
ARTICLE

Metabolic dysregulation in vitamin E and carnitine
shuttle energy mechanisms associate with
human frailty
Nicholas J.W. Rattray 1,2,3*, Drupad K. Trivedi1, Yun Xu 1,4, Tarani Chandola5, Caroline H. Johnson2,

Alan D. Marshall5,8, Krisztina Mekli5, Zahra Rattray 3, Gindo Tampubolon5, Bram Vanhoutte 5,9,

Iain R. White1,10, Frederick C.W. Wu6, Neil Pendleton 7,11, James Nazroo5,11 & Royston Goodacre1,4,11

Global ageing poses a substantial economic burden on health and social care costs. Enabling

a greater proportion of older people to stay healthy for longer is key to the future sustain-

ability of health, social and economic policy. Frailty and associated decrease in resilience

plays a central role in poor health in later life. In this study, we present a population level

assessment of the metabolic phenotype associated with frailty. Analysis of serum from 1191

older individuals (aged between 56 and 84 years old) and subsequent longitudinal validation

(on 786 subjects) was carried out using liquid and gas chromatography-mass spectrometry

metabolomics and stratified across a frailty index designed to quantitatively summarize

vulnerability. Through multivariate regression and network modelling and mROC model-

ing we identified 12 significant metabolites (including three tocotrienols and six carnitines)

that differentiate frail and non-frail phenotypes. Our study provides evidence that the dys-

regulation of carnitine shuttle and vitamin E pathways play a role in the risk of frailty.
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A
consequence of ageing is the decline in biological func-
tion that will eventually lead to a progressive deterioration
of physiological performance, a decline in the ability to

respond to stress and an associated increase in vulnerability. Since
1950 life expectancy has been rising at a rate of more than three
years per decade, and since the onset of the millennium this has
risen to five years per decade1. As a consequence, it is estimated
that between 2015 and 2050 the global proportion of over 60-year
olds will increase from 12 to 22%2, while the number of over-65s
is forecast to triple by 20503, even though recent evidence sug-
gests that maximum lifespan could be fixed4,5.

While increasing life expectancies are a positive development,
all individuals are still currently subject to natural constraints and
face decline in health status with age (albeit at rates that vary
across populations and sub-populations6) increasing the risk of
exposure to chronic age-related disorders7. So, in 2015 the global
healthy life expectancy at birth (HALE) was calculated to be 63.1
years8, which indicates a substantial burden of later life mor-
bidity, even though rises in HALE are a testament to continuing
global healthcare advancements including medical diagnosis and
treatment of cardiovascular disease9, immunization10, smoking
cessation11, healthy diet12 and an increased understanding of
social determinants of health13. Such demographic shifts and
resulting population ageing are leading public health practitioners
and policy makers to actively push for global innovations that can
positively shape the health of future elderly populations14–16.
Indeed, healthy ageing in later life has enormous potential to
affect society as a whole. Consequently, to mitigate the potential
economic and social strains that flow from population ageing
brings call for direct government initiatives to develop appro-
priate public health interventions to reduce the impact of func-
tional decline associated with frailty.

Clinically, the effects of frailty are defined as a multimodal
syndrome emphasized by a loss of internal reserves (energy,
physical ability, balance, cognition, and health) that gives rise to
biological vulnerability within an individual. This inherent com-
plexity means that there is no single diagnostic tool available to
identify the presence and extent of frailty. However, a myriad of
scoring instruments are reported within the literature. These
typically assess a number of negative outcomes, or distal phe-
notypes, and are validated by stratifying the scoring aspects of
large patient cohorts such as surgical prognosis15, primary care
interventions16–20 and associated key detrimental events and
are subsequently used in the development of instruments that can
be used to evaluate the presence of frailty, such as the frailty
phenotype21 and frailty index (FI)22. Although these methods
have acceptable performance in identification of frailty status,
they have some limitations, including subjectivity of individual
answers, resource utilisation costs and lack of linkage to under-
lying biological mechanisms23.

Orthogonal to such procedures, biochemical assessments of
frailty in the context of biomarker detection are sought after as
they hold the potential to identify biological pathways that con-
tribute to a frailty phenotype, offering opportunities in developing
strategies for the identification and management of frailty. A
focus for the bio-gerontology community within this area has
been the chemistry of life contained within the central dogma of
molecular biology. Several large cohort studies have demonstrated
correlation between mitochondrial DNA and energy co-factors
alongside mortality24,25, dysregulation of transcriptional net-
works and age-dependent decline26, alongside metabolic sig-
natures of biological ageing in young27 and older people28. By
contrast, no such large scale, population level comparison of
frailty identified using a validated measure versus metabolism
has been undertaken. Yet the ability to uncover downstream bio-
chemical relationships by applying metabolomics based approaches

hold great potential for the development of public health strate-
gies to reduce the risk of frailty and its adverse consequences.

As the complex links between age-related frailty and the
underlying life-course, social, psychological, genetic and meta-
bolic processes remain unclear, the fRaill project (www.micra.
manchester.ac.uk/research/fraill/) takes an interdisciplinary
approach to examine the causal processes relating to frailty and
wellbeing at older ages. Within this work, we performed high-
throughput untargeted mass spectrometry-based metabolic pro-
filing coupled with pathway and network analysis on longitudinal
serum samples, taken four years apart, from a cohort of well-
phenotyped ageing (≥58 years old) subjects from the English
Longitudinal Study of Ageing (http://www.elsa-project.ac.uk/).
The aim of this approach is to stratify metabolic phenotypes
(metabotypes29) over a FI derived from over 60 measured indi-
cators and assess whether associated biochemical networks relate
to biological degeneration associated with frailty. From this work
we have identified a panel of 12 metabolites associated with the FI
and from these, two chemical classes (tocotrienols and carnitines)
exhibit significantly modulated under-expression when overlaid
across the FI. Subsequent network enrichment analysis and sta-
tistical modelling has identified carnitine shuttle and vitamin E
metabolism as two modulated pathways that are related to a
higher energy metabolic phenotype. The ability of the combined
metabolic model to predict frailty has also been confirmed by a
cross validated ROC model. In conjunction with these results,
Mendelian Randomization analysis has been performed on
previously collected GWAS data to determine the causal rela-
tionship of frailty to carnitine levels. This indicates a level of
significant association between decreased levels of carnitine and
frailty.

