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Abstract 

Background: 5-Aminovaleric acid (5AVA) is an important five-carbon platform chemical that can be used for the 

synthesis of polymers and other chemicals of industrial interest. Enzymatic conversion of L-lysine to 5AVA has been 

achieved by employing lysine 2-monooxygenase encoded by the davB gene and 5-aminovaleramidase encoded 

by the davA gene. Additionally, a recombinant Escherichia coli strain expressing the davB and davA genes has been 

developed for bioconversion of L-lysine to 5AVA. To use glucose and xylose derived from lignocellulosic biomass as 

substrates, rather than L-lysine as a substrate, we previously examined direct fermentative production of 5AVA from 

glucose by metabolically engineered E. coli strains. However, the yield and productivity of 5AVA achieved by recom-

binant E. coli strains remain very low. Thus, Corynebacterium glutamicum, a highly efficient L-lysine producing microor-

ganism, should be useful in the development of direct fermentative production of 5AVA using L-lysine as a precursor 

for 5AVA. Here, we report the development of metabolically engineered C. glutamicum strains for enhanced fermenta-

tive production of 5AVA from glucose.

Results: Various expression vectors containing different promoters and origins of replication were examined for 

optimal expression of Pseudomonas putida davB and davA genes encoding lysine 2-monooxygenase and delta-

aminovaleramidase, respectively. Among them, expression of the C. glutamicum codon-optimized davA gene fused 

with His6-Tag at its N-Terminal and the davB gene as an operon under a strong synthetic H36 promoter (plasmid 

p36davAB3) in C. glutamicum enabled the most efficient production of 5AVA. Flask culture and fed-batch culture of 

this strain produced 6.9 and 19.7 g/L (together with 11.9 g/L glutaric acid as major byproduct) of 5AVA, respectively. 

Homology modeling suggested that endogenous gamma-aminobutyrate aminotransferase encoded by the gabT 

gene might be responsible for the conversion of 5AVA to glutaric acid in recombinant C. glutamicum. Fed-batch 

culture of a C. glutamicum gabT mutant-harboring p36davAB3 produced 33.1 g/L 5AVA with much reduced (2.0 g/L) 

production of glutaric acid.

Conclusions: Corynebacterium glutamicum was successfully engineered to produce 5AVA from glucose by optimiz-

ing the expression of two key enzymes, lysine 2-monooxygenase and delta-aminovaleramidase. In addition, produc-

tion of glutaric acid, a major byproduct, was significantly reduced by employing C. glutamicum gabT mutant as a host 
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Background

As a result of increasing pressure on the environment, 

bio-based production of chemicals, fuels, and materials 

from renewable non-food biomasses has been attracting 

much attention [1]. To make such bio-based processes 

competitive, microorganisms have been metabolically 

engineered for production of fuels [2–4], amino acids [5–

9], polymers [10–12], and other chemicals of industrial 

importance [13–15]. It is expected that more chemicals 

and materials of petrochemical origin will be produced 

through bio-based route employing microorganisms 

developed by systems metabolic engineering [16, 17].

A non-proteinogenic ω-amino acid, 5-aminovaleric 

acid (5AVA), has attracted attention as a five carbon 

(C5) platform chemical because of its potential in poly-

mer synthesis [18–21]. 5AVA can be used to produce 

δ-valerolactam (2-piperidone) via intramolecular dehy-

drative cyclization and can be further processed for syn-

thesis of bio-based nylons, such as nylon-5 and nylon-6,5 

[18, 20]. Enzymatic conversion of -lysine to 5AVA has 

been achieved by employing lysine 2-monooxygenase 

(E.C. 1.13.12.2, encoded by the davB gene) and 5-amino-

valeramidase (E.C. 3.5.1.30, encoded by the davA gene) 

[19]. We recently reported the development of a whole-

cell bioconversion process for conversion of -lysine to 

5AVA by employing recombinant Escherichia coli strains 

expressing lysine 2-monooxygenase and 5-aminovaler-

amidase as whole cell biocatalysts [20, 21]. However, it is 

obviously desirable to use glucose derived from non-food 

lignocellulosic biomass as a substrate rather than -lysine 

[1]. �ere have been reports on the development of met-

abolically engineered microorganisms for the production 

of C3 and C4 ω-amino acids, such as β-alanine [22] and 

γ-aminobutyrate [23], from glucose. We and others also 

examined the possibility of producing the C5 ω-amino 

acid 5AVA by metabolic engineering of E. coli, but the 

yield and productivity of 5AVA remain very low [18, 20]. 

�us, it is necessary to develop a new strategy for more 

efficient production of 5AVA.

Corynebacterium glutamicum is an organism widely 

used for the production of amino acids, proteins, mon-

omers for plastic materials, and compounds for cos-

metics [24, 25]. Additionally, C. glutamicum has been 

successfully engineered to produce a different C5-plat-

form chemical, cadaverine (1,5-pentanediamine), and 

was shown to be a promising host for producing this 

chemical using different carbon sources, such as glucose 

and xylose [26–30]. Because C. glutamicum strains capa-

ble of producing -lysine at very high levels have already 

been commercialized, we decided to exploit C. glutami-

cum as a host strain for the production of 5AVA.

In this study, we designed and introduced a synthetic 

pathway for the production of 5AVA into an -lysine-

overproducing C. glutamicum strain. �e synthetic 

pathway consists of two key enzymes, lysine 2-monoox-

ygenase encoded by the davB gene and 5-aminovaler-

amidase encoded by the davA gene, responsible for the 

conversion of -lysine to 5AVA. Various expression sys-

tems including vectors and promoters were examined for 

the most efficient production of 5AVA in C. glutamicum. 

