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The tumor microenvironment (TME) is an ensemble of non-tumor cells comprising 

�broblasts, cells of the immune system, and endothelial cells, besides various soluble 

secretory factors from all cellular components (including tumor cells). The TME forms a 

pro-tumorigenic cocoon around the tumor cells where reprogramming of the metab-

olism occurs in tumor and non-tumor cells that underlies the nature of interactions as 

well as competitions ensuring steady supply of nutrients and anapleoretic molecules 

for the tumor cells that fuels its growth even under hypoxic conditions. This metabolic 

reprogramming also plays a signi�cant role in suppressing the immune attack on the 

tumor cells and in resistance to therapies. Thus, the metabolic cooperation and compe-

tition among the different TME components besides the inherent alterations in the tumor 

cells arising out of genetic as well as epigenetic changes supports growth, metastasis, 

and therapeutic resistance. This review focuses on the metabolic remodeling achieved 

through an active cooperation and competition among the three principal components 

of the TME—the tumor cells, the T cells, and the cancer-associated �broblasts while 

discussing about the current strategies that target metabolism of TME components. 

Further, we will also consider the probable therapeutic opportunities targeting the various 

metabolic pathways as well as the signaling molecules/transcription factors regulating 

them for the development of novel treatment strategies for cancer.

Keywords: tumor microenvironment, metabolic reprogramming, metabolic cooperation, Warburg effect, cancer-

associated �broblasts, immune network, cancer cell metabolism

INTRODUCTION

One of the important hallmarks of tumor cells is the metabolic reprogramming, where the tumor 
cells metabolize glucose even in the presence of abundant oxygen (aerobic glycolysis), widely referred 
to as the Warburg e�ect (1). �is reprogramming is purported to facilitate the survival and growth 
of transformed cells by enhancing macromolecular synthesis and antioxidant defense, besides the 
energy production.

Tumor cells in a solid tumor coexist with di�erent types of host cells like the �broblasts, cells of 
the immune system like lymphocytes and macrophages, and the endothelial cells constituting the 
blood vessels besides a host of secreted factors generated by the tumor as well as non-tumor cells. 
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�rough the paracrine signaling, tumor cells constantly modify 
the environment that facilitates the survival and growth of the 
tumor, as well as provides escape from immune surveillance  
(2, 3). �e metabolic pattern in a cell is not merely governed by 
the availability of substrates but is also in�uenced by the signaling 
pathways stimulated by the metabolites and the environmental 
factors (4). �e metabolic phenotype of �broblasts and subsets of 
lymphocytes within the tumor microenvironment (TME) show a 
considerable degree of heterogeneity (5), while their stimulation 
leading to proliferation and functional maturity is invariably 
preceded by the reprogramming of the metabolism (6, 7). It is 
increasingly becoming clear that the TME consisting of extracel-
lular matrix (ECM), abnormal stroma, and altered vasculature 
has a strong role in shaping the metabolic phenotype of tumor 
cells, besides the genetic and epigenetic changes that results in the 
reprogramming of the cancer cell metabolism (8, 9).

Accumulating evidences strongly support the notion that a 
metabolic dependence exists between the tumor cells and the 
cells in the stroma, which show temporal and context-dependent 
variations that provide support to the tumor cells through the 
shuttling of metabolic intermediates and oxidative stress com-
ponents leading to signaling changes in the tumor as well as 
cells in the microenvironment including stromal cells and cells 
of the immune network (10, 11). Current understanding of the 
metabolic reprogramming in tumors, including the interplay 
with oncogenic processes and their implications for diagnosis 
and developing therapeutics has been extensively reviewed and so 
is the diversity of the metabolic pattern in immune network and 
their reprogramming following stimulation (12–20). �is review 
focuses on the metabolic reprogramming in the tumor milieu 
consisting of the tumor cells and cells in the microenvironment 
for identifying suitable targets for developing newer therapeutic 
approaches.

COMPONENTS OF TUMOR 
MICROENVIRONMENT

In the last two decades with the emerging knowledge on TME, the 
understanding about the host–tumor interactions within the TME 
has attained new dimensions. �e cellular milieu within a solid 
tumor consists of a myriad combination of cells, signaling mol-
ecules, and ECMs. All these form a heterogeneous medium around 
the tumor cells known as the tumor stroma or the TME (21, 22). �e 
diverse array of cells within the TME originates from the surround-
ing host tissues and could be either hematopoietic or mesenchymal 
in origin. �e hematopoietic cells in TME are the B cells, T cells, 
neutrophils, natural killer (NK) cells, and macrophages while the 
�broblasts, adipocytes, endothelial cells, and pericytes are the mes-
enchymal component of TME. Collectively, these cells comprise up 
to 50% of the total mass of a solid tumor (23).

�e neovasculature that develops within a growing tumor 
mass is also an integral structural component of the TME and is 
essential for the development of the pro-tumorigenic atmosphere 
within the solid tumor. However, the tumor vasculature is larger 
in size compared to their normal counterparts and hence fails to 
penetrate deep within the tumor tissue (24, 25). Consequently, 

the TME becomes progressively devoid of oxygen and energy 
precursors from the periphery toward the core of the solid tumor. 
�e resultant hypoxia and the nutritional stress in turn initiates 
a complete metabolic remodeling in the neighboring host cells 
that create the classical pro-tumorigenic TME including lowering 
of the extracellular pH (pHe) due to H+ and lactate generated by 
hypoxic cancer cells (26, 27). Hypoxia and acidosis are thus the 
two most important characteristics of TME. In fact, abnormally 
proliferating tumor cells consume increased oxygen leading to 
progression of hypoxia that further produces an acidic environ-
ment by upregulating glycolysis, which in turn increases proton 
production and results in proton e�ux through several types 
of acid transporters causing acidosis in the TME [reviewed in 
Ref. (28)]. Acidosis on the other hand suppresses glycolysis and 
increases mitochondrial respiration in the cancer cells (28–30). 
�is pro-tumorigenic TME fosters tumor growth and prolifera-
tion as well as promotes metastasis, augmenting invasiveness and 
providing protection against immune/chemotherapeutic assaults.

METABOLISM OF THE COMPONENTS  
OF TME

Metabolism of the Cancer Cells
�e proliferation of cancer cells requires a continuous and higher 
rate of supply of energy as well as precursors for macromolecular 
synthesis. �is requirement, following the malignant transforma-
tion is ensured by the reprogramming of the metabolism involving 
enhanced glycolysis, glutaminolysis, and de novo lipid biosynthe-
sis (Figure 1) in preparation for mitosis, which also supports the 
maintenance of redox balance and evasion of death by apoptotic 
pathways (31, 32). �e enhanced glycolysis, despite availability 
of adequate oxygen supply, metabolizing glucose to lactate was 
unraveled by Otto Warburg, who referred to this as “aerobic gly-
colysis” (1, 33) and is widely known as the “Warburg phenotype”. 
Metabolic reprogramming of cancer cells is a complex interplay 
of various signaling pathways [like phosphoinositide-3-kinase 
(PI3K), mammalian target of rapamycin (mTOR), Akt, PTEN, 
AMP-activated protein kinase (AMPK), and Notch] regulated by 
a plethora of transcription factors including hypoxia-inducible 
factor (HIF) 1α, c-Myc, and p53 (12, 34, 35). Mutation of c-Myc 
has also been observed in cancer cells that increases the transcrip-
tional activities of enzymes involved in glycolysis and glutami-
nolysis (36, 37). Various microRNAs involved in the process of 
metabolic reprogramming linked to several oncogenic signaling 
pathways have been recently reviewed in Ref. (12).

Underlying factors that contribute to the Warburg phenotype 
or aerobic glycolysis include alterations in the mitochondrial 
functional status, upregulation of rate-limiting enzymes of gly-
colysis and intracellular pH regulation, loss of p53 function, and 
the presence of hypoxia in solid tumors (38). Hypoxia-induced 
HIF1 activates the transcription of several genes including the 
genes responsible for upregulating glycolysis such as glucose 
transporters (Glut), Glut-1 and 3; glycolytic enzymes, hexoki-
nase 1/2 (HK I/II) and pyruvate kinase M2 (PKM2), and genes 
involved in the inhibition of oxidative phosphorylation, pyruvate 
dehydrogenase kinase 1 (PDK1), and lactate dehydrogenase-A 
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FIGURE 1 | Metabolic programing, reprograming, competition, and cooperation between cells of the TME. The modulation of signaling pathways and 

metabolic enzymes as well as availability, levels, and exchange of several metabolites decide the fate of the tumor growth by affecting the functions and 

differentiation of various subsets of immune cells, generation of CAFs and CAAs, and proliferation of endothelial cells. FAO, fatty acid oxidation; FFA, free  

fatty acids; DC, dendritic cells; MØ: macrophages; TME, tumor microenvironment; CAFs, cancer-associated �broblasts; CAAs, cancer-associated adipocytes.
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(LDH-A) (39–41). High expression of HIF1α and Glut-1 are asso-
ciated with poor prognosis in cancer patients (11). Furthermore, 
HIF1α supports energy supply to hypoxic tumor cells driving 
an anaerobic glycolysis by upregulating monocarboxylate 
transporter 4 (MCT4) that exports the lactate out of the cells 
(42) and in�uencing carbonic anhydrase IX (CAIX) to prevent 
the intracellular acidi�cation (43). HIF1 also helps in reducing 
mitochondrial activity and reactive oxygen species (ROS) genera-
tion from oxidative phosphorylation by regulating the expression 
of BCL2/adenovirus E1B 19 kd-interacting protein 3 (BNIP3) 
and cytochrome oxidase COX-4 subunit composition (44, 45). 
In addition to HIF1-mediated e�ects, several HIF-independent 
pathways (such as mTOR) regulate the cancer cell metabolism 
(28). Under nutrient stress conditions in the TME, mTOR 
modulates several energy requiring processes such as mRNA 
translation, metabolism, and autophagy (46, 47). �e upregulated 
glycolysis of the cancer cells and blood perfusion also in�uence 
the intracellular and pHe in the TME (48, 49). Reduced blood 
perfusion and preference for use of glycolysis by the cancer cells 
for their energy needs result in increased lactic acid produc-
tion. Generation of protons during hydrolysis of ATP as well as 
hydration of carbon dioxide (CO2) by carbonic anhydrases (CA) 
also contributes to acidosis of the TME as both lactic acid and 
protons are exported out of the cancer cells over time (43, 50). 
Several MCTs, vacuolar type H+-ATPases, Na+/H+ exchangers, 
and other acid–base transporters are involved in the export of 

lactic acid and protons and their ine�cient removal from the 
tumor interstitial space causes the acidi�cation of the extracel-
lular TME (28, 48). While acute acidosis decreases cancer cell 
proliferation and increases apoptosis (51, 52), chronic acidosis 
acts as a selective pressure leading to acquisition of multiple 
genomic mutations bene�cial for cancer cell growth and adapta-
tion (53, 54). Treatment of prostate cancer cells with acidosis is 
shown to reduce Akt activity (29). �erefore, reduced Akt activity 
may enhance the activity of Na+/H+ transporter NHE-1 causing 
increased proton export and cell proliferation (55, 56). Although 
hypoxia and acidosis in the TME are shown to induce distinct 
biological e�ects, several reports have shown both synergistic as 
well as antagonistic e�ects on tumor cell response when treated 
simultaneously with these stimuli [reviewed in Ref. (28)]. In cases 
of oral squamous cell carcinoma, proteins associated with glucose 
and lactate metabolism are o�en found to be co-localized in the 
hypoxic areas (57, 58) and therefore an analysis of their combined 
expression can be used for early diagnosis and prognosis (59).