Results
Frailty as a function of ageing. In the first stage of our analysis
we performed cross-sectional stratification of a continuous FI
over mass spectrometry-derived metabolite data within the fRaill
project. The aim was to identify underlying chemical determi-
nants of frailty (or resilience) and build an associated metabolic
pathway model. Sample members participated in a face-to-face
interview, a nurse assessment of physical function, anthropo-
metric measurements and collection of blood samples. A full list
of questionnaire characteristics and summary metadata can be
found here—http://www.elsa-project.ac.uk/data_elsa. A FI model
was developed by calculating a cumulative score for each indi-
vidual using the presence/absence of 60 deficit variables contained
within Wave 4 (n= 1846) and Wave 6 (n= 1753) of the ELSA
(English Longitudinal Study of Ageing; following standard prac-
tice, sample members were included if they had responses to at
least 30 of these items)6. These items covered a broad range of
attributes such as cognitive function, falls and fractures, vision,
hearing, chronic diseases and depression. Due to the complexity
in index-coding and cut-off point determination, the presence of
each item attributed varying predetermined amounts to an
individual’s FI score30 which had an overall range of 0.04–0.698
over the full sample cohort. Subsequent plotting of the FI dis-
tribution produced a unimodal right skewed distribution of data
from both waves (Supplementary Fig. 1). This distribution of
frailty scores is consistent with findings from other population
studies22. To deal with this skewed distribution we subsequently
stratified the FI scores into four categories, <0.1 (26.2%), 0.1–0.2
(48.4%), 0.2–0.3 (17.5%), >0.3 (7.9%).

Previous studies have indicated that frailty increases as subjects
age, but this is more closely linked to biological age rather than
chronological age31. To investigate this, a robust linear regression
(RLR) model was developed to determine the level of correlation
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between FI and age (Fig. 1a, Supplementary Figs. 2–7). The
regression equation for the full FI (in the form y=mx+ c) is
equal to FI= 0.119xAge+ 0.004092. Derived from this the SSE
(sum of squares of error)= 5.7017 and R squared (coefficient of
determination)= 0.3357, where 1= total correlation and 0=
non-correlation. As a measure of the discrepancy between the
observed data and the estimation made by the linear regression
model, the R value of 0.34 explains a reasonable proportion of
variance in frailty explained by age which is to be expected given
the measure over a large age range. But, the sum-of-square-
error of estimates (SSE) still indicates there is still a large amount
of unexplained variance that is present across all ages. Similar
models for each FI category were also calculated (Supplementary
Fig 2) indicating a drop in the correlation between age and FI as
FI value increases. These results indicate that although age is
linked to the frailty phenotype, as a subject expresses a stronger
frailty phenotype, age plays a lesser role in the classification
scoring.

Cross sectional modelling of biochemistry and metabolism
over the frail index. Untargeted metabolic phenotyping was
performed on serum samples collected at Wave 4 of the ELSA
alongside a range of standard biochemistry assays (see Supple-
mentary Methods). 1846 subjects were used to generate the FI
and a combined total of 1191 serum samples were selected for
untargeted multiplatform metabolomics analysis based on

availability, quality of sample and metadata inclusiveness. Within
the complete sample set 57.9% (n= 690) were women and other
major characteristics are represented in Fig. 1b. Age and sex
dependent changes in biochemical measurements of lipids (LDL,
HDL, cholesterol and triglycerides) alongside other blood con-
stituents (white blood cell count, dehydroepiandrosterone, fibri-
nogen and ferritin) were calculated using a standard scoring
method (z-score, giving a standardised score with a mean of zero
and a standard deviation of one (also referred to as auto-scaling)).
This methodology required a complete set of input data items for
all subjects to perform the analysis, but 428 subjects had at least
one data point missing (The percentage of missing biomarkers
variables varied between 0 and 2.5% except fasting glucose which
has displayed 32% missings out of 1196 observations). To account
for this, we adopted a missing value imputation approach (mul-
tivariate multiple imputation method with known seed for
replication32) to enable the assessment of all data point for all
subjects. This completed dataset was subsequently tested by fur-
ther sensitivity analysis and all biochemistry measures were then
re-stratified over the FI as a whole and stratified in to male and
female subgroups. Pearson’s correlation scores were calculated for
non-standardized biomarker values and only significantly corre-
lated biomarkers were used for standardisation purposes. Indi-
viduals were then grouped into four classes based on FI and at the
same time, male vs. female stratification was also performed (data
in Supplementary Figs. 8–11). Subsequent plots indicate ±corre-
lations over the FI (Fig. 1c, d). Using the FI score of each subject

Attribute at Wave 4 of ELSA (n = 1191) Mean SD

Age 67.7 7.15

% female (690F/501M) 57.9 N/A

Rockwood Frailty Index 0.16 0.09

BMI 27.8 5.0

Blood fibrinogen level (g/l ) 3.35 0.54

Total blood cholesterol level (mmol /l) 5.58 1.22

Blood hdl level (mmol /l) (high density lipoprotein) 1.57 0.40

Blood triglyceride level (mmol /l) 1.65 0.94

Blood ldl level (mmol /l) (low density lipoprotein) 3.27 1.06

Blood ferritin level (ng/ml ) 118.55 105.81

Blood crp level (mg/l ) 3.54 7.09

Blood dehydroepiandrosterone (dheas) level (umol /l) 2.20 1.65

Blood insulin-like growth factor (igf-1) level (nmol /l) 15.82 5.59

Blood glucose level (mmol /l) - fasting samples only 4.93 0.81

Blood haemoglobin level (g/dl ) 14.02 1.22

Blood glycated haemoglobin level (%) 5.88 0.70

White blood cell count (×109 cells/litre) 6.18 1.85

Blood mean corpuscular haemoglobin level (pg/cell) 30.38 2.26
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Fig. 1 Sample attributes at wave 4 of ELSA. a Linear regression of Age vs. Frailty Index score indicating a moderate correlation and implying that the

concept of frailty, when measured under the Rockwood FI scoring system, is an independent variable with respect to age (blue dots=male subjects, red

dots= female subjects). b Mean sample characteristics from 1191 subjects and associated blood analysis. c Mean cholesterol levels as observed across the

frailty distribution using the standard scoring method. It can be seen that LDL, HDL and cholesterol all decrease when entering the non-frail cut-off50.