A reaction responsible for unexpected formation of glu-

taric acid as a major byproduct was identified and sub-

sequently deleted. �e final engineered C. glutamicum 

strain was used for enhanced production of 5AVA by fer-

mentation with much reduced glutaric acid.

Results and discussion

Construction of the 5AVA synthesis pathway in C. 

glutamicum by expressing the davAB genes under the 

control of the tac promoter

Although 5AVA exists as an intermediate in amino acid 

degradation pathways in Pseudomonads, metabolic 

engineering for enhanced production of 5AVA requires 

strong metabolic flux from the chosen intermediate 

metabolite toward 5AVA as indicated by many success-

ful examples of systems metabolic engineering [16, 17]. 

Recombinant E. coli strains employing the davAB genes 

from the -lysine catabolic pathway of Pseudomon-

ads were previously shown to produce 5AVA, although 

at low yield and productivity [18, 21]. Because E. coli 

strains have a relatively low capacity to provide -lysine 

as a precursor for 5AVA, high-level production of 5AVA 

could not be achieved in recombinant E. coli strains even 

though the -lysine catabolic pathway via 5-aminovalera-

mide provides the shortest route from -lysine to 5AVA 

[18, 21]. �us, C. glutamicum, the well-known, highly 

efficient -lysine producing bacterium, was selected as a 

host strain for 5AVA production in this study to provide 

strong metabolic flux from glucose to -lysine, the direct 

precursor of 5AVA [5, 6]. �is is strategically advanta-

geous for producing compounds using -lysine as a direct 

precursor.

To extend the metabolic flux from glucose toward 

5AVA beyond -lysine (Fig.  1a), P. putida ATCC 12633 

strain. The metabolically engineered C. glutamicum strains developed in this study should be useful for enhanced 

fermentative production of the novel C5 platform chemical 5AVA from renewable resources.

Keywords: 5-Aminovaleric acid, Corynebacterium glutamicum, L-Lysine, Metabolic engineering, Glutaric acid
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davAB genes [20, 21] were cloned in two different E. coli-

C. glutamicum shuttle vectors (Additional file 5: Table S1; 

Fig. 1b) and expressed in C. glutamicum BE strain (KCTC 

12390BP). In plasmids pKCA212davAB and pJS30 

(Fig. 1b), the davA and davB genes were organized in an 

operon and expressed under the control of the tac pro-

moter, with an additional lacUV5 ribosome-binding site 

(tttcacacaggaaaca) for the davB gene residing between 

the coding sequences of the two genes. Plasmid pKCA-

212davAB was constructed based on an in-house shuttle 

vector, pKCA212-MCS, whereas pJS30 was derived from 

pEKEx1 [31]. Plasmid pEKEx1 contains a pBL1 origin 

of replication, having ~30 copy numbers per cell in C. 

glutamicum [32], and pKCA212-MCS contains a pCC1 

origin of replication, also having ~30 to ~40 copies per 

cell [33]. It was found that C. glutamicum BE could pro-

duce 17.2  g/L -lysine (yield of 325  mmol/mol glucose) 

in shake-flask cultivation in 44  h (Fig.  2). It was found 

through HPLC analysis of metabolites excreted into 

culture medium that expression of the davAB genes in 

C. glutamicum BE resulted in conversion of -lysine to 

5AVA, whereas the non-engineered strain did not con-

vert any -lysine into 5AVA (Fig. 2).

Slightly decreased -lysine production was observed 

in recombinant C. glutamicum BE strains expressing 

the davAB genes, although -lysine was still the major 

product in both engineered strains tested. Expression 

of the davAB genes using the shuttle vector pEKEx1 

(pJS30) was more effective at producing 5AVA than 

using pKCA212-MCS (pKCA212davAB) (Fig. 2). �e C. 

glutamicum BE strain harboring pKCA212davAB pro-

duced 13.4  g/L -lysine (yield of 271.2  mmol/mol) and 

58 mg/L 5AVA (yield of 1.5 mmol/mol), whereas the C. 

glutamicum BE strain harboring pJS30 produced 12.4 g/L 

-lysine (yield of 258.2 mmol/mol) and 641 mg/L 5AVA 

(yield of 16.7  mmol/mol) from glucose. �ese results 

demonstrate that heterologous expression of the davAB 

genes from gram-negative P. putida correctly functioned 

to produce 5AVA from glucose using -lysine as a 5AVA 

precursor in gram-positive C. glutamicum.

Although the C. glutamicum BE strain harboring 

pKCA212davAB or pJS30 successfully produced 5AVA 

Fig. 1 Metabolic engineering strategies for 5AVA production using C. glutamicum. Heterologous expression of the P. putida davB gene (encoding 

L-lysine 2-monooxygenase) and the davA gene (encoding delta-aminovaleramidase) results in conversion of L-lysine into 5AVA. 5AVA5, 5-aminovaler-

ate; ASP5 L-aspartate; ASP-P aspartyl phosphate; ASP-SA aspartate semialdehyde; LYS L-lysine
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from glucose, most of -lysine was not converted into 

5AVA, which suggests that metabolic flux from -lysine 

to 5AVA was still quite weak as a result of inefficient 

expression of the davAB genes. �us, we investigated 

whether 5AVA production could be enhanced by employ-

ing C. glutamicum codon-optimized davAB genes. �e C. 

glutamicum BE strain harboring pJS38, which expresses 

C. glutamicum codon-optimized davAB genes, produced 

3.0  g/L 5AVA in flask cultivation, which represented an 

increase of almost 370  % over that produced by the C. 

glutamicum BE strain harboring pJS30 (Fig. 2). However, 

7.9 g/L -lysine still remained in the culture medium of 

C. glutamicum BE strain (pJS38). �e yield for -lysine 

obtained by C. glutamicum BE (pJS38) was 193.9 mmol/

mol glucose, whereas that for 5AVA was 92.3 mmol/mol 

glucose.