Although regulators of various signaling pathways contribut-
ing to the Warburg phenotype would naturally be pertinent targets 
for designing anticancer therapeutics and adjuvant, development 
of e�ective therapies targeting this phenotype has remained a 
challenge till date (60). However, the enhanced glucose uptake of 
tumors has been widely exploited for the non-invasive detection 
and grading of tumors by positron emission tomography using 
the F-18-labeled glucose analog 2-deoxy-d-glucose (FDG) (61). 
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It is increasingly believed that a better understanding of the 
mechanisms underlying Warburg e�ects will facilitate the design 
of e�ective therapies targeting the reprogramming of metabolism 
(14). Renewed interest in unraveling the mechanisms underlying 
the development of Warburg phenotype and its relationship with 
therapeutic resistance of tumors (12, 62–65) holds great promise 
in the future for developing novel therapeutic strategies targeting 
metabolic reprogramming of tumors (60).

In a rapidly proliferating tumor cell, alternative pathways of 
glucose metabolism, like the pentose phosphate pathway (PPP), 
are essential for generating important biomolecules like NADPH 
and ribose sugars (Figure 1). For the tumor cells, the NADPH is 
essential to ful�ll various metabolic requirements like ATP pro-
duction, lipogenesis as well as for eliminating the oxidative stress. 
Similarly, the ribose sugar as an integral part of the nucleotides 
is essential for rapidly dividing cells. In fact, a high ratio between 
the oxidative and non-oxidative branches of PPP is known to 
promote the proliferation of several types of cancer cells (66, 67). 
In HCT116 colon adenocarcinoma cells, regulators of cell cycle 
progression like CDK4 and 6 have also been found to be involved 
in maintaining the crucial balance between the two branches of 
PPP (68).

To support the overall growth, cancer cells need adequate 
amount of macromolecules like nucleic acids, lipids, and 
proteins. Highly proliferative cancer cells are associated with a 
strong dependency on lipid and cholesterol, which are satis�ed 
by either enhanced uptake of exogenous (or dietary) lipids and 
lipoproteins or by increasing the activation of endogenous syn-
thesis (69). Indeed, the lipid droplets consisting of cholesterol and 
other lipids found in some of the tumor cells are now considered 
as hallmarks of the degree of aggressiveness of the cancer (69). 
Speci�c lipids are now known to mediate intracellular oncogenic 
signaling, defense against endoplasmic reticulum stress, and 
interactions with cells of the TME (69). Since HIF1 inhibits 
mitochondrial oxidative phosphorylation, it also inhibits the 
fatty acid synthesis from glucose-sourced carbon as pyruvate is 
not utilized in the mitochondria (28, 70). �erefore, to meet the 
increasing demands of ATP and the lipids, growing tumor cells 
increase the uptake and synthesis of glutamate as an alternative 
carbon source. Tumor cells utilize glutamine as a nitrogen donor 
for essential amino acid and nucleotide biosynthesis as well as 
to generate α-ketoglutarate which can be channelized toward 
tricarboxylic acid (TCA) cycle for energy production (71, 72). 
Glutamine can enter the cell through glutamine transporters like 
SLC1A5 (ASCT2) and SLC38A5. �e levels of these receptors 
especially that of SLC1A5 are found to be overexpressed in breast 
and prostate cancer cell lines and pharmacological inhibitors 
such as benzylserine (BenSer) and l-γ-glutamyl-p-nitroanilide 
(GPNA) or shRNA-mediated inactivation/suppression of the 
glutamine transporter has been found to stall the proliferation of 
tumor cells (73, 74) (Table 1). �e uptake of glutamine in tumor 
cells is in turn governed by its lactate uptake as acidic TME sup-
ports activation of p53 and increases glucose 6-phosphate dehy-
drogenase (G6PD) and glutaminase 2 (GLS2) (75). Within the 
tumor cells, lactate obtained from the neighboring tumor stroma 
stabilizes the HIF2α which in turn activates the oncogene c-Myc 
and upregulates the expression of both glutamine transporter 

ASCT2 and glutaminase 1 (GLS1)—thus ensuring a steady �ux 
of glutamine in the cells (76) (Figure 2). Further, in addition to 
the glutamine, metabolism of other amino acids such as arginine, 
tryptophan, glycine, serine, and branched chain amino acids 
(BCAAs, leucine, isoleucine, and valine) play an important role 
in tumorigenesis and TME (77).

Metabolism of the Immune Cells
Cells of the Immune Network
Solid TME is in�ltrated by various heterogeneous immune cell 
types that work in a coordinated fashion against the tumor anti-
gens (Figure 1). �eir proliferation, e�ector function, and di�er-
entiation are regulated by several signals that are in�uenced by the 
metabolic activity. Although several types of innate immune cells 
such as NK cells, macrophages, and dendritic cells (DCs) play an 
important role in mediating the antitumor e�ects (Figure 1), here 
we are focusing more on immune functions mediated by T cells.

Transition of T  cells from naïve to e�ector and to memory 
phenotype requires speci�c metabolic programing and repro-
graming to match their proliferation status and function (78). �e 
naïve and memory T  cells utilize oxidative phosphorylation to 
derive ATP for their needs. However, proliferating lymphocytes 
reprogram their metabolism and switch to glycolysis for ful�ll-
ing the energetically demanding processes of cell division and 
e�ector functions. Presence of glucose and amino acids such as 
glutamine is essential to support the changing demands of pro-
liferation and biosynthesis utilizing distinct metabolic pathways 
(79, 80). Further, di�erent T  cell subtypes depend on di�erent 
metabolic pathways for their energy needs and thus metabolism 
plays a key role in determining the T cell fate, di�erentiation, and 
function (Figure  1). In addition to the metabolic cooperation 
between di�erent cell types, other factors such as oxygen pressure 
and presence/availability/levels of di�erent metabolites a�ect 
the proper functioning of immune cells. �erefore, TME plays 
an important role in determining the T cell-mediated immune 
response as activated T cells go from an oxygen and nutrient-rich 
environment in the periphery to the hypoxic and nutrient-poor 
environment of solid tumors (13).

T Cell Metabolism
�ere are several reasons that lead to progression of cancers. 
Cancers that have weakly immunogenic antigens can evade kill-
ing (81). Cancers can also evade killing due to T cell dysfunction, 
anergy, exhaustion, senescence, or hypo-responsiveness (82, 83).  
Although several factors may a�ect the function of T  cells, 
metabolic competition between tumor cells and T  cells is now 
emerging as one of the major contributors for tumor escape. Like 
the other normal cells in the body, T cells have speci�c energy 
requirements according to their function and activation status 
(Figure 1). Both CD4+ and CD8+ T cells in resting state generate 
most of their energy using TCA cycle as they have low metabolic 
requirements (84). �ey need limited biosynthesis and oxidize 
pyruvate and lipids as well as amino acids for energy production. 
However, when the T cells are activated, they shi� to glycolysis 
and other anabolic pathways and use the metabolic intermediates 
of TCA cycle to synthesize proteins, lipids, and nucleic acids (13, 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


TABLE 1 | Therapeutic agents (small molecules) targeting different cells of the TME and their associated metabolism.

Target cells

Target

metabolism

Cancer cells T cells Cancer-

associated

fibroblast

(CAF) cells

Endothelial

cells

Cancer-

associated

adipocytes

(CAA)

Glucose

metabolism
Imatinib PFK15 Flavopiridol

2-DG

Inhibitors of

IDO and PTEN

Rapamycin

PDGF

inhibitor

CHC

EGCG

PFK15

c-Myc

inhibitor

TGF-β

inhibitor
2-DG

3-PO

PFK15

Curcumin

1-MT Imatinib

Metformin
Troglitazone

Metformin

FABP4

Pioglitazone

Rosiglitazone

Lovastatin

Atorvastatin

Simvastatin

INCB024360

25-hydroxy

cholesterol

Etomoxir

2-DG

Imatinib

Curcumin

Immune

Checkpoint

Temsirolimus

Everolimus

Caulerpin

2-DG

Trichostatin A

Digoxin

Acriflavine

3-BP

Lonidamine

6-AN

DCA

Curcumin

2-DG

EGCG

AZD3965

CHC

BenSer

GPNA

Metformin

Lysine Omeprazole

Sulfamides

Sulfamates

Sulfonamides

GPR68 agonists

Lansoprazole

Pantoprazole

Rabeprazole

EsomeprazoleSodium

bicarbonate

IEPA

Bafilomycin A1

Archazoid

Inhibitors of surface

receptors / transporters

Enzyme inhibitors Inhibitors of

transcription factors

Systemic Buffers Signaling molecule

inhibitors

Speculative

Curcumin

Lonidamine

3-BP

Amino acid

metabolism

Lipid

metabolism

Acidic TME
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85). �is switching provides several advantages as it leads to rapid 
turnover of ATP (although aerobic glycolysis is less e�cient as 
number of ATP molecules generated is much less than oxidative 
phosphorylation); decreased production of ROS; generation of 
metabolic intermediates needed for growth and proliferation; 
and accommodation of T cell survival in hypoxic environment 
generally present in the solid tumors [reviewed in Ref. (20)]. 
CD4+ T  cells show enhancement in both glycolysis and oxida-
tive phosphorylation upon activation, while CD8+ T  cells may 
increase only glycolysis making them more sensitive to availability 
of glucose (5, 13). Activated T  cells show increased expression 
of Glut-1 on their surfaces for facilitating enhanced uptake of 
glucose (86). Extracellular signals mediated by growth factors 

play a signi�cant role in increased expression and membrane 
localization of the transporters. �e expression of growth factors 
and their receptors change with the activation status of the T cells 
(87). For example, IL7 receptor expression increases in naïve 
cells, decreases in activated cells with increased dependence on 
IL2 and then again increases during di�erentiation of T cells to 
memory T cells (88). �e change in the levels of the growth factors 
is re�ected in change in the cellular metabolism and their with-
drawal results in removal of nutrient transporters from the cell 
surface and decreased glycolysis among other metabolic changes 
(89, 90). Increase in glycolysis is generally also accompanied with 
increase in glutamine oxidation and decrease in lipid oxidation 
(13, 80) (Figure 1). Glutamine metabolism may also regulate the 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


FIGURE 2 | Metabolic reprogramming between cancer-associated �broblasts (CAFs) and tumor cells within tumor microenvironment.
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balance of e�ector and regulatory T cells (Tregs). Loss of the neu-
tral amino acid transporter protein, ASCT2 in T cells resulted in 
impaired generation and function of �1 and �17 cells without 
altering Tregs generation (91). Similarly, arginine regulates the 
expression of components of T cell receptor (TCR) (92) and cell 
cycle progression in T cells (93).