Triglycerides are seen to increase. d Most pronounced biochemistry levels as observed across the frailty distribution using the standard scoring method.

Fibrinogen and white blood cells indicating a marked increased Z-score over the frailty distribution whereas ferritin and dehydroepiandrosterone indicate a

decrease. Source data are provided as a Source Data file
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as a supervisory variable (y-output) principal component-
discriminant function analysis (PC-DFA) modelling allowed for
the stratification of the mass spectrometry metabolite data (x-
input) over the FI. This PC-DFA approach was used to cluster the
UHPLC-MS and GC-MS datasets and the scores plot (Fig. 2)
reveals the relationship between the four FI classes and indicates
that two clear channels of separation along the 0.1–0.2 and
0.2–0.3 FI axis. Inspection of the loadings vectors also allows for
the investigation of the presence of metabolic differentiation
between these four levels.

The development of the combined PC-DFA and Random
Under Sampling boosting Classification and Regression Tree
analyses (RUSBoost-CART) models were performed to reduce
the dimensionality of the multivariate LCMS and GCMS datasets
while simultaneously investigating the presence of metabolic

differentiation between the four levels of scoring within the frail
index (Fig. 3). The RUSBoost-CART model was double cross
validation (2CV) validated using resampling methods of boot-
strapping (n= 10,000) on the training set only and permutation
testing was used to generate null distributions33. This method
indicated a strong separation between >0.2 and <0.2 on the FI and
a moderate level separation between <0.1 and 0.1–0.2, thus
supporting similar clustering within the PC-DFA. This was also
supported by the subsequent null-distribution classification rate.
Subsequent univariate analysis was carried out to determine the
statistical significance of individual metabolites modulated by
the frailty metabotype. Non-parametric t-tests cross-validated by
false discovery rates were used to assess metabolite significance
between samples that lay at <0.2 and >0.2 on the FI. Spearman
based correlation was also performed to determine between
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0.1–0.2 axis and the 0.2–0.3 axis. This data correlates with observations that directly stratify clinical assessment over the frailty index indicating three
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Index above 0.3). Source data are provided as a Source Data file

1

2

3

4

a bAveraged confusion matrix

1

1

2

3

4

2 3 4

1400.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

120

100

80

60

40

20

0
0.2 0.25 0.3

Observed distribution
Null distribution

N
o
. 
o
f 

h
it
s

0.35 0.4 0.45 0.5

Correct classification rate

Fig. 3 RUSBoost-CART analysis of samples binned over the frailty index. a Machine learning based Random Under Sampling boosting Classification and

Regression Tree analyses on (+) mode UHPLC-MS data supporting correct sample stratification over frailty index distribution. Confusion Matrix indicates

a clear separation between >0.2 and <0.2 on the frailty index and thus good model prediction. b Null-distribution classification rate (red frequency

histogram) supporting machine learning results (blue frequency histogram) and, indicating the groupings in the confusion matrix are correctly classified.

Source data are provided as a Source Data file

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12716-2

4 NATURE COMMUNICATIONS |         (2019) 10:5027 | https://doi.org/10.1038/s41467-019-12716-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


metabolite association and develop associated clusters as
indicated by the heatmap in Supplementary Fig. 12.

Development of a metabolic network of frailty. Having estab-
lished the presence of separation in FI level using the PC-DFA
approach, we subsequently used the mummichog based pathway
enrichment enrichment34 to predict network activity and identify
biochemical pathways modulated by the frailty metabotype. This
method has successfully been applied to a diverse range of clinical
areas such as liver damage35,36 and T cell activation34,37. The
general analysis pipeline of using XCMS deconvolution in con-
junction with the mummichog pathway method to develop an
integrated systems approach has already been documented38. By
applying this methodology and mapping m/z clustering differ-
ences on to an integrated metabolic network containing data from
the UCSD BiGG39, KEGG http://www.genome.jp/kegg/kegg1.
html and Edinburgh Human Metabolic Network40 resources,
metabolic differences between frail versus non-frail sample classes
were identified. The generation of subsequent metabolic activity
networks highlighted in Fig. 4 (and Supplementary Fig. 13)
identified 25 metabolites present within four metabolic pathways
(the carnitine shuttle, peroxisomal degradation, the kynurenine

pathway and vitamin E metabolism) and were statistically sig-
nificant in the transition from non-frail to frail metabotypes.
From these 25 metabolites, 12 were calculated as individually
statistically significant (using a FDR corrected Mann–Whitney
test) in distinguishing frailty class and used to generate a multi-
variate ROC prediction model (Fig. 5).