Notably, 0.14  mg/L glutaric acid was detected in the 

culture medium of C. glutamicum BE (pJS38), even 

though 5AVA aminotransferase and glutarate-semial-

dehyde dehydrogenase (encoded by davT and davD, 

respectively), which are the key enzymes for further con-

version of 5AVA into glutaric acid using α-ketoglutarate 

as an amine acceptor [18, 21], were not expressed in this 

strain. �is result strongly suggests that endogenous 

enzymes homologous to 5AVA aminotransferase and 

glutarate-semialdehyde dehydrogenase might be involved 

in further conversion of 5AVA into glutaric acid in C. 

glutamicum.

Examination of 5AVA production by engineered C. 

glutamicum strain expressing the davAB genes under the 

control of the tac promoter in fed‑batch fermentation

We then investigated the capability of C. glutamicum BE 

(pJS38) to produce 5AVA by fed-batch fermentation in 

a 5-L fermentor (Fig.  3a, c) to examine its potential for 

large-scale production of 5AVA. During fed-batch culti-

vation of C. glutamicum BE (pJS38), -lysine concentra-

tion reached 21.8 g/L after 94 h of cultivation, and then 

decreased beyond this point. C. glutamicum BE (pJS38) 

produced 17.8 g/L 5AVA in 191 h, with an overall yield 

and productivity of 0.07  g/g (107.3  mmol/mol) and 

0.09 g/L/h, respectively (Fig. 3c). �e total input of glu-

cose was 790  g (4.4  mol), and the total amount of pro-

duced 5AVA was 55.3 g (471 mmol), with the final volume 

of 3.1 L. �e maximum specific growth rate was 0.23 h−1, 

and the observed maximum specific productivity was 

9.2  mg/g/h. Initial increases in -lysine levels followed 

by a decrease in titer along with constant production of 

5AVA indicated that -lysine-production flux might be 

strong initially before slowing down in the latter half of 

cultivation. �e maximum -lysine-specific productiv-

ity was 56.7  mg/g/h initially, but gradually decreased to 

Fig. 2 Growth and production characteristics of the C. glutamicum BE strain harboring the pKCA212davAB, pJS30, or pJS38 vectors after 44 h of 

shake-flask cultivation (n = 3, error bars = SD). The C. glutamicum BE strain containing no plasmids was used as a non-engineered control. a The 

final OD600 at the end of cultivation is shown for all strains tested, and an experimentally determined correlation factor (0.28) was used to determine 

the biomass yield (YX/S). b The production characteristics include the final titers for L-lysine (light-grey bars), 5AVA (dark-grey bars), and glutaric acid 

(black bars). c The molar yields from glucose for L-lysine (white bars), 5AVA (grey bars), and glutaric acid (black bars) are also shown. When appropriate, 

gene expression was induced by addition of IPTG at a final concentration of 0.5 mM when the growth reached an OD600 of 0.5–0.6
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zero. �e amount of the major byproduct, glutaric acid, 

also increased steadily throughout the entire cultivation 

period until the concentration reached 5.3 g/L at the end 

of cultivation (Fig. 3c).

�e maximum OD600 reached was 95.4, corresponding 

to the measured dry cell weight concentration of 24.5 g/L, 

after 189 h of fermentation (Fig. 3a). �ese results dem-

onstrated that C. glutamicum BE (pJS38) was able to 

successfully produce 5AVA from renewable resources 

in a laboratory-scale bioreactor. However, conversion 

of -lysine toward 5AVA needs to be further enhanced 

through stronger expression of the davAB genes.

Construction of engineered C. glutamicum strain 

expressing the davAB genes under the control 

of constitutive promoters to improve 5AVA production

In addition to the tac promoter used in pEKEx1, promot-

ers for SOD (NCgl2826; E.C. 1.15.1.1) and the transcrip-

tion factor Tu (Tuf; Ncgl0480; E.C. 3.6.5.3) have also been 

widely used in metabolic engineering of C. glutamicum 

because of their capabilities to support strong gene 

expression at the chromosome level [34]. Although 

the sod promoter is known to exhibit weaker plasmid-

based expression than the tac promoter [35], weak and 

medium-strength expression driven by constitutive pro-

moters might be more effective than higher expression 

levels for producing chemicals of interest under differ-

ent circumstances [15]. Moreover, use of the constitutive 

promoters circumvents the requirement for costly addi-

tives such as IPTG. �erefore, we replaced the lacIQ gene 

and tac promoter in pJS38 with Psod or Ptuf (Additional 

file 5: Table S1). �ese constructs were then introduced 

into the C. glutamicum BE strain, and their functions 

were investigated by flask cultivation. However, expres-

sion of the davAB genes under control of the sod pro-

moter (pJS59) and tuf promoter (pJS60) did not result 

in higher 5AVA production relative to that produced 

by the parent construct, pJS38 containing the tac pro-

moter (Figs. 2, 4). C. glutamicum BE (pJS59) and C. glu-

tamicum BE (pJS60) produced 556 and 587 mg/L 5AVA, 

Fig. 3 Production of 5AVA from glucose by fed-batch cultures of (a, c) C. glutamicum BE (pJS38) and (b, d) C. glutamicum BE (p36davAB3). Charac-

teristics of the fed-batch cultivation profile, including growth (filled circles, OD600), residual sugar (empty circles; g/L), L-lysine (filled diamonds), 5AVA 

(magenta diamonds), and glutaric acid (green triangles) production titers, are plotted against the cultivation time
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respectively, with no glutaric acid observed in the culture 

media after 44 h of flask cultivation.