�e induction of aerobic glycolysis during T  cell activation 
is dependent on the PI3K pathway (94). Downstream of PI3K 
pathway, Akt has been shown to a�ect the expression of Glut-1 
and its translocation to the cell membrane (86, 95). Akt is known 
to control the activation status of mTOR that controls protein 
synthesis, mitochondrial activity, and proliferation (96, 97). 
�erefore, in addition to the extracellular signals mediated by 
several growth factors, PI3K/Akt/mTOR signaling triggered by 
TCR and co-stimulatory signal through CD28 play major roles 
in metabolic reprograming of T  cells during their activation 
(94). mTOR upregulates c-Myc and HIF1α although only c-Myc 
is required for the glycolytic switch as its early upregulation is 
crucial in the activation process of T cells (98).

Following activation and division, T cells di�erentiate into dif-
ferent subsets that switch on distinct metabolic pathways appro-
priate for their function. mTOR and other signaling pathways 
such as Myc and HIF1α play signi�cant roles in determining these 

phenotypes in e�ector T cells (99, 100). T helper (�) cells; �1, 
�2, and �17 rely more on aerobic glycolysis where mTORC1 
and 2 help in deciding the metabolic phenotype while Tregs 
and memory T  cells achieve their metabolic needs principally 
through fatty acid oxidation (FAO) that is controlled by AMPK 
(101). �e decrease in dependence on glycolysis and utilization 
of lipid metabolism may play a role in survival advantage of Tregs 
and memory T cells (102, 103) (Figure 1).

Metabolism of the Mesenchymal Cells
CAF Metabolism
Cancer-associated �broblast or CAF are a group of specialized 
�broblasts that is considered to be the principal non-cancerous 
cell type within the TME. In normal tissues, the �broblasts remain 
embedded in a comparatively dormant state in the ECM. �ey 
synthesize and secrete collagen, �brous proteins like reticulin and 
elastin, proteoglycans, glycoproteins, and various other compo-
nents of the ECM that act as a cementing material among the cells 
and helps in maintaining a cohesive organ structure (104).

Within the TME, the normal �broblasts transform into a 
highly synthetic, metabolically active, contractile form that 
resembles the “activated myo�broblasts” (105) observed in the 
wound site during tissue damage and repairing process. �e 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


7

Gupta et al. Metabolic Reprogramming in TME

Frontiers in Oncology | www.frontiersin.org April 2017 | Volume 7 | Article 68

tumor cells require the presence of such activated �broblast or 
CAF in their vicinity to generate a favorable atmosphere for 
them. �e CAFs are known to actively promote proliferation 
and di�erentiation of tumor cells as well as support angiogenesis 
and metastasis by promoting matrix remodeling and epithelial to 
mesenchymal transition (EMT) (106–108). Even the enrichment 
of stroma/CAFs within the tumor tissue has a direct correla-
tion with the tumor size and a negative impact on the clinical 
prognosis (109)—as observed in cases of gastric signet ring cell 
carcinoma—indicating the profound impact of CAFs on overall 
tumor biology.

In recent years, growing knowledge about TME and the 
metabolic crosstalk between the cancer cells and the associated 
CAF cells have generated tremendous interest regarding the 
bioenergetics of the various cellular compartments of the TME. 
�e metabolic hallmark of the CAF is their high glycolysis 
(Figures 1 and 2). Several studies have indicated the presence of 
an increased expression of MCT4 in CAF-mediating lactate e�ux 
from them (110, 111) (Figure 2). On the other hand, in the osteo-
sarcoma cells, an increased expression of MCT1 mediating lactate 
in�ux has been observed (112). Similarly, increased production 
of lactate associated with upregulation of MCT1 and 4 has been 
observed in CAFs associated with breast (113) and bladder (114) 
cancer cells. Such observations clearly indicate the dependence of 
the cancer cells on metabolites provided by the CAF cells.

�e lactic acid present in the TME along with the hypoxic 
environment is also known to mediate the transformation of 
the macrophages from M1 to a pro-tumorigenic M2 phenotype 
through a HIF1α-mediated pathway (115, 116) by directly induc-
ing M2-like gene expression (augmented expression of VEGF, 
Arg1, PKM2, etc.) in tumor-associated macrophages (TAMs) 
(116, 117). Recent studies have also suggested that the excess 
lactic acid produced by the heightened glycolysis observed in 
CAF—is one of the chief regulators that orchestrates the meta-
bolic transformation of the di�erent cells that reside within the 
TME (118) (Figure 2).

Endothelial Cell Metabolism
Like the cancer cells and CAFs, endothelial cells also rely on 
glycolysis to sustain themselves in the hypoxic TME (Figure 1). 
To support the cancer cells, endothelial cells also need to main-
tain a high degree of proliferation. �e hypoxic environment 
of TME along with pro-angiogenic signals such as VEGF lead 
to the upregulation of glycolytic enzymes like glyceraldehydes-
3-phosphate dehydrogenase (GAPDH) and glycolytic regulators 
like phosphofructokinase (PFK)-2/fructose-2,6-bisphosphatase 
3 (PFKFB3) and Glut-1 thereby promoting glycolytic mode of 
metabolism [reviewed in Ref. (119)].

Metabolism of Adipocytes
Adipocytes are one of the important components of TME (120). 
In the normal tissue, adipocytes uptake the fatty acids, activate 
them, and transfer the resulting CoA derivatives to glycerol form-
ing triacylglycerols (121). However, adipose cells need glucose 
for the synthesis of triacylglycerol. Most of the fatty acids formed 
on hydrolysis are reesteri�ed if glycerol 3-phosphate is abundant, 
while they are released into the plasma if glycerol 3-phosphate 

is scarce because of a paucity of glucose. �us, the glucose level 
inside adipose cells is a major factor in determining whether fatty 
acids are released into the blood (121).

METABOLIC COOPERATION AND 
COMPETITION IN THE TME

Tumor microenvironment is very complex and heterogene-
ous where various types of cells including cancer, immune, 
endothelial, �broblasts, etc. reside and interact with each other 
in a unique environment (122). Tumor cells are highly metabolic 
and other cells surrounding the tumor either compete with the 
cancer cells causing metabolic antagonism or support them by 
forming a metabolic symbiosis (15). A competition between cells 
of the TME occurs as demands for resources in the microenvi-
ronment are high. Tumors reprogram their metabolism in such 
a way that either directly supports tumor proliferation or shapes 
the microenvironment favoring tumor cell survival (15). For 
example, tumors cells are known to express and release several 
cytokines, lactate, and indoleamine 2,3-dioxygenase (IDO) 
that help in inhibiting the proliferation and function of T cells. 
Further, increase in HIF signaling and activation of oncogenes 
in the cancer cells improve their metabolic �tness resulting in 
deprivation of vital metabolites such as glucose and glutamine for 
stromal cells (15). �is competition between the di�erent cells in 
the TME promotes immune suppression due to the exhaustion of 
immune cells (82, 123). In turn, antitumor immune cells such as 
e�ector T cells and cytotoxic T lymphocytes (CTLs) reprogram 
their metabolism to robust aerobic glycolysis and glutaminolysis 
leading to metabolic antagonism with the tumor cells while the 
pro-tumoral immune suppressive cells such as Tregs, myeloid-
derived suppressor cells (MDSCs), and M2 TAMs utilize the 
products generated from tumor metabolism forming a metabolic 
cooperation within the TME (15).

Studies in the last two decades have established CAF as one 
of the dominant factors that govern the proliferation of tumor 
cells and progression of tumor growth. CAFs appear to exert 
an in�uence on proliferation through paracrine signaling. �e 
conditioned media from the cultures of CAFs of oral carcinoma 
has been found to augment the proliferation of tongue cancer 
cells suggesting the presence of a paracrine machinery involved 
in the process (124). Further, CAFs isolated from prostate carci-
noma has been shown to augment the rate of proliferation of even 
normal prostate epithelia cells (125, 126) thus emphasizing the 
growth promoting in�uence of the CAFs. Similarly, in the TME, 
adipocytes present in the vicinity of the tumor undergo several 
functional changes to become cancer-associated adipocytes 
(CAA) and support growth of the tumor (120).

Metabolic Reprograming of T Cells  
in the TME
Several studies have suggested that T  cells become anergic or 
exhausted in the established tumors leading to their dysfunction 
and immune escape of tumors. Hypoxia and availability of various 
metabolites and nutrients are the two most important properties 
of the TME driving the metabolic reprograming in these cells.

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


8

Gupta et al. Metabolic Reprogramming in TME

Frontiers in Oncology | www.frontiersin.org April 2017 | Volume 7 | Article 68

Effect of Hypoxia on T Cell Metabolism
As the metabolic pattern and functionality of the immune cells 
are dependent on the cytosomatic cues and the partial oxygen 
tension of the surrounding medium, the immune cells su�er a 
vast transformation as they travel deeper into the hypoxic interior 
of the solid tumor. Hypoxia is one of the most important cues 
in the TME that modulates the metabolism of cancer as well 
as all cell types of innate and adaptive immune system thereby 
potentiating tumor progression. Presence of hypoxic regions in 
solid tumors enhances the pro-tumorigenic immune suppressive 
environment. HIF family of transcription factors plays a central 
role in the cellular responses of both tumor and stromal cells. 
Both oxygen-dependent and oxygen-independent regulation of 
HIF1α has been reported in these cells (127).