Biological validation of frailty metabolic phenotype via long-
itudinal analysis. To confirm the metabolic dysregulation
observed within the cross-sectional model, longitudinal analysis
on samples from wave 6 of ELSA (samples from the same subjects
taken four years later) was undertaken to provide biological
validation of the significant metabolites identified. A FI was cal-
culated from metadata belonging to the 1753 subjects (238 lower
than Wave 4 due to subject attrition) and as before a unimodal
right skewed distribution of data was observed (Supplementary
Fig. 1). Subsequently, 786 serum samples were retrieved and
untargeted UHPLCMS metabolic phenotyping was performed to
determine if the same metabolites were present with corre-
sponding non-frail to frail directionality (430 samples lower than
Wave 4 due to subject attrition and sample availability). Eleven
metabolites from wave 4 with similar non-frail to frail trajectories

Down regulated in frailty

Up regulated in frailty

Pathway enriched

P < 1 × 10–6 P < 1 × 10–2

P < 1 × 10–4

Mono-saccharide pathways

Kynurenine pathway

Vitamin E

Carnitine shuttle

Fig. 4 Enriched pathway model from hybrid network analysis. Frailty metabolite subnetwork generated from the human metabolite network from within the

mummichog-Cytoscape pipeline using 554 metabolite features with unique m/z values from the LCMS (+) analysis alongside the addition of 86

metabolites from GCMS analysis. This combined approach highlights 4 main metabolic areas that altered within the frailty metabotype, all of them

identifying cyclic AMP as a potential hub-metabolite. Source data are provided as a Source Data file
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were identified at Metabolomics Standard Initiatives level 1 or 2
within the analysis41 (commonly used metabolite identification
protocol devised and used by the global metabolomics commu-
nity), with major components from the carnitine shuttle and
vitamin E pathways still present (Supplementary Table 1). The
detected metabolites were used to replicate the multivariate ROC
model within the cross-sectional analysis.

Mendelian randomization analysis of carnitine levels and their
influence on frailty. To investigate the causal effect of carnitine
levels on frailty we conducted Mendelian Randomization analy-
sis42. We analysed three exposures related to increased/decreased
carnitine levels in blood and used four SNPs as genetic

instruments (rs12356193, rs419291, rs1466788, rs1171606),
derived from two studies43,44. We found that Odds Ratio of frailty
per 10% decrease in carnitine was 1.53 (95% CI= 1.01–2.29, p=
0.042, genetic instruments: rs12356193 and rs419291, Inverse
variance weighted method), providing significant evidence for the
causal relationship.

Investigation of correlation between model confounders and
co-morbidities vs. frailty. To investigate the effects of model
adjustment fully, we performed a global analysis of a range of co-
morbidities and biochemistry factors a using multidimensional
scaling analysis approach. This tool was used to measure the
level of similarity between factors that are closely correlated (or
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Fig. 5 Significance and predictive ability within the metabolic model of frailty. a Table indicating 12 metabolites of statistical significance (p < 0.05) in

differentiating non-frail and frail metabolic phenotypes using Kruskal-Wallis analysis of variance with subsequent false discovery rate testing for multiple

comparisons. Data also contains area under curve data used to create multivariate receiver operating characteristic curve (mROC) b mROC curve from

Waves 4 generated by combining 12 metabolites to generate a predictive model of frailty status. The shaded area indicate 95% confidence intervals

calculated by Monte Carlo cross validation using balanced subsampling and 1000 iterations of bootstrapped cross-validation. c Univariate ROC curves and

non-frail (orange) to frail (blue) boxplots of each metabolite used to generate the multivariate ROC analysis. Each boxplot displays a median value (centre

line), upper and lower quartiles (box limits), 1.5× interquartile range (black bar), and points out of interquartile range are outliers. Source data are provided

as a Source Data file
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anti-correlated) to the frailty indices. Through this method five
different factors identified as being highly correlated to frailty
were (Supplementary Fig. 14):

Age—Already discussed in the article as being correlated to
frailty (using linear regression approach) but does not account for
all variation.

•hsCRP—The pathogenic mechanisms of C-reactive protein
(CRP) in ageing involves binding to FcγRII and activation of the
TGF-β/Smad3 and non-TGF-β/Smad3 signalling pathways. These
are directly and indirectly used to induce inflammation and
fibrosis thus impairing the ability of a cell to proliferate and
ultimately contributing to the process of ageing.

Cfib—Plasma fibrinogen levels were noted to increase over the
FI and this relationship has been noted in ageing studies looking
at both male and female subjects.

HbA1c/Fasting-glucose—Within the literature, there is a
wealth of evidence that demonstrates HbA1c levels increase as
non-diabetic subjects age. Our similar observation of the
association of frailty to HbA1C fits well with this theory due to
the high level of correlation to frailty to age.

Discussion
At the biochemical level, ageing is a continuous and dynamic
remodelling process of metabolism and cell function. This che-
mical reconditioning is heavily influenced by unrepaired accu-
mulation of DNA mutational damage occurring within nuclear
DNA45 and mitochondrial DNA46,47 brought about by environ-
mental stressors. Ensuing dysfunction can be translated back to
physiological status and contribute to an ageing phenotype.
Indeed, population studies have already examined metabolic
baseline levels in human health48 and longevity28, showing that
metabolomics combined with symptom, biochemical or demo-
graphic data can successfully identify distinct biochemical models
that were not previously been associated with lifespan in humans.
These studies not only indicate modulation of various metabolic
pathways such as those within the TCA cycle28 and lipid
biosynthesis49,50, but also suggest that large sample sizes (n > 600)48

and precise analytical methodologies, such as those performed
within the HUSERMET study48,51, are essential for robust ana-
lysis of the data generated. Yet, metabolic studies directly inves-
tigating frailty have previously focused primarily on the influence
of specific disease states, such as breast cancer52 (n= 79) and
sarcopenia53 (n= 139), and have not specifically analysed the
broad underlying causal processes relating to the frailty-ageing
condition. With the aim of expanding knowledge in this area, our
goal was to identify the presence of a potential frailty metabolic
phenotype and link it to associated physiological and pathophy-
siological processes. Using a validated assessment of frailty status
in conjunction with standard biochemistry analysis and high-
throughput metabolic profiling, we generated a metabolic net-
work that highlights significant areas of metabolism that are
associated with the clinically assessed FI. This multi-level
approach developed a mROC model that identified 12 metabo-
lites as being highly significant in the differentiation of subjects
exhibiting frail and non-frail phenotypes as indicated by their
position on the FI. Ultimately, our studies show that global lipid
metabolism is changed under the frailty phenotype and down
regulation of the carnitine shuttle and vitamin E metabolism
show potential in playing a role in modulating cellular energy
production. These biochemical observations in turn mirror the
reduced state of physical activity observed clinically in frail
subjects.