We also investigated the newly designed synthetic pro-

moter active in C. glutamicum, the H36 promoter [36], 

to see if it can possibly improve 5AVA production; it was 

successfully employed for the expression of glutamate 

decarboxylase (GAD) and lysine decarboxylase (LDC) 

in C. glutamicum strains, resulting in high-level produc-

tion of gamma-aminobutyrate (GABA) and cadaverine, 

respectively [30, 37].

We replaced the lacIQ and the tac promoter in pJS38 

with the PH36 promoter to construct p36davAB2. 

However, cultivation of C. glutamicum BE harbor-

ing p36davAB2 also did not improve 5AVA production, 

which resulted in production of 661  mg/L 5AVA under 

the same culture condition (Fig.  4). �ese results indi-

cate that expression of the davAB genes was still not 

strong enough to enable efficient conversion of -lysine 

to 5AVA.

To continue exploring expression vector systems for 

possible improvement of 5AVA titer, we noticed that the 

strong H36 promoter originally developed with a dif-

ferent backbone vector, pCES208 [36, 38], might not be 

optimal for pEKEx1. Engineered C. glutamicum strains 

harboring a pCES208-based plasmid for expression of 

target genes under strong synthetic promoters, such as 

H30 and H36, have been reported to efficiently produce 

GABA and cadaverine from renewable resources [30, 

37]. �erefore, we transferred codon-optimized versions 

of the davAB genes into the pCES208 vector system. 

�e new construct, p36davAB1, was further modified by 

inserting a His6-Tag into the N-terminal of davA gene, 

resulting in p36davAB3. �is was done because there 

have been reports showing that His6-tagged constructs 

can sometimes be expressed more efficiently [39, 40]. 

�ese constructs were transformed into the C. glutami-

cum BE strain and assessed by flask cultivation. Whereas 

C. glutamicum BE (p36davAB1) produced only 0.4  g/L 

5AVA along with 11.7  g/L -lysine, C. glutamicum BE 

(p36davAB3) produced 6.9  g/L 5AVA, with 5.5  g/L 

-lysine remaining unconverted (Fig. 5). �e 5AVA con-

centration obtained represents a 130  % increase over 

that (Fig.  2) obtained with C. glutamicum BE (pJS38). 

Interestingly, the construct containing the His6-tagged 

variant produced substantially more 5AVA compared to 

that produced using the construct lacking the His-tag, 

possibly because of the improved stability afforded by 

the 5′ modification, which resulted in higher expression 

of the davAB genes in the recombinant C. glutamicum 

BE strain (Additional file  1: Figure S1). Comparison of 

mRNA folding energies (ΔG) with the RNA secondary 

structure prediction program Mfold (http://unafold.rna.

albany.edu/?q=mfold/download-mfold) suggested that 

the ΔG for the first 30 nucleotides starting from the +1 

site of the H36 promoter in p36davAB2 is −6.00  kcal/

mol, which is much lower than ΔG of −0.06  kcal/mol 

obtained in p36davAB3. �e higher ΔG in p36davAB3 

indicates that less stable mRNA produced by p36davAB3 

might allow the translation machinery to bind more eas-

ily than much stable mRNA produced by p36davAB2.

Fig. 4 Growth and production characteristics of the C. glutamicum BE strain harboring the pJS59, pJS60, or p36davAB2 vector after 44 h of shake-

flask cultivation (n = 3, error bars = SD). The C. glutamicum BE strain containing no plasmids was used as a non-engineered control. a The final 

OD600 at the end of cultivation is shown for all strains tested, and an experimentally determined correlation factor (0.28) was used to determine the 

biomass yield (YX/S). b The production characteristics include the final titers for L-lysine (light-grey bars), 5AVA (dark-grey bars), and glutaric acid (black 

bars)

http://unafold.rna.albany.edu/%3fq%3dmfold/download-mfold
http://unafold.rna.albany.edu/%3fq%3dmfold/download-mfold
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Examination of 5AVA production by engineered C. 

glutamicum expressing the davAB genes under the control 

of the strong H36 promoter in fed‑batch fermentation

Having achieved improved 5AVA production in flask cul-

ture, fed-batch culture of C. glutamicum BE (p36davAB3) 

was performed next in a 5-L fermentor. C. glutamicum 

BE (p36davAB3) produced 19.7  g/L 5AVA in 157  h, 

with the overall yield and productivity of 0.08  g/g and 

0.16  g/L/h, respectively (Fig.  3d). �is strain also accu-

mulated 13.4 g/L glutaric acid as a byproduct at the end 

of the cultivation. On the other hand, -lysine accumu-

lation decreased significantly compared to that observed 

with C. glutamicum BE (pJS38). -Lysine accumulated to 

3.7 g/L in 25 h, but production remained between 1 and 

2  g/L over the entire cultivation period (Fig.  3d). Citric 

acid was another major byproduct, but its concentra-

tion remained at ~1  g/L throughout cultivation. Nota-

bly, the production patterns observed during fed-batch 

fermentation were different from those observed dur-

ing flask cultivation. Although large portions of -lysine 

remained unconverted at the end of the flask cultivation, 

very little -lysine remained in fed-batch fermentation. 

�is indicates that control of pH and provision of suf-

ficient air streams were beneficial for 5AVA production 

and provided better results during fed-batch fermenta-

tion. A sufficient air supply is important for cultivation 

because lack of sufficient air can result in accumulation 

of substantial concentrations of lactic and acetic acids in 

the fermentation broth [30, 41]. �ese byproducts were 

not observed in our cultivation conditions, contrary to 

previous reports. �ese results suggest that the strategy 

combining improved expression of the davA gene fused 

with His6-Tag at its N-Terminal and the davB gene as an 

operon under control of the strong synthetic H36 pro-

moter was successful in directing most of the -lysine 

pool toward 5AVA, resulting in efficient production of 

5AVA.

