
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Publications from USDA-ARS / UNL Faculty U.S. Department of Agriculture: Agricultural 
Research Service, Lincoln, Nebraska 

2012 

Metabolic engineering of novel lignin in biomass crops Metabolic engineering of novel lignin in biomass crops 

Ruben Vanholme 
Ghent University, Ruben.Vanholme@UGent.be 

Kris Morreel 
Ghent University, Kris.Morreel@UGent.be 

Chiarina Darrah 
Ghent University 

Paula Oyarce 
Ghent University 

John H. Grabber 
USDA-Agricultural Research Service, john.grabber@ars.usda.gov 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub 

Vanholme, Ruben; Morreel, Kris; Darrah, Chiarina; Oyarce, Paula; Grabber, John H.; Ralph, John; and 

Boerjan, Wout, "Metabolic engineering of novel lignin in biomass crops" (2012). Publications from USDA-

ARS / UNL Faculty. 1129. 

https://digitalcommons.unl.edu/usdaarsfacpub/1129 

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research 
Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in 
Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of 
Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/usdaarsfacpub
https://digitalcommons.unl.edu/usdaars
https://digitalcommons.unl.edu/usdaars
https://digitalcommons.unl.edu/usdaarsfacpub?utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F1129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/usdaarsfacpub/1129?utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F1129&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Ruben Vanholme, Kris Morreel, Chiarina Darrah, Paula Oyarce, John H. Grabber, John Ralph, and Wout 
Boerjan 

This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/
usdaarsfacpub/1129 

https://digitalcommons.unl.edu/usdaarsfacpub/1129
https://digitalcommons.unl.edu/usdaarsfacpub/1129


Tansley review

Metabolic engineering of novel lignin in
biomass crops

Author for correspondence:
Wout Boerjan

Tel: +32 (0)9 331 38 81

Email: wout.boerjan@psb.vib-ugent.be

Received: 13 June 2012

Accepted: 8 August 2012

Ruben Vanholme1,2, Kris Morreel1,2, Chiarina Darrah1,2, Paula Oyarce1,2,

John H. Grabber3, John Ralph4 and Wout Boerjan1,2

1Department of Plant Systems Biology, VIB, Technologiepark 927, 9052, Gent, Belgium; 2Department of Plant Biotechnology and

Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium; 3USDA-Agricultural Research Service, US Dairy

Forage Research Center, 1925 Linden DriveWest, Madison,WI, 53706, USA; 4Departments of Biochemistry and Biological Systems

Engineering, the Wisconsin Bioenergy Initiative, and the DOE Great Lakes Bioenergy Research Center, University of Wisconsin, 433

Babcock Drive, Madison, WI, 53706, USA

Contents

Summary 978

I. Introduction 979

II. Phenolic metabolism 979

III. Lignin biosynthesis and structure 983

IV. Alternative lignin monomers for biofuel applications 985

V. Candidate alternative monolignols in biomimetic systems 991

VI. From phenolic profiling to lignomics 992

VII. Phenolic pathway engineering towards alternative
monolignols

993

Acknowledgements 994

References 994

New Phytologist (2012) 196: 978–1000
doi: 10.1111/j.1469-8137.2012.04337.x

Key words: cell wall, lignin, pathway
discovery, phenolic metabolism, phenolic
profiling, synthetic biology.

Summary

Lignin, a phenolic polymer in the secondary wall, is the major cause of lignocellulosic biomass

recalcitrance to efficient industrial processing. From an applications perspective, it is desirable

that second-generation bioenergy crops have lignin that is readily degraded by chemical

pretreatments but still fulfill its biological role in plants. Because plants can tolerate large

variations in lignin composition, often without apparent adverse effects, substitution of some

fraction of the traditional monolignols by alternative monomers through genetic engineering

is a promising strategy to tailor lignin in bioenergy crops. However, successful engineering of

lignin incorporating alternative monomers requires knowledge about phenolic metabolism in

plants and about the coupling properties of these alternative monomers. Here, we review the

current knowledge about lignin biosynthesis and the pathways towards the main phenolic

classes. In addition, the minimal requirements are defined for molecules that, upon

incorporation into the lignin polymer, make the latter more susceptible to biomass

pretreatment. Numerous metabolites made by plants meet these requirements, and several

have already been tested as monolignol substitutes in biomimetic systems. Finally, the status

of detection and identification of compounds by phenolic profiling is discussed, as phenolic

profiling serves in pathway elucidation and for the detection of incorporation of alternative

lignin monomers.
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I. Introduction