Under hypoxic conditions, HIF1α gets activated and regulates 
the expression of several enzymes involved in glycolysis such as 
LDH and PDK1 (128) and glycolysis-related genes, GLUT-1 and 
PFKFB3 (129). �is results in increased glycolysis and decreased 
oxidative phosphorylation and oxygen consumption (130). 
Increased lactic acid production by tumor cells under hypoxic 
conditions inhibits the proliferation and functions of T cells of the 
adaptive immune system (Figure 1). Controversial role of HIF 
signaling has been reported in determining the di�erentiation of 
CD4+ naïve T cells into either �17 or Treg cells with some reports 
suggesting induction and others inhibition of these cell types 
(131–133). HIF1α has been reported to target Foxp3 for protea-
somal degradation and therefore inhibits Treg di�erentiation and 
shi�s the balance toward �17 (131). Dang et al. also showed that 
HIF1α shi�s �2 to �17 di�erentiation by direct upregulation 
of IL17 gene and increased transcription of RAR-related orpha 
receptor γ (RORγt) (132). However, �17 induction is shown to 
be accompanied with enhanced glycolysis mediated by mTOR/
HIF1α signaling as upregulation of HIF1α results in increased 
expression of Glut-1 and therefore glycolysis in �17 cells (134) 
unlike Tregs that depend on FAO for their metabolic needs. 
�erefore, more studies are needed to understand the role of 
hypoxia/HIF-mediated signaling/glycolysis in di�erent subsets 
of T cell metabolism, di�erentiation, and function.

In addition to T cells, hypoxia has also been shown to either 
subvert the antitumorigenic functions toward pro-tumorigenic 
functions or enhance the immune suppressive functions of the 
cells of the innate immune system; TAMs, and tumor-associated 
neutrophils (TANs) (127). Hypoxic environment in the tumors 
promotes the polarization of TAMs toward pro-tumorigenic M2 
phenotype either directly by inducing M2-like gene expression 
(augmented expression of VEGF, Arg1, PKM2, etc.) in TAMs 
(135) or due to hypoxic metabolism by tumor cells (elevated 
lactate levels) in HIF1α-dependent manner (116). In addition to 
this metabolic symbiosis between tumor cells and macrophages 
a�ecting the immune response, tumor hypoxia-mediated recruit-
ment of endothelial cells results in interaction of these cells with 
M2 macrophages as they also play signi�cant role in angiogenesis 
(127, 136) (Figure 1). More recently, hypoxic TAMs have been 
shown to upregulate the expression of REDD1, a negative 
regulator of mTOR hindering glycolysis and angiogenic response 
revealing a functional link between TAM metabolism and tumor 
angiogenesis (137). Cross-talk between these cells thus in�uences 

the availability of oxygen, cellular metabolism, as well as the 
antitumor immune response (127).

�e transformation of the macrophages from M1 to M2 
phenotype can be considered as the cornerstone of the metabolic 
immune-compromised milieu of the TME. �e M1 and M2 
macrophages not only di�er in their immunological functions 
but vary greatly in their metabolic dependence as well. �e M1 
macrophages, providing protection against bacterial infection, 
depends principally on glycolysis for ATP generation but the M2 
macrophages, populating the sites of healing wounds, utilize the 
FAO and oxidative phosphorylation for their sustenance (138) 
and does not compete with the tumor cells for resources in a 
nutritionally challenged TME. It is tempting to speculate that this 
scarcity of resources within the TME could also act as competitive 
inhibitor that quickly eliminates the glycolysis dependent, antitu-
morigenic M1 macrophages from the TME. �e M2 type mac-
rophages, but not the M1 type, also secrete insulin-like growth 
factor-1 (IGF-1), which promotes tissue regeneration (139) and 
angiogenesis (139, 140) hence might be involved in replenishing 
the TME (Figure 1).

�e di�erent types of T cells that are known to in�ltrate the 
TME include the memory T cells, �1, �2, and the �17 cells. �e 
memory T cells are cytotoxic and are supported by the �1 cells and 
their abundance is related with positive clinical outcome whereas 
the higher titer of �2 and �17 leads to poor clinical prognosis 
(141). Within the solid tumor, the M2 macrophages create a pro-
tumorigenic atmosphere by strongly promoting the generation 
of the �2 cells while actively suppressing the proliferation of 
antitumorigenic T cells. In fact the M2 bias along with ligands 
like galectin-9—secreted by the tumor cells (142)—is known to 
stem the proliferation of peripheral monocytes as well as induce 
�1 cell apoptosis (143). �2 along with HIF1α is also known to 
promote the di�erentiation of the �17 subset of T cells. �17 and 
its associated interleukins like IL17, IL23, IL25, etc. are reportedly 
involved in carcinogenesis [induce colon tumorigenesis through 
a STAT3-mediated pathway (144)], tumor progression (145), and 
subsequent negative clinical outcome (146). Similarly, it has been 
demonstrated that HIF1α is essential for regulation of metabolic 
activity in neutrophils and the absence of HIF1α resulted in 
drastic reduction in ATP and the killing function of neutrophils 
(147). Hypoxia also enhances the suppressive function of MDSCs 
thereby suppressing antitumor immunity. Furthermore, hypoxia 
is known to increase HIF signaling and upregulate HIF targets 
and increase the expression of arginase I causing increase in 
MDSC suppressor function (148).

�us, through ECM remodeling, growth factor signaling, and 
evasion of immune response recruited stromal cells enhance tum-
origenesis. Further, hypoxic TME results in metabolic symbiosis 
between hypoxic and normoxic compartments of the tumor. �e 
products of highly glycolytic hypoxic cells such as lactate are used 
by normoxic cells to produce ATP through oxidative phospho-
rylation leading to sustained metabolic �tness of the tumor (18).

Metabolites and Nutrients Availability
Both cancer and activated immune cells depend on aerobic glyco-
lysis for their energy needs as both are highly proliferating. �is 
results in a competition for available nutrients to meet their energy 
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and biosynthetic requirements in�uencing the T cell metabolism 
a�ecting their function, proliferation, as well as di�erentiation. 
Tumor cells by utilizing more glucose and glutamine create a 
state of nutrient deprivation for the T  cells (16). �is nutrient 
deprivation may result in T cells anergy, exhaustion, and death 
thereby compromising their e�ector functions (16). A decrease 
in the glucose concentration due to increased consumption by 
tumor cells has been shown to metabolically restrict T cells (16, 
149). �is leads to decreased mTOR activity, glycolytic capac-
ity, interferon-γ (IFN-γ) production, and cytolytic activity via  
production of granzyme and perforin in T cells resulting in tumor 
progression (150–152). Similarly, depletion of glutamine, which 
is required for replacing the metabolites removed from TCA 
cycle for biosynthesis, has been shown to impair the function of 
T cells (153). Tumor cells also change themselves, for example, 
by oncogenic mutations resulting in continuous activation of 
growth and division (154). Furthermore, there may be an increase 
in the immunosuppressive factors produced either by cancer or 
other cells in the TME. Growth factor withdrawal also a�ects the 
general metabolism (87) because it results in removal of nutri-
ent transporters from the cell surface and decreased glycolysis 
(89, 90, 155). Further, deprivation of growth factors leads to a 
decrease in availability of mitochondrial substrates for oxidative 
phosphorylation, changes in the mitochondrial morphology, and 
depolarization of the mitochondrial membrane (89, 90, 155). 
�ese metabolic changes are followed by release of pro-apoptotic 
factors and commitment to cell death by apoptosis (156). 
Recently, it has been demonstrated that tumor-in�ltrating T cells 
have persistent loss of mitochondrial function and mass in a 
TME-speci�c e�ect as signals in TME can repress T cell oxidative 
metabolism resulting in e�ector T cells with modi�ed metabolic 
needs that cannot be met (157). For example, tumor-in�ltrating 
T  cells showed a loss of peroxisome proliferation-activated 
receptor (PPAR)-gamma coactivator 1α (PGC1α) that programs 
mitochondrial biogenesis (157) (Figure  1). Reprogramming of 
the metabolism through enforced expression of PGC1α reinvig-
orated the function of tumor-speci�c e�ector T cells resulting in 
improved intra-tumoral metabolic and e�ector functions (157).

More recently, it has been recognized that in addition to 
T  cell exhaustion, availability of certain metabolites such as 
lactate, tryptophan and arginine-related metabolites, and 
phosphoenolpyruvate (PEP) can modulate the activity of tumor-
in�ltrating lymphocytes (TILs) (158). Ho et  al. discovered a 
new role for the glycolytic intermediate PEP in controlling the 
activity of e�ector T cells (123). �ey found that PEP regulates 
the amplitude of TCR-mediated Ca2+ �ux and nuclear factor 
of activated T  cells (NFAT) activation by repressing activity of 
sarco/ER Ca2+-ATPase (SERCA) in intra-tumoral CD4+ T cells. 
By overexpressing PEP carboxykinase 1 (PCK1) in T  cells 
that leads to increased production of PEP, stronger antitumor 
responses were observed. Similarly, a secondary role has been 
discovered for glycolytic enzyme, GAPDH in regulating the 
e�ector functions of T cells (153). GAPDH inhibits IFN-γ mRNA 
translation when glycolytic rates are low (153). Further, lactic 
acid production and consequent acidi�cation in the TME are 
shown to inhibit proliferation and cytokine production in CTLs  
(159, 160). Bu�ering of lactic acid in vitro (159, 161) or in vivo 

using proton pump inhibitor, Esomeprazole (161) resulted in 
complete reversal of suppressive e�ects of lactic acid in CTLs. 
By suppressing PI3K/Akt/mTOR pathway, lactate can also inhibit 
glycolysis (29). Lactate-mediated acidi�cation and low pH in the 
TME can regulate macrophage polarization and induce arginase I 
leading to arginine depletion and inhibition of T cell proliferation 
and activation (116, 162) (Figure 1). Since Tregs prefer oxidative 
metabolism, it is anticipated that excess lactate can be utilized by 
Tregs preferentially compared to e�ector T cells (16). Increased 
lactic acid also inhibits monocyte-derived DC di�erentiation and 
activation (163) although it does not a�ect Tregs (101). Acidosis 
in the TME is also shown to stimulate activity of neutrophils 
(164) while repressing the functions of NK  cells (165, 166). 
Succinate and succinate receptor, G protein-coupled receptor 
91 (GPR91) have been shown to sense immunological danger  
(167, 168) inducing in�ammation, which may be of consequence 
as succinate levels may drop due to decreased �ux through the 
TCA cycle in the mitochondria.