Construction of an engineered C. glutamicum gabT mutant 

for enhanced production of 5AVA with greatly reduced 

glutaric acid production

While 19.7 g/L of 5AVA could be produced by fed-batch 

cultivation of C. glutamicum BE (p36davAB3), glutaric 

acid, a major byproduct, was still produced to a relatively 

high concentration (up to 13.4  g/L). In order to further 

enhance 5AVA production, conversion of 5AVA into 

glutaric acid should be minimized. However, no enzyme 

responsible for converting 5AVA into glutaric acid is 

known in C. glutamicum. �us, we performed molecular-

docking simulations, which suggested possible interac-

tions between endogenous GabT and 5AVA (Additional 

file  2: Figure S2, Additional file  3: Figure S3). GabT 

shares homology (60  % by primary peptide structure) 

with 4-aminobutyrate aminotransferase (SGR_1829) in 

Streptomyces griseus, which exhibits 60  % relative ami-

notransfer activity for 5AVA [42]. Although the pyri-

doxal phosphate moiety was in the correct orientation 

and position, the orientation of bound 5AVA was twisted, 

possibly because of the larger size of the substrate being 

accommodated in the active site. Additionally, the 

enzyme also shared high homology (Additional file  3: 

Figure S3) with P. putida DavT, which binds 5AVA as its 

natural substrate (Additional file 4: Figure S4). �e major 

difference in active sites between GabT and DavT is that 

Fig. 5 Growth and production characteristics of the C. glutamicum BE strain harboring p36davAB1 or p36davAB3 after 44 h of shake-flask cultiva-

tion (n = 3, error bars = SD). a The final OD600 at the end of cultivation is shown for the strains tested. b The production characteristics include the 

final titers for L-lysine (light-grey bars), 5AVA (dark-grey bars), and glutaric acid (black bars)
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DavT contains a glutamine residue (Gln80) rather than 

a methionine residue, enabling accommodation of the 

ω-amino group in the binding pocket (Additional file 3: 

Figure S3). However, GabT from S. griseus, even with the 

methionine residue at this position, is sufficiently pro-

miscuous to accept 5AVA as a substrate [42]. �us, we 

could conclude from the docking simulations that the 

endogenous C. glutamicum GabT might accommodate 

5AVA as a substrate for aminotransfer reactions, leading 

to the formation of glutaric acid.

Based on the above results, the gabT gene (E.C. 2.6.1.19, 

encoding 4-aminobutyrate aminotransferase, Ncgl0462) 

was deleted from the chromosome of C. glutamicum 

BE to construct C. glutamicum AVA2. C. glutamicum 

AVA2 produced 17.5 g/L of -lysine by flask cultivation in 

44 h, with no residual 5AVA detected (Fig. 6). �is result 

suggests that deletion of the gabT gene did not inhibit 

cell growth and -lysine production. Plasmid p36davAB3 

was then transformed into C. glutamicum AVA2 to assess 

5AVA production. Fed-batch cultivation of engineered 

C. glutamicum AVA2 (p36davAB3) in a 5-L fermenter 

resulted in production of 33.1  g/L 5AVA with greatly 

reduced glutaric acid (2.0 g/L) and -lysine (648.3 mg/L) 

at the end of cultivation. �e overall yield and produc-

tivity obtained were 0.1  g/g glucose (163.1  mmol/mol) 

and 0.22  g/L/h, respectively (Fig.  7). Cells grew to an 

OD600 of 134 in 153 h, with a measured dry cell weight 

of 36.1 g/L, with the maximum specific growth rate was 

0.4  h−1. �e maximum specific 5AVA productivity was 

65.8 mg/g/h, which gradually decreased to 22.1 mg/g/h at 

the end of cultivation. Additionally, the -lysine concen-

tration peaked at 28 h, but remained as low as 1 g/L for 

the remainder of the cultivation. As expected, gabT dele-

tion resulted in a significant decrease in glutaric acid pro-

duction compared to that observed in the parent strain. 

However, the continued presence of glutaric acid in the 

culture broth suggests that unknown aminotransferases 

still remain in C. glutamicum that are capable of convert-

ing 5AVA to glutaric acid, although at lower efficiencies 

than GabT.

Conclusions

In this study, we report development of engineered C. 

glutamicum strains for the production of 5AVA from glu-

cose. Expression of two key enzymes, lysine 2-monooxy-

genase and delta-aminovaleramidase, was systematically 

optimized by examining different promoters, origins of 

replication, codon usage of the davAB genes, and even 5′ 

modification of the davA gene with a His-tag, all of which 

Fig. 6 Growth and production characteristics of the AVA2 strain for 

44 h of shake-flask cultivation (n = 3, error bars = SD). OD600 (filled 

circle), glucose (empty circle) and L-lysine (filled diamond) are shown

Fig. 7 Fed-batch cultivation of C. glutamicum AVA2 harboring p36davAB3 for the production of 5AVA in laboratory-scale bioreactor from glucose. 

a Characteristics of the fed-batch cultivation profile including growth (filled circles, OD600), residual sugar (empty circles; g/L) and b production titers 

of products including L-lysine (dark diamonds), 5AVA (magenta diamonds), and glutaric acid (green triangles) are plotted against the cultivation 

time
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were found to be important for determining the optimal 

and stable plasmid-based expression of the davAB genes 

in C. glutamicum. In addition, production of a major 

byproduct, glutaric acid, could be significantly reduced by 

identifying previously unknown enzyme GabT responsi-

ble for converting 5AVA to glutaric acid and deleting the 

corresponding gene from the chromosome. Fed-batch 

cultivation of the final engineered C. glutamicum AVA2 

strain harboring p36davAB3 produced 33.1  g/L 5AVA 

with greatly reduced glutaric acid (2.0 g/L). �e metabol-

ically engineered C. glutamicum strains developed in this 

study should be useful for enhanced fermentative pro-

duction of the novel C5 platform chemical, 5AVA, from 

renewable resources such as glucose.

