organised in a channelled fashion are 

most appropriately treated as a unit within the 

framework of metabolic control theory. 

10. RELATIONSHIP OF METABOLIC CON- 

TROL THEORY TO TH E OPTIMISATION OF 

MICROBIAL ACTIVITIES 

The optimal control strategy for a metabolic 

[10] or free energy-transducing [44,45] systems de- 

pends upon the 'purpose'  of that pathway or 

system, and whilst such a discussion is only freed 

with difficulty from teleological arguments, it is 

reasonable in the present context to enquire briefly, 

and in the most general terms, as to what type of 

control structure might be one's goal in the 'de- 

sign' of a system aimed at maximising the flux 

through a particular pathway. 

Alone, the control analysis does not tell us how 

to maximise a metabolic flux so that it is at its 

theoretical, diffusion-controlled limit. What it does 

tell us, however, is (i) how to seek to approach this 

ideal and (ii) that different conditions may show 

(or require) that particular types of enzyme have 

relatively high or relatively low elasticities with 

respect to particular effectors [10]. We here con- 

sider the particular case in which, regardless of the 

energetic efficiency, it is desirable to maximise the 

flux through a particular pathway. 

It is usual to regard the perfectness or 'ef- 

ficiency' of an individual enzyme in terms of the 

ratio kcat//Km [46,47] or kcat/K s [48]. When con- 

sidering a whole pathway, however, the description 

of the 'efficiency' of a particular enzyme is better 

phrased in terms which take account of the a m o u n t  

of that enzyme, to give the so-called' kinetic power' 

[491. Thus, in the terminology of the metabolic 

control theory: if the pathway is to be under 

diffusion control, the elasticities of enzymes to- 

wards their substrates should be high, whereas 

their elasticities towards feedback modifiers should 

be low. 

11. C O N C L U D I N G  REMARKS 

We hope that this introduction to the metabolic 

control theory will have served to indicate its 
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p o t e n t i a l l y  grea t  ut i l i ty  in m i c r o b i o l o g y  and  bio-  

t e chno logy .  H o w e v e r ,  we w o u l d  urge  r eade r s  w h o  

are  s t i m u l a t e d  to a d o p t  the f o r m a l i s m  to read  the  

o r ig ina l  r e f e rence  given,  where  a m u c h  ful ler  t rea t -  

m e n t  m a y  be  o b t a i n e d  (bu t  bea r i ng  in m i n d  the 

changes  in t e r m i n o l o g y  for  f l ux -con t ro l  and  elas- 

t ic i ty  coef f ic ien ts ) .  A r m e d  wi th  the fo rma l i sm,  

m u c h  useful  p rog res s  in the r a t iona l  des ign  of  

m i c r o b i o l o g i c a l  p rocesses  m a y  be  an t i c i pa t ed ;  

conver se ly ,  d e e p e r  cons ide ra t i ons ,  based  u p o n  ap-  

p r o p r i a t e  e x p e r i m e n t a l  p r o g r a m s ,  of  the s t ruc tu re  

o f  m e t a b o l i c  sys tems  of  in teres t  to m ic rob io log i s t s  

and  b i o t e c h n o l o g i s t s  will  p r o v i d e  a s t imulus  to the  

a c a d e m i c  b i o c h e m i c a l  c o m m u n i t y  fu r the r  to de-  

ve lop  the fo rma l i sm .  
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