In addition to glycolysis, amino acid metabolism particularly 
l-arginine and tryptophan catabolism is also dysregulated in 
cancers (71, 169). Activity of two important enzymes in arginine 
metabolism, induced nitric oxide synthase (iNOS) and arginase 
(ARG), is upregulated in several cancers (170, 171) (Figure 1). 
�ese enzymes create toxic reactive nitrogen species (RNS) such 
as peroxynitrite that is shown to induce apoptosis in lymphocytes 
and negatively a�ect T  cell-mediated immunity in the tumors 
(172–174). Increased RNS can modulate tyrosine phosphoryla-
tion of several proteins leading to downregulation of membrane 
receptors such as CD4, CD8, and chemokine receptors in T cells 
(175). Further, enhanced l-arginine metabolism could also 
be responsible for anergic state of lymphocytes in the TME as 
addition of inhibitors of ARG and iNOS results in activation of 
CTLs (176). Altered l-arginine metabolism in the tumor could 
also lead to local arginine de�ciency a�ecting protein synthesis 
in T cells (177, 178) and therefore impairing the cytokine produc-
tion and e�ector function (179). Many tumors are known to lack 
an enzyme argininosuccinate synthetase 1 and therefore depend 
on exogenous arginine for growth (180). Tumor-associated 
myeloid cells (TAMCs) such as MDSCs, macrophages, mono-
cytes, and neutrophils provide arginine to the tumor cells (181). 
Further, MDSCs in the TME express high levels of arginase-1 
and lower arginine levels lead to inhibition of antigen-speci�c 
T cell responses due to TCR expression inhibition (178). MDSCs 
also sequester cysteine resulting in amino acid deprivation and 
inhibition of T cell activation (182).

Similar to l-arginine, local depletion of tryptophan results in 
T cell apoptosis and anergy (183). Increased IDO enzyme activity 
in the tumor cells results in accumulation of kynurenine and its 
derivatives and tryptophan depletion that inhibit proliferation and 
activation of immune cells (184) and is associated with extensive 
disease and immune suppression (183, 185–187). IDO enzymes 
are intracellular and are not secreted; however, the metabolic 
e�ects of these enzymes are not restricted to the expressing cells 
(183). �e neighboring cells present in the TME respond to the 
depleted levels of tryptophan and also the secreted kynurenine 
thereby e�ciently inhibiting the proliferation and activation of 
the cells (183, 184). IDO expression is also upregulated when 
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cytotoxic T-lymphocyte antigen-4 (CTLA-4) expressed on Tregs 
binds to CD80 and CD86 on DCs inducing tumor antigen toler-
ance (188). With respect to the amino acid metabolism, a compe-
tition between tumor and immune cells also exist for serine and 
glycine utilization to synthesize building materials for cell growth 
and proliferation (189). Recently, it is also suggested that cancer 
and T cells may share similar requirements for BCAA catabolism 
that regulates the mTOR signaling (77).

To generate an intracellular source of nutrients under  
nutrient-limiting conditions in the TME, induction of autophagy 
has been observed (190). Furthermore, phosphorylation and 
activation of a protein kinase unc-51 like kinase 1/2 (Ulk1/2) by 
AMPK is shown to connect energy sensing with autophagy (191). 
If the metabolic stress is extensive then it may lead to T  cells 
apoptosis (192).

In contrast to the activated e�ector T cells, nutrient-restrictive 
TME does not a�ect the immunosuppressive functions of Tregs 
(19), since Tregs preferentially utilize lipid beta-oxidation 
and have high levels of activated AMPK (101, 193) (Figure 1). 
Indeed, activation of AMPK signaling by treatment with met-
formin resulted in reduced T e�ector cells and increased Tregs  
(101, 194). Further, the metabolic products of tumor cells such as 
lactate and kynurenine are utilized for Treg di�erentiation (195). 
Furthermore in the TME, TGF-β (196) and chemokines such as 
CCL22 (197) are present abundantly that help in the di�erentia-
tion and recruitment of Tregs. Indeed, the increased presence of 
Tregs in the solid tumors has been associated with poor prognosis 
(198). Recently, it has been shown that Tregs under di�erent 
in�ammatory conditions change their metabolic preferences 
leading to modulation of their proliferation and suppressive 
functions (199). Foxp3 decreases Glut-1 expression and glycoly-
sis in Tregs increasing their suppressive function, while toll-like 
receptor (TLR)-mediated signaling enhances the expression of 
Glut-1 and glycolysis resulting in a decrease in their suppressive 
functions (199). Reduced glucose and or elevated lactate in the 
TME may favor the mitochondrial oxidative metabolic pathways 
in Tregs promoting their suppressive functions.

Immune Checkpoints
In addition to the availability of nutrients, the capacity of T cells 
to internalize and utilize these nutrients is one of the important 
mechanisms regulating the T  cell activation (91, 200, 201). 
Upregulation of HIF1α, c-Myc, and PI3K/Akt/mTOR signaling 
following T cell activation play key roles in nutrient transport by 
promoting expression of glycolytic and anabolic genes including 
nutrient transporter, Glut-1 (91, 98, 132, 134, 201–203). Immune 
inhibitory checkpoint signals such as CTLA-4 and programmed 
death receptor 1 (PD-1) and their ligands are shown to modulate 
one of these signaling pathways (204) (Figure 1). By sequestra-
tion of CD28 ligands, CTLA-4 can inhibit CD28-mediated 
activation of Akt (86, 205) and similarly, PD-1 can reduce c-Myc 
expression and PI3K/Akt/mTOR signaling (206–209) resulting in 
reduced Glut-1 expression, glucose uptake, and aerobic glycolysis 
in activated T cells.

PD-1 and CTLA-4 can also promote Treg cells (210, 211) 
although they are Glut-1 independent as they depend more on 
oxidative phosphorylation (101, 134, 200). In fact, it has been 

observed that the tumor samples obtained from cancer patients 
comprise increased number of immunosuppressive Tregs and 
cytokines as well as increased expression of CTLA-4 and PD-1 
and their ligands (212–214). However, as HIF1α is known to 
interact with CTLA-4 and its receptors, HIF-mediated block-
ade of CTLA-4 was shown to reduce the frequency of Tregs in 
the tumor (215). At the same time, HIF1α is associated with 
immune escape involving other mechanisms such as shedding 
of cell surface immune checkpoint regulators like MIC1 thus  
causing resistance of tumor cells to NK cell attack (216, 217). Since 
CTLA-4 and PD-1 are highly expressed on exhausted T cells and 
expression of their ligands on the tumor cells inhibits PI3K/Akt/
mTOR signaling and the upregulation of glucose and glutamine 
metabolism (204), T  cells may not be able to reprogram their 
metabolism correctly thereby severely a�ecting their functions 
(Table  1). Increased expression of PD-1 on tumor-in�ltrating 
T cells is also associated with reduced ability to di�erentiate into 
memory T  cells (218). Further, many cancers express higher 
levels of PD-L1 or PD-L2 and have PD-1+, exhausted T  cells 
in their environment (219). Furthermore, co-localization of 
HIF1α and PD-L1 in tumors has been shown to be associated 
with worse prognosis (215, 220). A link of HIF1α with PD-L1 
is demonstrated as HIF1α is shown to bind to hypoxia-response 
element of the PD-L1 promoter (221). Recently, an unexpected 
role of PD-L1 in regulating tumor cell metabolism is reported 
that suggests that PD-L1 can have direct e�ects on cancer cells 
(82). Since PD-L1 promotes Akt/mTOR activation and glycolysis 
in tumor cells, it is suggested that checkpoint blockade therapy 
may correct the metabolic competition-mediated nutrient 
availability imbalance between T cells and tumor cells through 
a direct e�ect on the tumor cells (82) (Figure 1; Table 1). Since 
improved clinical response and survival has been obtained with 
checkpoint blockade antibodies, it will be useful to explore the 
detailed mechanisms by which these antibodies modulate Akt/
mTOR and HIF1α pathways as well as their e�ects on the nutrient 
availability and immune cell metabolism in patients.

Metabolic Reprograming of CAFs
As the vasculature within a solid tumor is considered to be larger 
and “abnormal” compared to their normal counterparts (25), they 
are considered to be comparatively less e�cient. Consequently, 
the supply of energy precursors like glucose and oxygen within the 
bowels of solid tumor becomes understandably limited and soon 
a nutrient-depleted/hypoxic environment is generated within the 
core of the solid tumor. Hence, with the increase in mass, the 
tumor cells become more and more metabolically dependent on 
surrounding �broblast cells to provide them with high-energy 
metabolic intermediates essential to fuel the proliferation of the 
tumor cells. �is requires an enormous metabolic remodeling in 
the CAFs in terms of glucose metabolism and they turn into the 
metabolic cattle of the tumor cells providing the later with energy 
precursors even at the cost of self-destruction through autophagy 
and mitophagy (222–224).

Reprograming of Glycolytic Pathways
�e predominantly glycolytic nature of the CAFs has been well 
established and it is believed that the carcinoma cells “corrupt” 
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the associated stromal �broblasts and transformed them to the 
hyper-synthetic CAF (225). While proposing their “Reverse 
Warburg Hypothesis” in 2009, Lisanti and coworkers showed that 
the lysate of stromal cells from breast cancer patients with poor 
clinical outcome was associated with a considerable upregulation 
in the expression pro�le of glycolytic enzymes even under nor-
moxic conditions (226) and lactate generated by glycolytic CAFs 
could be used by cancer cells through respiratory metabolism 
indicating that the high rate of glycolysis in CAF constitute the 
cornerstone of the metabolic rewiring occurring in CAF/TME 
(Figure 1). A loss of BRCA-1 and caveolien-1 was also report-
edly observed with high glycolysis (227). However, the molecular 
association between a tumor suppressor gene and/or a membrane 
sca�olding protein with glycolytic pathway/regulatory enzymes 
still remains unclear. Similar metabolic shi� toward glycolysis 
has been observed in CAFs isolated from several tumor types 
(228–230). An active lactate shuttle plying between the tumor 
cells and their associated CAFs have also been reported in 
several independent studies (231). In fact, a high expression of 
lactate transporters MCT4 and 1 and their associated protein like 
CD147 has been considered as a hallmark of hypoxia within TME 
(232–234) that shows signi�cant correlation with tumor progres-
sion and negative clinical outcome (Figure  2). In addition to 
CAFs, acidic TME is also shown to modulate other stromal cells 
such as vascular endothelial cell in�ammation and angiogenesis 
(28, 235, 236).