Methods

Strains and plasmids

All bacterial strains and plasmids used in this study are 

listed in Additional file 5: Table S1. All DNA manipula-

tions were performed following standard procedures 

[43]. Primers used in this study (Additional file 6: Table 

S2) were synthesized at Bioneer (Daejeon, Korea). C. glu-

tamicum BE (KCTC 12390BP) was used as the base strain 

for 5AVA production. Polymerase chain reaction (PCR) 

was performed with the C1000 �ermal Cycler (Bio-

Rad, Hercules, CA, USA). �e general PCR condition for 

amplifications of target genes using primer sets listed in 

Additional file 6: Table S2 is as follows: 1 cycle of 95 °C for 

5 min; 30 cycles of 94 °C for 30 s, 52 °C for 30 s, 72 °C for 

1 min 30 s; and a final extension of 72 °C for 5 min. �e 

final reaction volume is 20  μL. �e in-house-developed 

C. glutamicum shuttle vector pKCA212-MCS was con-

structed by cloning the origin of replication of the cryptic 

plasmid pCC1 [33] into pKA212-MCS at the AatII and 

XhoI sites. �e origin of replication of pCC1 was synthe-

sized by GenScript (http://www.genscript.com) based on 

the reported sequence. Plasmid pKA212-MCS was con-

structed by replacing the chloramphenicol-resistance 

gene of pKA312-MCS [11] with a kanamycin-resistance 

gene obtained from pZA21-MCS (http://www.expressys.

com) by restriction digest with AatII and SpeI. �e davAB 

genes from pKE112-DavAB [20, 21] were restriction-

digested and ligated into pKCA212-MCS to construct 

pKCA212davAB using the same restriction enzyme sites 

(EcoRI/KpnI, KpnI/BamHI). A 16-bp untranslated region 

(tttcacacaggaaaca) containing a ribosome-binding site 

was present between the two genes for davB expression. 

�e same genes were also cloned into pEKEx1 to con-

struct pJS30. �e codon-optimized versions of davAB 

genes (Additional file 7: Table S3) with preferred codon 

usage in C. glutamicum were synthesized by Bioneer 

(Daejeon, Korea) and cloned into the EcoRI/BamHI 

restriction enzyme sites in pEKEx1 to yield pJS38.

To construct promoter variants of pEKEx1, promoter-

less pEKEx1 was created by removing the tac promoter 

and the initial 778  bp of the coding sequence of the 

LacIQ gene from pEKEx1 by restriction digestion with 

EcoRV/EcoRI. �e desired promoters were similarly 

designed as previously described [5, 34, 44] and inserted 

into the promoterless pEKEx1 vector. �e region 250 bp 

upstream of the start codon for the superoxide dismutase 

gene (NCgl2826, E.C. 1.15.1.1) was amplified by poly-

merase chain reaction (PCR) from C. glutamicum ATCC 

13032 chromosome using primers Psod_F_EcoRV and 

Psod_R_EcoRI, and then digested and cloned into the 

EcoRV/EcoRI sites of the promoterless pEKEx1 vector to 

construct pJS57. �e 248-bp sequence upstream of the 

start codon for the gene encoding the elongation factor 

Tu (Ncgl0480, E.C. 3.6.5.3) was amplified by PCR from C. 

glutamicum ATCC 13032 chromosome using the primers 

Ptuf_F_EcoRV (v2) and Ptuf_R_EcoRI, and then digested 

and cloned into the promoterless pEKEx1 vector to yield 

pJS58. �e codon-optimized davAB genes from pJS38 

were restriction-digested with EcoRI/BamHI and cloned 

into the pJS57 and pJS58 vectors at the EcoRI/BamHI 

restriction enzyme sites to make pJS59 and pJS60, 

respectively.

Plasmid p36davAB2 was constructed from pEKEx1 by 

cloning the codon-optimized davAB genes. Promoter-

less pEKEx1 was constructed by methods similar to 

those described in the previous paragraph, except that 

the genes were cloned into the EcoRV/PstI restriction 

sites of the vector. �e PH36 promoter was amplified by 

PCR using the JW02H-F and JW02H-R primers from 

pCES208H36GFP, and the fragments were restriction-

digested with EcoRV/EcoRI. A second round of PCR 

using primers JW02AB-F and JW02AB-R from pJS38 

generated codon-optimized davAB gene fragments that 

were restriction-digested with EcoRI/PstI. �e resulting 

products were then ligated into the EcoRV/PstI restric-

tion sites of the promoterless pEKEx1 vector to yield 

p36davAB2.

Plasmid p36davAB1 was constructed from pCES208 

by cloning the codon-optimized davAB genes. Products 

from the first round of PCR using primers JW01A-F and 

JW01A-R were used for amplification of the davA gene, 

which was then restriction-digested with BamHI/SfiI. 

�e second round of PCR used primers JW01B-F and 

JW01B-R to amplify the davB gene, which was then 

restriction-digested with NotI. �ese fragments were 

cloned into the pCES208H36GFP vector [36] by replac-

ing the egfp gene to yield p36davAB1.

Plasmid p36davAB3 was constructed from the 

pCES208H36EGFP vector [36]. �e codon-optimized 

davA gene fused with His6-Tag at its N-Terminal was 

amplified using primers JW03A-F and JW01A-R and 

http://www.genscript.com
http://www.expressys.com
http://www.expressys.com
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restriction-digested with BamHI and SfiI. �e codon-

optimized davB gene was amplified using primers 

JW01B-F and JW03B-R and restriction-digested with 

NotI. �e two products were then cloned into the 

pCES208H36EGFP vector by replacing the egfp gene to 

construct p36davAB3.