Initial calculations of the frailty indices used within the study
generated unimodal right-skewed distributions6 (Supplementary
Fig. 1), comparable to those developed in other population scale

assessments of frailty30. The operationalization of the Wave 4
index into a range of four discreet classifiers applicable to stra-
tification over mass spectrometry based metabolomics data was
achieved by binning FI scores in to four supervisory classes and
applying PC-DFA (Fig. 2). Upon analysis, this approach identi-
fied only three distinct sub-planes of separation along the 0.1–0.2
axis and the 0.2–0.3 axes of FI scoring. These metabolic level
observations correlate with independent FI assessments made in
other large scale studies of frailty across the globe, such as in
Canada18,54,55 and Taiwan51 in which non-frail, pre-frail and frail
discreet classifiers were considered to have equivalent FI scores.
Subsequent whole index validation by PLS methodologies (Fig. 3)
and individual bin assessment using linear regression (Supple-
mentary Fig. 2) also indicated that correlation between age and
frailty actually decreases across the index thus distinguishing it
from normal age-related degeneration, further supplying valida-
tion to the concept that frailty is in fact a geriatric syndrome
within its own right and, although influenced by age, distinct
from normal temporal changes.

Prior to metabolomics and pathway analysis, a panel of stan-
dard clinical biochemical tests were performed on matched blood
samples to investigate how conventional assays, already routinely
used within clinical practise, could be used to assess and develop
the frailty phenotype. Stable cholesterol, LDL and HDL levels
were noted within the non- and pre-frail phenotypes, but sharp
decreases were associated with the frail phenotype (Fig. 1c). These
results are confirmed by previous experimental data in which
serum cholesterol levels have been indicated as a hematologic
marker of frailty in older hospitalized patients56,57. LDL/HDL
levels have also been demonstrated to decrease with age58, and
conversely, high levels of HDL has also been directly associated
with better survival rates in very old subjects59. However, a
fluctuation in triglyceride levels was observed across the FI range.
Within these experimental studies weight loss is identified as the
key explanatory variable, which parallels the importance of
involuntary weight loss displayed within the frailty phenotype.

Steadily increasing fibrinogen and white blood cell levels were
also noted across the FI (Fig. 1d). Fibrinogen, as an essential
component of the coagulation cascade and a key regulator of
inflammation, which has been implicated as a risk factor for
several diseases60, the elevation of which, has previously been
associated with increasing frailty level61. In the present study
observed white blood cell levels were directly correlated with
frailty in older adults, an observation that further supplies evi-
dence for the role of immuno-endocrine cross-talk within62

functional decline. Serum ferritin levels were also noted to
decrease over the FI which would initially infer an increase in
anaemia. However, previous studies designed to investigate the
utility of ferritin as a single indicator of frailty determined it to be
of exceedingly low potential63 owing to the complex interactions
between serum iron, total iron binding capacity and transferrin
saturation ratio severely hampering levels of assay sensitivity. To
compound the use of serum ferritin as a biomarker of
frailty further, increased levels are associated with an increase in
oxidative stress and cellular damage64 which goes against
observed values obtained within this study. Dehydroepian-
drosterone (DHEAS) levels were also evaluated over the index
range, the decline in which was correlated with a higher FI. This
correlation is in agreement with previous studies reporting a
widely-recognised association between decreasing androgen levels
and ageing65,66.

All clinical biochemistry data were also analysed controlling for
sex. As a result, an interesting observation was noted within the
measured triglyceride levels. Upon stratification, male vs. female
triglyceride levels act in a divergent manner (see Supplementary
Fig. 10) as FI score increases; females noting a sharp increase and
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males noting a decrease. The identification of this important role
of triglyceride levels has already been documented in the Leiden
Longevity Study (n= 1664)63 in which multiple regression
models indicated decreased triglyceride levels predicted to serve
as an indicator of longevity in females.

Biochemical network activity assessment, in which all m/z
features were used as input, detected 25 identified metabolites
(Supplementary Table 1) that contributed to dysregulation of four
metabolic pathways (Fig. 4)—monosaccharide, kynurenine, vita-
min E and carnitine metabolism. All individual pathways contain
a link to energy production within eukaryotic cells. In this pro-
cess, pathways identified as significant can contain individual
metabolites that may not be significant on their own—due to
their presence within a pathway that has other significant features
contained within it. To investigate the role of the individual 25
metabolites in differentiating non-frail and frail metabolic phe-
notypes, Kruskal-Wallis analysis of variance with subsequent false
discovery rate (FDR) testing for multiple comparisons was used
to test for significance. In total 12 metabolites (Fig. 5a) were
deemed individually statistically significant (>0.05) in differ-
entiating non-frail and frail metabotypes. These feature were then
used to develop a Multivariate Receiver Operating Characteristic
(mROC) curve (Fig. 5b), to act as a predictive model of frail
status. In this process, the final mROC model used 12 metabolites
(individual distributions and univariate contributing ROCs
shown in Fig. 5c) to generate an AUC of 0.755 (95% CI=
0.708–0.815)—indicating a moderately strong level of perfor-
mance. Overall results from combining PC-DFA separation,
RUSBoost-CART sampling validation, pathway enrichment,
univariate descriptive comparison of metabolite means and
concluding mROC predictive modelling provide a diverse range
of evidence that all support the theory of metabolic dysregulation
within the frail metabotype. As further evidence, predictive
modelling was also replicated on in a validation subset of
768 samples from the same subjects collected four years later. The
presence of 9 out of 12 the metabolites used to generate the wave
4 mROC model were detected within the deconvolved Wave 6
mass spectrometry dataset. The data from these features was then
used to generate a mROC model from the validation subset with
an AUC of 0.702 (95% CI= 0.63–0.748) (Supplementary Fig. 15)
indicating a reproducible result even with slightly reduced
data input.