Recently, it has been reported that downregulation of isocitrate 
dehydrogenase 3α (IDH3α) in CAFs through a TGF-β or PDGF-
based pathway might be the key factor that tips the balance toward 
glycolysis (237). It has also been suggested that downregulation 
of IDH3α lowers the level of α-ketoglutarate in the cell leading 
to low fumarate to succinate ratio. �is imbalance in the relative 
abundance of TCA cycle metabolites leads to HIF1α stabilization 
and augment glycolysis (237). HIF1α-mediated high expression 
of MCT4 has been reported in pancreatic ductal carcinoma-
associated CAFs indicating an active lactate transport within 
tumor stroma (234).

�e identi�cation of factor/s that alters glycolysis in tumor 
cells remains still elusive. It has been recently reported that the 
biphosphatase TP53-inducible glycolysis and apoptosis regulator 
(TIGAR) might hold the key for this metabolic reprogramming 
as overexpression of TIGAR in the breast carcinoma cells boosts 
the ATP production and glutamine uptake in tumor cells as well 
as pronounced glycolytic parameters in associated CAFs (238) 
(Figure  1). Overexpression of TIGAR has also been found to 
increase proliferation, while catalytically inactive TIGAR sup-
presses the tumor proliferation in carcinoma cells (238), thus 
reemphasizing the importance of metabolic symbiosis in tumor 
progression.

Activation of oncogenes and tumor suppressor genes has also 
been implicated in metabolic remodeling of TME. For example, 
within growing lymphoma cells, c-Myc was found to induce the 
overexpression of glycolytic enzymes like LDH-A and glucose 
transporters like Glut-1 and thereby maintained a glycolytic 
�ux (239). �e tumor suppressor gene p53 is known to maintain 
the cytochrome c oxidase complex through synthesis of the 

cytochrome c oxidase 2 (SCO2) protein. Hence loss of p53, as seen 
in majority of cancer cells, leads to a loss of functional cytochrome 
c oxidase complex/mitochondrial respiration promoting a higher 
rate of glycolysis in cancer cells (240). Along with SCO2, loss of 
p53 has also been implicated in the higher expression of TIGAR 
thus facilitating the metabolic symbiosis in the TME (241). Since 
these observations were made in homogenous cultures of tumor 
cells in vitro, it will be interesting to see if similar mechanisms are 
involved in bringing about the metabolic reprogramming in CAF 
cells present within the TME.

Reprograming of Glutamine-Mediated Metabolic 

Pathways
In addition to reprograming of glycolytic pathways, it is sug-
gested that tumor cells might also induce glutamine addiction 
in the neighboring CAFs and TAMs. TAMs isolated freshly from 
glioblastoma exhibit a signi�cantly high expression of glutamine 
synthetase—an enzyme that can convert the intracellular 
glutamate to glutamine which in turn could be supplied to the 
tumor cells to promote the latter’s proliferation (242). Glutamine 
deprivation has been observed to induce autophagy in tumor 
cells to supplement the intracellular glutamine level, while sup-
pression of autophagy along with glutamine deprivation causes 
apoptotic cell death. Amelioration of these e�ects was observed 
with the addition of α-ketoglutarate (243). �is clearly indicates 
that in the tumor cells, like glucose, glutamine basically acts as an 
anaplerotic energy precursor essential for running the TCA cycle 
(243). In line with this, CAFs isolated from primary pancreatic 
ductal adenocarcinoma have been recently shown to be more 
susceptible toward glutamine withdrawal compared to glucose 
deprivation (234) (Figure 2).

Taken together, these observations suggest that within the 
TME while glucose-6-phosphate/pyruvate/lactate generated 
through glycolysis and TCA cycle intermediates like fumarate, 
oxaloacetate, or citrate are sequestered toward generating 
membrane lipids, proteins, or nucleotides for the rapidly pro-
liferating tumor cells, ATP production greatly depends on the  
conversion of glutamate to α-ketoglutarate that keeps the TCA 
cycle functional.

Metabolic Reprograming in Cancer-
Associated Adipocytes
In recent years, a characteristic pattern of lipid deposition 
has been unraveled in cancer cells with the help of advanced 
imaging technologies like Raman scattering microscopy (69). 
Lipid deposition has been shown to be increased in malignant 
and metastatic cells of breast cancer compared to their non-
malignant counterpart (244). Lipids are a heterogeneous class of 
biomolecules which includes triglycerides, phospholipids, and 
cholesterols. While triglycerides are the principal storage mol-
ecule in animal body, the latter two are the integral component 
of the plasma membrane. Hence, it is reasonable to expect that 
proliferative cells like the tumor cells will have high deposition of 
lipid droplets. �is aggressive deposition of lipids in tumor cells is 
achieved as a result of reprogramming of the lipid metabolism in 
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the TME by upregulating the lipid biosynthetic machinery and/
or by promoting lipolysis in adipocytes.

�e pro-tumorigenic e�ect of the lipid molecule is evi-
denced by the observation that tumor cells o�en metastasize 
in the vicinity of adipocytes or in lipid rich milieu (69). In this 
regard, adipokines like IL8 have been reported to provide the 
cytochemical cue that directs the cancer cell toward a lipid rich 
“soil” (245). In the vicinity of tumor cells, adipocytes undergo 
several functional changes supporting the tumor growth and 
thereby transforming into CAAs (120). �ese changes include 
increased secretion of in�ammatory cytokines, proteases, etc., 
dedi�erentiation, and delipidation leading to fewer lipid droplets 
in the adipocytes (120). In the last few years, CAAs have emerged 
as one of the factors that closely promote proliferation of tumor 
cells, which involves various mechanisms. Soluble factors from 
adipocytes have also been implicated to promote breast cancer 
by activating Akt through phosphorylation and upregulating 
genes involved in cell adhesion, matrix remodeling, and angio-
genesis (246). Similarly, IGF-1 released by the human adipocytes 
is known to promote proliferation of MCF-7 cells. �e level of 
IGF-1 has been found to be greatly ampli�ed in the presence 
of fatty acids (247) and thus could be speculated to be the link 
between obesity and higher cancer risk. Fatty acids provided by 
the adipocytes is suggested to be the energy source that fuel the 
metastasis of breast cancer (248) as well as induce autophagy to 
promote proliferation in colon cancer (249). Also the increase 
in the levels of fatty acid-binding proteins (FABP)—a family 
of protein involved in transporting free fatty acid—in several 
cancers like breast, prostate, ovarian, and colorectal carcinoma 
[reviewed in Ref. (250)] indicate the existence of an active 
sequestering of fatty acid occurring between the tumor cells and 
CAAs. An import of free fatty acids molecules to tumor cells has 
been reported in several types of cancers including ovarian and 
prostate carcinomas (245, 251). Hence the presence of CD36, an 
integral membrane protein associated with the import of fatty 
acid to the interior of the cell, has o�en been equated with high 
rate of metastasis and poor prognosis (252, 253). However, the 
regulation of cross-talk between the adipocytes and the cancer 
cells leading to the mobilization of the fatty acid has not been 
elucidated so far.

Lipid molecules, in addition to being a carbon sink, are also 
energy-rich molecules that can support the proliferation of 
the tumor cells in the nutrition-deprived interior of the solid 
tumor. CAAs thus supply energy to cancer cells through fatty 
acids as cancer cells induce metabolic alterations in the CAAs 
like increased activity of hormone-sensitive lipases that results 
in increased production of fatty acids from CAAs, which is then 
used by cancer cells (120). Indeed, certain tumors like prostate 
cancer have been reported to rely less on glucose metabolism 
(254, 255) but depend mostly on FAO for energy production 
(256). Simultaneously, lipid biosynthesis generates NADP+ which 
can act as an alternative acceptor for the terminal electron in 
electron transport chain (ETC) in the hypoxic TME (255). �e 
NADP+ can also act as a substitute for NAD+ during glycolysis 
(70). �us, lipid biogenesis not only ensures the sustenance of 
the ETC/ATP production but also maintains the high glycolytic 
�ux in the TME.

THERAPEUTIC TARGETING

One of the important considerations in therapeutic targeting of 
metabolism for cancer therapy is the similar requirements for 
anabolic metabolism by both cancer and activated T cells/stromal 
cells. �erefore, identi�cation of targets, metabolites, metabolic 
enzymes, metabolic pathways that are di�erentially expressed/
utilized/regulated in cancer and other stromal cells in the 
microenvironment is essential to avoid unintended e�ects on the 
function of stromal cells. Furthermore, this therapeutic targeting 
should result in increased antitumor e�ects of T e�ector cells, 
increased generation of memory cells, and reduced immunosup-
pressive functions of Tregs.

PD-1/PD-L1/CTLA-4 Signaling
On activation, T  cells reprogram their metabolism to aerobic 
glycolysis and glutaminolysis but PD-1 signaling suppresses 
Akt/mTOR pathway (204, 257) thereby impairing the metabolic 
reprograming and promoting the beta-oxidation of fatty acids 
(214). �us, antitumor e�ects of anti-PD-1 therapy will also be 
mediated by re-engagement of aerobic glycolysis by TILs through 
elevated expression of Glut-1 and glycolytic proteins (Table 1). In 
fact, e�ects of anti-PD-1 therapy were abrogated in the presence of 
rapamycin (257). In addition to PD-1/PD-L1 signaling-mediated 
e�ects on the TILs, PD-L1 expression on the cancer cells has been 
shown to mediate cell-intrinsic signaling through PI3K/Akt/
mTOR pathway leading to enhanced glycolysis in the cancer cells 
(82). �us, metabolic reprograming both in cancer and immune 
cells is one of the important reasons for PD-1/PD-L1 blockade-
mediated therapeutic e�ects (Table 1). Similar to PD-1, CTLA-4 
also inhibits increased glucose metabolism following T  cell 
activation, which is vital for naïve T cells transitioning to T e�ec-
tor cells (204, 205). �erefore, e�ects of anti-CTLA-4 antibodies 
in tumor therapy could also be partially mediated due to their 
e�ects on the glycolytic metabolism (Table 1). On the other hand, 
non-speci�c pharmacological/chemical inhibitors of glycolysis 
like 2-deoxy-d-glucose (2-DG) could be more e�ective as they 
can modify glycolysis both in cancer cells as well as the T cells, 
although the consequences may not be identical in both the cell 
populations depending on the nature of metabolic patterns in dif-
ferent subsets of T cells. Indeed, recent studies from our labora-
tory have shown that a combination of systemically administered 
2-DG with focal irradiation of the gra�ed Ehrlich ascites tumor in 
mice shows selective lympho-depletion coupled with di�erential 
activation of di�erent � cells and polarization of macrophages 
to M1 phenotype that strongly correlates with the local tumor 
control (258, 259) (Table 1). Since both CTLA-4 and PD-1 block 
glycolysis, checkpoint blockade will also enhance e�ector T cells 
while potentially inhibiting Tregs as they are dependent on FAO 
for their metabolic needs (214). Strategies that a�ect the signal-
ing mediated by other surface receptors such as P2X7 and A2AR 
using administration of NAD+ and A2AR agonists, respectively, 
have been shown to deplete Tregs (260, 261).