Plasmid pJS113 beta was constructed from the 

pK19mobsacB vector [45]. Primers 113 i1F beta and 113 

i1R beta were used to PCR-amplify the upstream region 

and a portion of the gabT gene from C. glutamicum. 

Primers 113 i2F beta and 113 i2R beta were then used to 

PCR-amplify the downstream region and a portion of the 

gabT gene of C. glutamicum. �e two PCR products were 

joined by a third PCR using primers 113 i1F beta and 113 

i2R beta. �e final PCR product was cloned into the PstI-

digested pK19mobsacB to make pJS113 beta. pJS113 beta 

was subsequently used to disrupt the gabT gene in the C. 

glutamicum BE chromosome, resulting in the strain C. 

glutamicum AVA2. �is in-frame deletion left a 330-bp 

deletion in the 280–609 region of the 1347-bp gabT gene.

E. coli DH5α and TOP10 strains (Additional file  5: 

Table S1) were used for general cloning purposes. All 

constructed plasmids introduced into C. glutamicum, 

except for pJS113 beta, were prepared in unmethylated 

form using the methylation-deficient E. coli JM110 strain 

(Stratagene; Agilent Technologies, Santa Clara, CA, 

USA). pJS113 beta was propagated in C. glutamicum by 

bacterial conjugation using E. coli S17-1 as a donor [45]. 

Plasmids were introduced via electroporation as previ-

ously described [46]. Cells were transferred to a micro-

cuvette and electroporated using a micropulser. Cells 

were transformed with about 2 μg of DNA by electropo-

ration (1.8 V and 400 Ω). Pre-chilled preculture medium 

(900  μL) was added and the transformed cells were 

allowed for growth recovery for 2 h without shaking in a 

30 °C incubator. �e transformed cells were then spread 

onto the agar plates containing kanamycin as a selective 

marker.

Culture media

Cells were cultured in media described below, the com-

positions of which were modified from previous reports 

[34, 43]. �e pre-culture medium for shake-flask cultiva-

tion consisted of 10 g/L beef extract (BD Bacto, Franklin 

Lakes, NJ, USA), 40 g/L brain–heart infusion (BD Bacto), 

20 g/L -sorbitol, and 10 g/L glucose [41]. �e flask cul-

ture medium (pH 7.2) consisted of 80 g/L glucose, 1 g/L 

MgSO4, 1 g/L K2HPO4, 1 g/L KH2PO4, 1 g/L urea, 20 g/L 

(NH4)2SO4, 10 g/L yeast extract, 100 μg/L biotin, 10 mg/L 

β-alanine, 10 mg/L thiamine HCl, 10 mg/L nicotinic acid, 

1.3 mg/L (NH4)6MoO24, 40 mg/L CaCl2, 10 mg/L FeSO4, 

10  mg/L MnSO4, 5  mg/L CuSO4, 10  mg/L ZnSO4, and 

5 mg/L NiCl2.

For fermentation experiments, the seed medium (pH 

7.0) consisted of 20  g/L glucose, 1  g/L MgSO4, 10  g/L 

beef extract, 1 g/L K2HPO4, 1 g/L KH2PO4, 0.5 g/L urea, 

10 g/L yeast extract, 100 μg/L biotin, 200 μg/L thiamine 

HCl, 10 mg/L FeSO4, and 10 mg/L MnSO4. �e fermen-

tation medium (1.8 L) contained per liter: 160 g of glu-

cose, 2 g of MgSO4, 2 g of K2HPO4, 2 g of KH2PO4, 2 g 

of urea, 40 g of (NH4)2SO4, 20 g of yeast extract, 50 mg 

of CaCl2, 50  μg of biotin, 20  mg of β-alanine, 20  mg 

of thiamine HCl, 20  mg of nicotinic acid, 1.3  mg of 

(NH4)6Mo7O24, 10 mg of FeSO4, 10 mg of MnSO4, 5 mg 

of CuSO4, 10  mg of ZnSO4, 5  mg of NiCl2, and 1  mL 

of antifoam reagent (Antifoam 204; Sigma-Aldrich, St. 

Louis, MO, USA). Each feeding solution (200 mL) con-

tained 90 g of glucose.

Flask cultivation

Stock cells stored in glycerol were used to inoculate 

5-mL pre-cultures, which were grown at 30  °C with 

shaking at 200  rpm in an incubator (JSSI-300C; JS 

Research Inc., Gongju, Korea) for 17–18  h. Cells sus-

pended in 250-μL aliquots of pre-culture were harvested 

by centrifugation (Centrifuge 5415 D; Eppendorf, Ham-

burg, Germany) and transferred to a 25-mL primary 

culture in autoclaved 300-mL baffled Erlenmeyer flasks, 

each containing 1.5  g of CaCO3 to maintain the pH at 

~7.0 during cultivation. Primary cultures were grown 

with shaking in an incubator for 44 h. When appropri-

ate, isopropyl-β--thiogalactopyranoside (IPTG) at a 

final concentration of 0.5 mM was used to induce gene 

expression during the early log phase (OD600 = 0.5–0.6), 

with 25.0 μg/mL kanamycin added for selective pressure 

(Ravasi et al. [35]).