Using the two main pathways identified within pathway ana-
lysis, two of the four genetic instruments used in the Mendelian
Randomization analysis showed evidence for the causal effect of
carnitine levels in frailty. Our instrument SNPs represent the
SLC16A9 (solute carrier family 16 member 9) (rs12356193) and
SLC22A4 (solute carrier family 22 member 4) (rs419291) genes.
These SNPs were strongly associated with carnitine levels in a study
of human metabolites (p= 3.69 × 10−63 and p= 3.1 × 10−18,
respectively)43. Although our results do not survive strict cor-
rection for multiple testing, they are firmly supported by the
literature. A recent study measuring common variants (minor
allele frequency >5%) using healthy ageing as outcome reported
the possible involvement of the SLC22A4 gene, represented by
multiple variants, including rs41929167.

Vitamin E analogues, in this case detected tocotrienols, are
well-documented due to their lipoperoxyl radical-scavenging
abilities in the termination of lipid peroxidation via proton
transfer on to lipid free radicals68. However, they are also noted
for their ability to scavenge reactive nitrogen species, inhibit
cyclooxygenase- and 5-lipoxygenase-catalyzed eicosanoids, and
suppress pro-inflammatory signalling, such as NF-κB69. This
reduction of free radical-mediated oxidative damage alongside
general inflammatory suppression is vital to the maintenance of a
healthy lifestyle over time. Breakdown of the endogenous

antioxidant system can lead to the accumulation of oxidative
damage from lipids that has been linked to ageing, cancer and
many other co-morbidities70. The ability of the carnitine shuttle
to generate acetyl-CoA is vital for the successful generation of
FADH2 and the regeneration of ATP at the end of the electron
transport chain. Breakdown of this mechanism is terminal to the
cell. We found that a decrease in the levels of several carnitines at
higher levels of frailty could be potential indications that general
cell-based lipid metabolism is deteriorating, but it is essential that
further experimentation needs to be performed to confirm and
validate this hypothesis. The importance of the kynurenine
pathway provides a conduit for the consumption of over 99% of
ingested tryptophan that is unused in protein synthesis71,72. With
an upregulation of tryptophan noted within the frail metabotype,
and with age-related sarcopenia known to be an underlying
phenotype within frailty, this observation suggests that muscle
protein breakdown is a potential contributor to frailty metabolic
output. Further along the kynurenine pathway, a bottleneck in the
biogenesis of the vital energy co-factor NAD and its associated
dysregulation has also been associated to mitochondrial dis-
turbances73, activation in times of stress and immune activation74

alongside links to neurodegenerative diseases75. Conversely, the
tryptophan kynurenine pathway is also the starting point for the
biosynthesis of two related neurotransmitters; serotonin and
melatonin. Previous work has indicated that an over activation of
this pathway can lead to activation of the immune system and
downstream accumulation of potentially neurotoxic inter-
mediates such as quinolinic acid72 and kynurenic acid76. These
metabolites are currently considered to be involved in some way
in Alzheimer’s disease, Parkinson’s disease, Huntington’s disease
and amyotrophic lateral sclerosis and future works in frailty
metabolism should consider them as interesting mechanistic
targeted76.

This work exemplifies the high suitability for combined
metabolic and pathway analysis to explore and uncover sig-
nificantly modulated biological pathways within biogerontology.
The longitudinal nature of the study, alongside the unselected
aspect of the sample cohort are strengths that increases the
external validity of the findings. However, several limitations also
exist, and these should be considered. While providing results
that are consistent with data from previous experimental litera-
ture, our findings should be considered hypothesis generating in
nature.

This fact, tied to the restricted geography of the cohort (all
subjects residing in England), requires that further validation
from a range of independent cohorts is essential to test the
conserved nature of the results.

Also, to understand fully the complex biological processes that
are dysregulated as a component of frailty, a comprehensive
systems-based approach is needed to model all dimensions of the
process. Further work is needed link metabolic profiles to geno-
typic expression. Several genetic mutations and markers have
already been identified in model organisms77,78 and humans
living extremely long lives79,80 and these observations need to be
related to RNA, protein and metabolite expression. Candidate
gene-association studies on data from the same wave of ELSA
have indicated genetic changes effecting lipoprotein receptor-
related protein 1 (LRP1) gene on chromosome 1281. This multi
ligand receptor has previously been reported to be involved in
lipid homeostasis including cholesterol transport; thus, support-
ing our theory of global lipid imbalance in frailty.

There are also several limitations that need to be considered
within the Mendelian Randomization work. Firstly, as frailty is a
complex condition and as such is likely to involve multiple
genetic variants. The genetic variants typically explain only a
small fraction of the total variance in traits; therefore, MR studies
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require very large sample sizes for sufficient statistical power.
Although we chose the two-sample approach to achieve greater
power, our sample size with 1500 cases and 3500 controls may
not be powerful enough.

Secondly, the instruments we employed may be con-
sidered weak, as indicated by the large confidence intervals of the
causal estimates. Finally, for individual polymorphisms the var-
iance explained is usually <1%; therefore, it is advisable to com-
bine multiple polymorphisms into a single allele score to
maximize the explanatory power of the instrument. However, due
to lack of reported significant SNP-metabolite associations, the
available number of genetic instruments was a single or maximum
two SNPs for the exposures. The lack of multiple genetic instru-
ments also prevented us from carrying out a pleiotropy test. One
of the assumptions of MR analysis is that there is no horizontal
pleiotropy, i.e., when a genetic variant affecting multiple traits via
separate pathways82. The MR-Egger regression method provides
valid causal estimates in the presence of some violations of the MR
assumptions. However, as this method requires more than two
genetic variants assigned to the same exposure, we could not test
for this and assumed no pleiotropic effects. Also, in order to
obtain more conclusive evidence on the effect of carnitine levels
on frailty, studies with sufficiently large sample size are required.
While our results should be interpreted with caution, this is an
important exercise towards identifying causal relationships.