HIF1α Signaling
Hypoxia-inducible factor 1α controls several genes involved in 
glucose and lactate transport and glycolysis, such as Glut-1, MCT1, 
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and MCT4 (11, 129). In addition, HIF1α signaling also a�ects pH 
stabilization and angiogenesis thereby a�ecting the tumorigenesis 
and metastasis (11). �erefore, modi�ers of lactate transport such 
as inhibition of MCT1 with alpha-cyano-4-hydroxycinnamate 
(CHC) has been shown to induce a switch from lactate-fueled 
respiration to glycolysis leading to retarded tumor growth by 
selectively killing hypoxic tumor cells (262) (Table  1). Such a 
strategy may also a�ect the polarization of TAMs (115, 116) as 
well as the metabolic symbiosis between CAFs and cancer cells 
(118) in a HIF1α-dependent manner. Further, inhibition of HIF1 
transcription by �avopiridol (263), dimerization and synthesis by 
acri�avine and digoxin (264, 265) and induction of HIF1 deg-
radation by trichostatin A, a histone deacetylase inhibitor (266) 
have been investigated as therapeutic approaches (Table 1).

Hypoxia-inducible factor 1α signaling plays a crucial role in 
regulating the immune response. However, both positive and 
negative regulatory e�ects of HIF1α on T e�ector cells have 
been demonstrated. Although activating HIF1α pathway in 
mouse melanoma cancer cells resulted in prevention of T e�ec-
tor cell exhaustion even in the presence of continuous antigen 
exposure (267), more studies are required before using HIF1α 
activators to enhance the T cell-mediated responses. In addition 
to e�ects of hypoxia on immune response, hypoxia also a�ects 
angiogenesis. Anti-angiogenic therapy of cancers generally by 
VEGF blockade results in increased hypoxia due to metabolic 
reprograming that leads to tumor aggressiveness and metastasis 
(268). It has been shown that re-expression of semphorin 3A in 
cancer cells improves the cancer tissue oxygenation and reduces 
the anti-angiogenic therapy-induced activation of HIF1α leading 
to enhanced therapeutic e�ects (269).

PI3K/Akt/mTOR and AMPK Pathway
Increasing memory T  cell prevalence has been observed with 
di�erent compounds that a�ect PI3K/Akt/mTOR and AMPK 
signaling. Blocking of glycolysis by 2-DG, a hexokinase inhibitor 
resulted in increased AMPK activity leading to negative regula-
tion of mTOR and Foxo1 and enhanced CD8+ T cell-mediated 
antitumor e�ects (270). Treatment with metformin also resulted 
in increased AMPK activation and memory T  cell generation 
(271), which could be due to its e�ects on mTOR signaling (272) 
or miR33a upregulation that is responsible for downregulation of 
c-Myc expression (273). Rapamycin, an inhibitor of mTORC1, is 
shown to exert multiple e�ects on T cell metabolism (Table 1). 
It reduces glycolysis and increases lipid peroxidation through 
mTOR inhibition, enhances the formation of T memory cells 
(274), inhibits T-bet, a �1-promoting transcription factor 
(275), and induces autophagy (276). However, since immuno-
suppressive e�ects of rapamycin have been reported (277), more 
investigations are required to determine the long-term antitumor 
e�ects of rapamycin. Since induction of Tregs has been observed 
in response to apoptotic tumor cells in an IDO-dependent man-
ner, pharmacological inhibition of either IDO or PTEN resulted 
in loss of Foxo3A, a target of Akt as well as destabilization of 
Tregs causing rapid tumor regression (278) (Table  1). Further, 
several rapalogs such as temsirolimus and everolimus have been 
shown to exert anticancer e�ects (Table 1) although upregulation 
of PI3K/Akt pathway following treatment with rapalogs remains 

a matter of concern necessitating the deployment of combination 
strategies to inhibit this response (28, 279–281).

Use of Metabolic Reprograming to 
Manipulate Metabolites and  
Metabolic Enzymes
Targeting Glucose Metabolism
Glycolytic metabolites like PEP act as sensors for availability of 
glucose in the environment and can modulate the important 
signaling pathways regulating the e�ector functions of the 
T cells (123). Further, glycolytic enzymes such as GAPDH also 
have additional role as metabolic checkpoint regulators (153). 
�erefore, manipulating and reprograming the metabolism in 
T cells by changing the levels of these metabolites and metabolic 
enzymes to modulate their specialized functions can be used in 
adoptive cell therapy (ACT) as well as an adjunct form of immu-
notherapy. Indeed, overexpression of either PCK1 or PGC1α in 
T cells has been shown to result in stronger antitumor responses 
emphasizing the potential of ACT where the expression of meta-
bolic enzymes is modulated (123, 157).

Inhibition of key enzymes involved in glycolysis is one of 
the important strategies being considered for cancer therapy. 
�e enzymes like hexokinase—a molecule that is involved in 
several pathways of carbohydrate metabolism—are emerging as 
one of the determinants of cancer prognosis and inhibition of 
hexokinase appears to be pivotal in predicting the outcome of 
cancer therapeutics (282, 283). 2-DG is an inhibitor of glycolysis 
that competitively inhibits hexokinase through product inhibi-
tion due to the accumulation of 2-DG-6-phosphate (2-DG-6-P), 
which is not metabolized further causing the metabolic block in 
the form of reduction in ATP from glycolysis and NADPH from 
PPP (284, 285) (Table 1). Selective sensitization of tumor cells 
to radiation and chemotherapeutic drugs by 2-DG arises from 
di�erential modi�cations of multiple damage response pathways 
in tumor and normal cells. �is includes depletion of energy, 
disturbed redox balance, and altered N-linked glycosylation lead-
ing to unfolded protein responses (UPR), collectively resulting 
in changes in the gene expression and phosphorylation status 
of proteins involved in signaling, cell cycle control, DNA repair, 
calcium in�ux, and apoptosis (286). Studies with animal tumors 
have shown enhanced local tumor control without signi�cant 
damage to the normal cells (and tissues). Phase I–III clinical trials 
with a combination of 2-DG and hypofractionated radiotherapy 
in malignant glioma patients have shown excellent tolerance with 
minimal toxicity and moderate survival bene�ts with signi�cantly 
improved quality of life (287–290).

In addition to the direct e�ects of 2-DG on the cancer cells, 
systemically administered 2-DG together with focal irradiation of 
the tumor has been shown to activate antitumor immunity in the 
peripheral blood both in terms of increase in the levels of innate 
and adaptive cells and decrease in B cells, where a decrease in 
the CD4+ naïve T cells was paralleled by the increase in CD4+-
activated T cells (258). �is was also associated with a shi� from 
�2 and �17 to �1 in the form of cytokine and switching of 
antibody class, which appears to be mainly due to the selective 
depletion of induced T  regulatory cells (CD4+CD25+FoxP3+ 
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CD39+FR4+GITR+CD127−) in blood, spleen, lymph node, and 
the tumor (258). �is appears to result in the immune activa-
tion in the periphery, secondary lymphoid organs, and massive 
in�ltration of CD4+, CD8+, and NK  cells in the tumor, which 
correlates well with the tumor control (258). More recent studies 
have shown that 2-DG in combination with tumor irradiation 
polarizes splenic macrophages toward M1 type in vivo as well as 
in  vitro (RAW 264.7) that correlated well with enhanced local 
tumor control (259). Clearly, e�ects other than glycolytic inhibi-
tion like UPR response (due to altered N-linked glycosylation) 
and HIF1α signaling appears to be involved in the immune 
activation by 2-DG, which needs further studies to provide more 
insight (258, 259) (Table 1).

Glycolysis is associated with the activation of normal lympho-
cytes, i.e., the lymphocyte activation dogma (291). Interestingly, 
immune activation has been reported in tumor-bearing mice 
following systemic administration of 2-DG combined with focal 
irradiation of the tumor, which appears to be out of tune with 
the dogma, although lympho-depletion was seen 1 day a�er the 
administration (258). Interestingly, the tumor response appears 
to be determined by the changes in the immune status seen soon 
(1  day) a�er the treatment, suggesting that these indicators of 
alterations in the immune status can also serve as surrogate mark-
ers of tumor response to the combined treatment involving 2-DG.

Glycolytic inhibitors other than 2-DG have also been evalu-
ated for their potential to in�uence the therapeutic response. 
For example, complete remission has been observed in a patient 
with relapsed non-Hodgkin’s lymphoma following treatment 
with sodium dichloroacetate (DCA) that targets PDK1 thereby 
reducing lactate production (292) (Table 1). Further, 6-aminoni-
cotinamide (6-AN) has been used to inhibit the glycolytic shunt 
into PPP by inhibiting G6PD (293, 294) (Table  1). A higher 
degree of radiosensitization has been reported by a combination 
of 2-DG and 6-AN in both cancer cells and in vivo in Ehrlich 
ascites tumor-bearing mice (295–297). PFK—and its regulatory 
molecules—are also of particular interest as plausible targets 
for cancer therapy. PFKFB3 is known to synthesize fructose 
2,6-bisphosphate (F2,6P2) which acts as an allosteric activator 
for PFK-1. Hence, small molecule inhibitors of PFKFB3, like 
PFK15 (1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one) or 
epigallocatechin-3-gallate (EGCG) (298, 299) are known to con-
siderably suppress tumor cell proliferation (Table 1). Some other 
anticancer agents like curcumin are also known to stall cancer 
progression by suppressing the PFK, hexokinase, Glut-4 expres-
sion both at mRNA and protein levels (300) (Table 1). Inhibition 
of PFKFB3 with pharmacological inhibitors like 3-(3-pyridinyl)-
1-(4-pyridinyl)-2-propen-1-one (3-PO) in endothelial cells 
also leads to the suppression of the enhanced glycolysis  
(298, 301) (Table 1). �ough the detailed molecular mechanism 
is unknown, it is assumed that this leads to improved tumor 
vasculatures through better adhesion of the pericytes (301). 
Blocking glycolysis in endothelial cells is thus also emerging as a 
novel therapeutic approach in cancer therapy. Pharmacological 
inhibitors of hexokinase and PFKFB3 like 2-DG and PFK15 have 
been successful in causing cytotoxicity in endothelial cells show-
ing promise as therapeutic agents for cancer (119) (Table  1). 
Another metabolic analog that interferes with glycolysis and 

thereby tumor progression is 3-bromopyruvate (3-BP). 3-BP is 
known to suppress the expression of lactate transporter, MCT1 
(302) as well as interfere with the activity of hexokinase (303) 
(Table 1). Taken together, in cases of multiple myeloma, treatment 
with 3-BP reduced the ATP level to 10% of untreated cells within 
1 h leading to cytotoxicity (302). In addition to 3-BP, AZD3965, 
an inhibitor of MCT 1/2 targeting the transfer of lactate between 
cancer and cancer/stromal cells (Table  1) has been developed 
and is being tested for clinical e�cacy (304). Another hexokinase 
and MCT1 inhibitor, Lonidamine has shown promising selec-
tive anticancer e�ects and has reached phase II of clinical trials 
(Table 1) (305–307). Similarly, caulerpin, a secondary metabo-
lite, is presently being speculated for its anticancer property as its 
long-term application was found to interfere with the glycolytic 
machinery through AMPK pathway (308) (Table 1).