Fed‑batch fermentation

Stock cells stored in glycerol were used to inoculate 5.0-

mL pre-cultures, which were grown at 30 °C with shak-

ing in an incubator for 17–18  h. Two 1-mL samples of 

the pre-culture were transferred to two 1-L Erlenmeyer 

flasks, each containing 100  mL of seed medium, and 

grown with shaking (200  rpm) in a 30  °C incubator for 

19–20  h. �e entire seed culture (200  mL) was added 

as the inoculum to the 1.8-L primary culture in a fer-

menter (initial OD600 = 1.5–2.0 in 2 L). IPTG at a final 

concentration of 1 mM and kanamycin (25.0 μg/L) were 

also added during fermentation inoculation. A NBS Bio-

Flo 3000 fermenter system (New Brunswick Scientific, 
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Edison, NJ, USA) equipped with a 6.6-L jar was used for 

all fed-batch cultivation experiments. �e pH was main-

tained at 7.0 by addition of 28 % (v/v) ammonia solution 

(Junsei Chemical Co., Ltd., Tokyo, Japan). Temperature 

and agitation were maintained at 30  °C and 600  rpm, 

respectively, by a proportional-integral-derivative con-

troller throughout the entire cultivation period. �e 

aeration rate was maintained at 1  L/L/min. Foaming 

was suppressed by addition of 1:10 diluted antifoam 204 

(Sigma-Aldrich). Feeding solution (200 mL) was manu-

ally added each time the residual glucose level decreased 

to <20 g/L.

Analytical procedures

Two high-performance liquid chromatography (HPLC) 

systems, Agilent 1100 (Agilent Technologies) and Waters 

Breeze 2 (Waters Corporation, Milford, MA, USA), were 

used to determine the metabolite concentration in the 

culture broth. For detection of amino compounds, the 

supernatant of the culture samples was reacted with 

o-phthaldehyde as previously described [13] prior to 

injection into the Eclipse Zorbax-AAA column (Agi-

lent Technologies). Linear gradients of mobile phase A 

[10 mM Na2HPO4, 10 mM Na2B4O7·10H2O, and 8 mg/L 

NaN3 (pH 7.2)] and mobile phase B (methanol, acetoni-

trile, and water at a volumetric ratio of 45:45:10) were 

used to separate the amino acids in the column. Borate 

buffer (0.4  M; pH 10.2) was used as a buffering agent 

rather than pH 9.0 buffer as previously described [13]. 

�e derivatized compounds were detected using a diode-

array detector at 338  nm. �e column temperature was 

set to 25  °C, and the flow rate of the pump was set to 

0.640  mL/min. �e following gradient was applied for 

resolving the compounds: 0–0.5 min, 0 % B; 0.5–18 min, 

a linear gradient of B from 0 to 57 %; 18–26 min, a lin-

ear gradient of B from 57 to 100 %; 26–31.8 min, 100 % 

B; 31.8–31.9 min, a linear gradient of B from 100 to 0 %; 

31.9–32 min, 0 % by volume. Glutaric acid was detected 

using the Waters Breeze 2 HPLC system (Waters Corpo-

ration) with a MetaCarb 87H column (Varian; Crawford 

Scientific, Strathaven, UK) and a constant flow of sulfuric 

acid solution at 0.5 mL/min. �e Waters Breeze 2 system 

included an isocratic pump (Waters 1515; Waters Corpo-

ration), a refractive index detector (Waters 2414; Waters 

Corporation), and an autosampler (Waters 2707; Waters 

Corporation).

Cell growth was monitored by measuring the OD600 

with an Ultrospec 3000 spectrophotometer (Amersham 

Biosciences, Uppsala, Sweden). �e correlation fac-

tor (0.28  g of dry weight of cells per L per OD600 of 1) 

was experimentally determined and used for biomass 

concentration calculation of flask-cultivated cells. �is 

correlation factor was in agreement with a previously 

reported value [47]. Glucose concentration was meas-

ured using a 2700 biochemistry analyzer (YSI, Yellow 

Springs, OH, USA). When necessary, diluted HCl solu-

tion was used to neutralize CaCO3 in the cultivation 

media.

Molecular docking simulation

Molecular docking simulations were performed 

using Autogrid and Autodock 4.2.5.1 software [48]. 

Gasteiger charges and hydrogen atoms were added 

using AutoDockTools 1.5.6. A Lamarckian genetic 

algorithm with default parameters was used, and no 

peptide residues were kept flexible. The docking grid 

was set to encompass the catalytic pocket, but not the 

entire enzyme. For docking of the natural substrate of 

4-aminobutyrate aminotransferase, the substrate mol-

ecules were separately saved from a known structure 

(PDB ID: 4ATQ) [49] as a single molecule in the form 

of an external aldimine and used as a ligand. For dock-

ing with 5AVA aminotransferase, pyridoxal phosphate 

and 5AVA in the form of an external aldimine were 

used as the ligand. Torsion about the bond between 

the pyridine moiety of the pyridoxal phosphate and the 

Schiff base was not allowed during docking. The dock-

ing results were visualized using PyMol 1.6 (https://

www.pymol.org/pymol) without additional hydrogen 

atoms.

Molecular modeling

Homology modeling was carried out with SWISS-

MODEL [50]. 4-Aminobutyrate aminotransferase (E.C. 

2.6.1.19) of C. glutamicum was homology modeled 

using the same enzyme from A. aurescens (PDB ID: 

4ATQ chain B) [49] as a template. A minor correction 

was applied for this model (Additional file 2: Figure S2) 

based on a different enzyme structure (PDB ID: 3LV2). 

�e same enzyme from S. griseus was homology mod-

eled using that from Mycobacterium smegmatis (PDB 

ID: 3Q8  N chain D) as a template. 5-Aminovalerate 

aminotransferase (E.C. 2.6.1.48) of P. putida KT2440 

was homology modeled using 4-aminobutyrate ami-

notransferase from E. coli (PDB ID: 1SFF chain A) [51] 

as a template.

https://www.pymol.org/pymol
https://www.pymol.org/pymol
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