In summary, our work reveals that the presence of frailty, with
an associated increased risk of negative health outcomes in later
life, is not only just identifiable through symptomatic presenta-
tion but, as predicted by Fried and colleagues21, is multifactorial
and subsequently recognisable by a distinct biochemical pheno-
type. Our results, primarily imply that a deterioration in lipid
metabolism is present within those who clinically present as frail:
The downstream set of metabolic observations detected within
this study (primarily linked to energy dysregulation) are directly
linked with the primary clinical description for frailty: a reduction
in physiological reserve. Metabolic frailty measurement has the
potential to contribute greatly to the standardisation of frailty
assessment. In addition, the application of metabolomics in
combination with other -omics based technologies (such as we
have with Mendelian Randomization) offers the potential for a
greater understanding of the biologic basis and complexity of
frailty. Knowledge of frailty risk factors and biomarkers offers the
scope to yield effective early stage interventions that can be
incorporated into standard of care practices and ultimately con-
tribute to healthy ageing.

Methods
Sample collection procedures. The English Longitudinal Study of Ageing (ELSA)
is a continuing cohort study that contains a nationally representative sample of
men and women born on or before February 1952 living within England. Data
collected at Wave 4 (2008–09) were used as the data source and serum sample
source for this study. Data collected at Wave 6 (2012–13) were used for the
longitudinal validation of the model (786 samples). This study was performed in
compliance with all relevant ethical regulations and guidelines for work with
human participants. Participants gave informed written consent to participate in
the study and ethical approval was obtained from the London Multi-Centre
Research Ethics Committee. Clinical Measurements: Nurses collected anthropo-
metric data (weight, height, waist circumference), blood pressure (BP), and non-
fasting blood samples using standard protocols developed within the Health Survey
for England83. Body weight was measured using Tanita electronic scales without
shoes and in light clothing, and height was measured using a Stadiometer with the
Frankfort plane in the horizontal position. Body mass index (BMI) was calculated
by the standard equation—weight (kilograms)/height (metres) squared. Detailed
information on biochemical blood analysis, the internal quality control, and the
external quality assessment for the laboratory are summarised in the Supplemen-
tary Information.

Metabolite profiling. Untargeted metabolite profiling was performed on serum
samples that were collected from participants using standard serum collection

techniques83 and stored at −80 °C prior to analysis. Ultra-High Performance
Liquid Chromatography Mass Spectrometry (UHPLC-MS) and gas chromato-
graphy mass spectrometry (GC-MS) were performed in tandem on each sample
using the Dunn51 and Begley84 protocols with some minor alterations and is briefly
summarised as follows:

Metabolites were extracted from the 1191 serum samples from Waves 4 and
100 samples from Wave 6 by individually adding 900 µL of an organic solvent
mixture of 80% methanol/15 water/5% acetonitrile to 330 µL of serum. Subsequent
vortexing and centrifugation (17,500 × g) yielded a metabolite rich supernatant that
was split in to two aliquots and lyophilised for 12 h to yield a metabolite pellet that
was stored at −80 °C prior to analysis. A pooled QC standard was also generated by
combining 30 µL aliquots of each sample in to a pooled vial with subsequent 330 µL
portions being extracted identical to each sample.

Processed metabolite pellets were defrosted at 4 °C and subsequently
reconstituted in 100 µL of mobile phase A. UHPLC-MS analysis was performed
using an Accela UHPLC auto sampler system coupled to an electrospray LTQ-
Orbitrap XL hybrid mass spectrometer (ThermoFisher, Bremen, Germany).
Analysis was carried out in positive ESI mode while samples in each run were
completely randomised to negate for any bias. A gradient type UHPLC method was
used during each run with 95% water/5% methanol/0.1% formic acid as mobile
phase A and 95% water/5% methanol/0.1% formic acid as mobile phase B. 5 µL of
the extract was injected onto a Hypersil GOLD UHPLC C18 column (length 100mm,
diameter 2.1mm, particle size 1.9 µm, Thermo-Fisher Ltd. Hemel Hempsted, UK)
held at a constant temperature of 50 °C while a solvent flow rate of 400 µLmin−1 was
used to drive the chromatographic separation.

Mass calibration was carried out in accordance with the manufacturer’s
guidelines using caffeine (20 µg mL−1), the tetrapeptide MRFA (1 µg ml−1) and
Ultramark 1621 (0.001%) in an aqueous solution of acetonitrile (50%), methanol
(25%) and acetic acid (1%). Acquisition settings for initial profiling were carried
out at 30,000 resolution in centroid and ran at 1 µ-scan per 400 ms in the
100–1000m/z range with source gases set at sheath gas= 40 arbitrary units, aux
gas= 0 arbitrary units, sweep gas= 5 arbitrary units. The ESI source voltage was
set to 3.5 V, and capillary ion transfer tube temperature set at 275 °C.

Xcaliber software Version 3.0 (Thermo-Fisher Ltd. Hemel Hempsted, U.K.) was
used as the operating system for the Thermo LTQ-Orbitrap XL MS system. Data
processing was initiated by the conversion of the standard UHPLC raw files in to
the NetCDF format via the software conversion tool within Xcaliber.

Peak picking was carried out in R-Studio (www.rstudio.com) using the XCMS
algorithm (http://masspec.scripps.edu/xcms/xcms.php). The output yielded a data
matrix of mass spectral features with related accurate m/z and retention time pairs.
Data from the internally pooled QC samples were then used to align for instrument
drift and quality control (via application of an in-house robust spline alignment
Matlab script). The data matrix was also signal corrected to remove peaks that
crossed the 20% RSD threshold within QC samples across the analytical run.

GCMS Analysis was carried out on a Leco Pegasus 3 Time-of-Flight mass
spectrometer coupled to an Agilent 6890 GC oven and Gerstel-MPS autosampler.
Derivatization and instrument conditions were identical to those used by the
Begley protocol84 to yield raw data files. These were subsequently converted in to
NetCDF files within chromaTOF acquisition software. Peak picking was carried out
in R-Studio using the XCMS algorithm (http://masspec.scripps.edu/xcms/xcms.
php). The output yielded a data matrix similar to the retention time and quant
mass values contained within an internal GC standard library containing over
1600 pure reference compounds run under identical conditions.