Although the conclusive picture of the signaling cascade that 
regulate the molecular remodeling in CAFs is yet to emerge, it will 
be interesting to speculate the candidature of molecules like TGF-
β and c-Myc as potential drug targets (Table 1). TGF-β reportedly 
suppresses the TCA cycle enzyme isocitrate dehydrogenase (237) 
through a TGF-β/PDGF-mediated pathway thereby promoting 
glycolytic metabolism in CAF. Similarly, high activation of c-Myc 
promotes the expression of LDH-A and Glut-1 that are essential 
in maintaining the glycolytic �ux (239).

Targeting Amino Acid Metabolism
�e catabolism of l-arginine and tryptophan plays a signi�cant 
role in tumor progression and immunity. Enhanced intra-tumoral 
RNS production due to increased metabolism of arginine in the 
TME induces CCL2 chemokine nitration and hinders T cell in�l-
tration (309). It was reported that preconditioning of the TME 
with novel drugs that inhibit CCL2 modi�cation facilitates CTL 
invasion of the tumor, suggesting their e�ectiveness in cancer 
immunotherapy (309).

Exhausted and antigen-tolerant T cells might be reactivated 
using IDO inhibitors resulting in increased tryptophan levels. 
�is may be more bene�cial in cancer therapy than increas-
ing glycolysis as di�erential e�ects on immune cells could be 
obtained since glycolytic metabolic pathways are used both by 
cancer and T cells for their growth and survival. Two of the IDO 
inhibitors 1-methyl-tryptophan (1-MT) (310) and INCB024360 
(311) have shown antitumor activity in mice tumor models due 
to increased T  cell proliferation (Table  1). Downregulation of 
IDO has been observed with imatinib, a Bcr-Abl tyrosine kinase 
inhibitor in gastrointestinal tumors that resulted in the activa-
tion of CD8+ T cells and induced Treg cell apoptosis leading to 
enhanced antitumor e�ects (312) (Table 1). Imatinib could also 
inhibit Lck-mediated TCR signaling (313, 314) that is important 
for maximum glucose uptake through Glut-1 (86). �is may lead 
to negative e�ects on T cell transition and therefore detrimental 
e�ects on antitumor immune responses.

Targeting Lipid Metabolism
Unlike T e�ector cells, Tregs depend on lipid metabolism for their 
di�erentiation and this provides an opportunity to di�erentially 
target these cells by using lipid oxidation blockers. An important 
role of FAO key enzyme, carnitine palmitoyl transferase 1a 
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(CPT-1a) has been demonstrated in cancer cell survival in con-
ditions of energy stress as it rewires the cancer cell metabolism 
(315, 316). Treatment of Tregs with etomoxir, a CPT-1a inhibitor 
resulted in di�erential suppression of Treg generation but not 
�1 cells (101) making etomoxir a promising metabolic modulator 
for cancer therapy (Table  1). 3-hydroxy-3-methylglutaryl-CoA 
reductase (HMGCR), a rate-limiting enzyme for the synthesis 
of cholesterol and isoprenoid lipids has been targeted using a 
general lipid-synthesis inhibitor, 25-hydroxycholesterol, and 
drugs such as simvastatin, atorvastatin, and lovastatin to impair 
the activity of Tregs as HMGCR is needed for proliferation of 
Tregs (317) (Table 1).

As CAAs provide a source of energy to cancer cells in the form 
of fatty acids, preventing induction of CAA phenotype provides 
another promising therapeutic strategy. Several thiazolidin-
ediones (troglitazone, rosiglitazone, and pioglitazone) that are 
ligands for PPARγ, which regulates the terminal di�erentiation 
of adipocytes (318), have been shown to inhibit the dedi�eren-
tiation of adipocytes to CAA (319) (Table 1). However, some of 
the thiazolidinediones are associated with cardiovascular side 
e�ects (120) and hence strategies that block cancer cells from 
using energy supplied by the CAAs have been developed using 
FABP4 inhibitors (245) and metformin (Table 1). Interestingly, 
metformin plays dual role in cancer therapy by inhibiting both 
the use of CAA-supplied energy by cancer cells as well as cancer 
cell-induced metabolic changes in the CAFs. Metformin has 
been  found to block adipocyte-mediated lipid accumulation 
in ovarian cancer cells (320) and reverses the CAF phenotype 
induced by cancer cells by restoring caveolin expression in the 
�broblasts (321).

Targeting Acidic TME
�e acidic TME that alters tumor metabolism has been targeted 
with systemic bu�er therapy using bu�ers such as lysine, sodium 
bicarbonate, or 2-imidazole-1-yl-3-ethoxycarbonylpropionic acid  
(IEPA) (Table 1) to alkalize the TME leading to reduced tumor 
growth and metastasis (322–324) and to increase the activity of 
some drugs that otherwise remain inactive in acidic environments 
(325, 326). Further, proton pump inhibition to manipulate tumor 
pH and increase the intracellular acidity has also been employed 
as a therapeutic strategy. Ba�lomycin A1 (327) and archazolid 
(328), V-ATPase proton pump inhibitors showed anticancer 
activity in several types of cancers. �erapeutic e�ects of several 
other proton pump inhibitors such as omeprazole, esomeprazole, 
rabeprazole, pantoprazole, and lansoprazole (Table  1) have 
been investigated suggesting the potential of these inhibitors in 
cancer therapy (329). Another attractive target of acidic cancer 
cells is CAIX that is overexpressed in these cells due to extra-
cellular acidosis (330). Several inhibitors such as sulfonamides, 
sulfamates, and sulfamides (Table 1) have been developed that 
bind to the catalytic site of the enzyme (331). In vivo e�cacy of 
these compounds is currently under investigation; however, a 
signi�cant reduction in tumor growth and metastasis has been 
observed in a mammary tumor model in mice with novel CAIX 
inhibitors (332). Since acidic TME modulates the activation of 
proton-sensing G-protein-coupled receptors (333), an agonist of 
GPR68 (Table 1) has been investigated and has shown inhibitory 

e�ects in malignant astrocyte proliferation. However, further 
understanding of the molecular signaling and mechanisms 
of how these receptors alter tumor metabolism is essential to 
develop novel small molecules for cancer therapy.

CONCLUSION AND FUTURE DIRECTION

Although insight into the intricate nature of metabolic coopera-
tion between the tumor cells and various host cells that it interacts 
within the microenvironment are emerging at the present, their 
potential as therapeutic targets is already indicated by the encour-
aging results from the studies with modi�ers of lactate transport 
(MCT1) (17, 262). More recent studies showing the immune 
suppressive potential of lactic acid (3) emphasizes the impor- 
tance of this metabolite that has an important role in the meta-
bolic crosstalk between cancer cells and �broblasts as well as the 
immune cells. Similarly, the dependence of cancer cells on the 
CAF for glutamine uptake (334) as well as support provided 
by the endothelial cells for their growth (119) highlights the 
importance of metabolic cooperation that can be used as a target 
for developing therapies (72). Further, the revelations on the 
contributions of immune modulation by the glycolytic inhibitor 
2-DG to radiosensitization of tumors (258, 259) and its potential 
to impair the tumorigenesis (335) lend support to the proposi-
tion of targeting host–tumor interactions by metabolic modi�ers 
for enhancing therapeutic gain. Furthermore, development of 
therapies that enhance the responses mediated by e�ector and 
memory T cells while reducing the suppressive functions of Tregs 
hold signi�cant potential for cancer immunotherapy. Several 
therapeutic strategies for regulating Treg cell metabolism have 
been developed [reviewed in Ref. (336)]. Indeed, many of the 
currently employed therapeutic modalities target the metabolic 
pathways or the signaling cascades that govern them (Figures 1 
and 2; Table 1). However, the metabolic cooperation as well as 
competition that set the metabolic �tness of di�erent types of 
cells present in the TME needs further investigations to achieve 
better clinical outcomes. �erefore, while using engineered 
T cells during ACT or chimeric antigen receptor (CAR) T cell 
therapies, it is important to consider that limiting nutrients and 
other conditions in the TME will in�uence the e�ectiveness 
of these strategies. In addition, the cells of the innate immune 
system may recognize signals released from the cancer cells 
thereby supporting carcinogenesis. Pattern recognition receptors 
(PRRs) present on the surfaces of macrophages and other cells 
recognize di�erent types of obnoxious stimuli present in their 
immediate vicinity and activate intracellular signaling cascades, 
which generally leads to the induction of pro-in�ammatory 
response through upregulation of several genes (337, 338). �ere 
are several families of PRRs; however, the best characterized are 
the TLRs and the NOD-like receptors (NLRs). �e ability of 
damage-associated molecular patterns (DAMP) released from 
dying cells (apoptotic and necrotic) has been widely implicated 
in tumorigenesis beyond pathogen-driven neoplasms (338) 
and may facilitate the interaction of tumor cells and cells of 
the immune network. Understanding the nature of metabolic 
reprograming in PRR-mediated tumor progression is required 
for developing therapeutic strategies that speci�cally target this 
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