All metabolites identified as significant within the analysis were assessed and
scored according to rules set out by the Chemical Analysis Working Group of the
Metabolite Standards Initiative41. Where available, pure reference standards were
purchased (Sigma-Aldrich, St Louis, USA) and used to confirm the highest level of
metabolite identification—Level 1. Where no standard was available, matching of
measured MS/MS spectra against those from within the METLIN metabolite
database (http://metlin.scripps.edu/) was performed to give a Level 2 annotation
confirmed by appropriate secondary ion m/z values. All scoring is available in
Supplementary Table 1.

UHPLCMS data dependent MSn analysis was performed on chemical standards
using a LTQ-Orbitrap XL hybrid mass spectrometer (ThermoFisher, Bremen,
Germany). Precursor ion full scan was performed followed by an additional scan
where the ion of interest for trapped within the linear ion trap for 1000 ms and
subsequently subjected to CID of 50 au, following which the fragment ions were
detected. A minimum of three scans were recorded for both precursor and product
ions. A combined spectrum of both FTMS and ion-trap data was used to generate
product ion lists and intensity. The same tuning method, injection volume, CID
and activation energy were applied to QC and standard sample to standardise the
comparison. For all metabolites analysed, retention time was matched within 20 s
or below (extracted date is highlighted in Supplementary Figs. 16–30.

All metabolites identified via GCMS were retention time and fragmentation
matched to an internal standard library that was analysed under identical
conditions as to the main analysis.

Chemometrics. PC-DFA, RUSBoost-CART and robust spline alignment analysis
were carried out using MATLAB 2012a (MathWorks, Natick, MA, USA). Prior to
chemometric analysis data matrices were log2-transformed to account for skewed
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distribution. All tests were supervised and bootstrapped (×10,000) using groups
determined by FI value. In this process, each data set was split in to training/tests
sets and resampled85. Sex stratified PC-DFA plots are also documented in Sup-
plementary Fig. 31 (Wave 4) and Supplementary Fig. 32 (Wave 6). Linear
regressions models and prediction plots were performed using the lm-function in
R-Studio (Version 1.0.44). Univariate t-tests, cross validation, heat-map correlation
curves and ROC curves were performed using MetaboAnalyst 3.086 http://www.
metaboanalyst.ca/. Due to the unbalanced nature of the sample classes (non-frail
vs. frail) a by Monte-Carlo cross validation (MCCV) was use to balance the groups.
In each MCCV, two thirds (2/3) of the samples were used to evaluate the feature
importance. The top 12 (Wave 4) and top 11 (Wave 6) important features were
then used to build classification models which were validated on the 1/3 the
samples that were left out. The procedure was repeated 500 times to calculate the
performance and confidence interval of each model. Classification and feature
ranking were performed using aPLS-DA algorithms using seven latent variables as
input to determine the final ROC curves.

Network analysis. Mummichog (Version 1.0.5) pathway analysis34 was used
offline in Python (Version 3.5.2) to predict network activity from pre-processed
UHPLC-MS metabolomics data. [M+H]+ was selected as the force primary ion
(z) alongside an evidence cut-off score of 3 to include a metabolite within an
activity network (e). The full metabolite data set was used as an input and 554
extracted features were determined as significant (p < 0.0001) from the associated t-
test yielding 263 potential metabolites. From this, 22 network modules were gen-
erated using an activity network of 23 annotated and statistically significant
metabolites. Output files were visualised in Cytoscape (Version 3.4.0) (Supple-
mentary Fig. 13) where manual addition of GCMS data was performed to generate
the enriched hybrid frailty model (Fig. 4). Metabolite non-frail to frail distribution
are available in Supplementary Figs. 33 and 34.

Mendelian randomization. A text-mining approach using the keyword ‘carnitine’
yielded four possible exposures and five genetic instruments (single nucleotide
polymorphisms—SNPs). Instruments were assigned into the same exposure if the
reported direction of effect and the study43,44,87 were the same.

Exposure 1: Blood metabolite levels (unit increase) (carnitine), SNPs:
rs12356193, rs41929143.

Exposure 2: Blood metabolite levels (unit decrease) (carnitine), SNP:
rs146678843.

Exposure 3: Acylcarnitine levels (unit increase) (Carnitine), SNP: rs117160644.
Exposure 4: Metabolic traits (unit decrease) (carnitine), SNP: rs709497187.
Rs7094971 (Exposure 4) was excluded from further analyses, as it was in high

linkage disequilibrium with rs12356193 (r2= 0.87). For Exposure 2 (rs1466788)
and Exposure 3 (rs1171606) the direction of association for the outcome and the
exposure was the same, against the expectations. MR analysis results of causal
estimates are summarised in Supplementary Table 2.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All metadata, mass spectrum files and statistical packages used in this paper are freely

available and deposited in accessible public repositories. All English Longitudinal Study

of Ageing (ELSA) data files are available from the United Kingdom Data Service

repository—Study Number 5050 (http://discover.ukdataservice.ac.uk/catalogue?

sn=5050). Mass Spectrum and metabolomics data are accessible through the EMBL-EBI

MetaboLights repository—Study Identifier MTBLS598 (www.ebi.ac.uk/metabolights/).

Statistical scripts used to perform PC-DFA, PLS-R and PLS-DA were developed within

the www.biospec.net cluster-toolbox and are freely available on the open source GitHub

repository hosted at github.com/Biospec/cluster-toolbox-v2.0. The source data

underlying Figs. 1–5 and Supplementary Figs. 1–15 and 31–34 are provided within the

supplied Source Data file alongside data used to generate the Z-scores. Supplementary

Figs. 16–30 were generated in the Thermo Fisher Xcaliber Software using the raw LCMS

data available within the upload supplied to the MetaboLights repository. All data are

available from the corresponding author upon reasonable request.
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