The development of lignin was a keystone event in the evolution of
vascular land plants because lignin provided the necessary strength
and hydrophobicity to fiber and vessel cell walls to allow plants to
grow tall in a gravitropic environment and to transport water and
nutrients in their vascular system (Rogers & Campbell, 2004;
Weng&Chapple, 2010). Lignin is a complex aromatic polymer in
which the cell wall polysaccharides (mainly cellulose and hemicel-
luloses) and cell wall glycoproteins are embedded. It is synthesized
from the oxidative coupling of p-hydroxycinnamyl alcohol mono-
mers and related compounds (Boerjan et al., 2003; Ralph et al.,
2004b; Vanholme et al., 2010a). The main units in the polymer,
p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) units, are
derived from the monolignols p-coumaryl, coniferyl and sinapyl
alcohol, monomers differing in the number of methoxyl substit-
uents on the aromatic ring. The relative abundance of these main
units varies among plant species, tissues, cell types, and develop-
mental stages. Research on lignin biosynthesis has become a
primary focus since it became clear that lignin is the major factor in
lignocellulosic biomass recalcitrance to efficient processing. Lignin
hinders the release of monosaccharides during enzymatic hydro-
lysis of cell wall polysaccharides – a process called saccharification –
which is necessary for the production of second-generation biofuels
and materials from biomass-derived sugars (Chen &Dixon, 2007;
Yoshida et al., 2008).More specifically, lignin negatively affects the
saccharification process by immobilizing cellulases (and associated
enzymes) and blocking them from reaching their polysaccharide
substrates (Chang&Holtzapple, 2000;Nakagame et al., 2011). In
order to facilitate saccharification, mechanical, thermal and
chemical pretreatments have been developed to disrupt cell wall
structure, rendering the lignocellulosic material more accessible to
the polysaccharidases (Carvalheiro et al., 2008; Kristensen et al.,
2008; Hendriks & Zeeman, 2009; Chundawat et al., 2011). With
the recognition that lignin is a problem, it has been appealing to
consider reducing lignin contents via genetic engineering, a strategy
that would reduce the input of chemicals and energy during the
pretreatment reactions (Chen &Dixon, 2007). Drastic reductions
in the biosynthesis of lignin, however, have negative effects on plant
growth and development (Li et al., 2010; Gallego-Giraldo et al.,
2011b; Voelker et al., 2011). By contrast, plants can tolerate large
shifts in lignin composition, often without visible effects on plant
development and morphology (Ralph et al., 1997; Meyer et al.,
1998;Marita et al., 1999; Franke et al., 2000; Stewart et al., 2009;
Vanholme et al., 2012). In fact, plants also show a remarkable
ability to augment their polymer make-up by incorporating novel
phenolic monomers, as is particularly evident when pathway gene
down-regulations, limiting the flux to the traditional monolignols,
lead to the build-up of products from pathway intermediates, for
example, hydroxycinnamaldehydes, and 5-hydroxyconiferyl alco-
hol (Ralph et al., 2001b). Advances in analytical techniques have
revealed that numerous phenolic metabolites act as natural lignin
monomers in wild-type plants – examples include acylated
hydroxycinnamyl alcohols, hydroxybenzaldehydes and dihydro-
hydroxycinnamyl alcohols (Ralph et al., 1997, 2008a; Vanholme

et al., 2008). The incorporation of atypicalmonomers that are rare,
or even absent, in lignin of wild-type plants (hereafter called
alternative lignin monomers) can be accomplished through genetic
engineering (Jackson et al., 2008; Ralph et al., 2008b; Eudes et al.,
2012). Therefore, research is now also focusing on the biosynthesis
and incorporation of alternative monomers into lignin to alter the
structure of the lignin polymer to facilitate lignin removal from
lignocellulosic biomass by chemical pretreatments or to improve
the penetration and action of hydrolytic enzymes (Simmons et al.,
2010; Chundawat et al., 2011). Various modified lignin polymers
might be envisioned to maintain the biological role of lignin in the
plant while permitting more efficient conversion of lignocellulosic
biomass for industrial saccharification.

II. Phenolic metabolism

The lignin polymer is the product of oxidative coupling of phenolic
metabolites, normally p-hydroxycinnamyl alcohol monomers (the
so-called monolignols). Steering the pathway to produce alterna-
tive monomers therefore requires a fundamental knowledge of
phenolicmetabolism, that is, the enzymes andmetabolites involved
in the pathways, and how these pathways are regulated. Although
many phenolics are specific for one or a few plant species, several
major classes of phenolics are found throughout the plant kingdom.
The biosynthetic route towards these major classes has been
studied via metabolic and genomic tools, mostly in Arabidopsis.
In this section, the current knowledge of the main phenolic
pathways in Arabidopsis and in other model species is briefly
presented as a prelude to describing alternative monomers for
lignification (Fig. 1).

The shikimate pathway, which is present in bacteria, yeasts and
plants, but not in animals, is the entry pathway towards a plethora
of phenolic compounds. This plastid-localized pathway is highly
transcriptionally and post-translationally controlled (Chen et al.,
2006b; Tzin & Galili, 2010). In seven enzymatic steps, the
glycolytic intermediate phosphoenol pyruvate and the pentose
phosphate pathway intermediate erythrose-4-phosphate are
metabolized into chorismate via 3-dehydroshikimate as an inter-
mediate (Herrmann &Weaver, 1999). Although the biosynthetic
route is not yet fully elucidated, 3-dehydroshikimate also serves as a
precursor for gallic acid and, thus, gallotannin biosynthesis
(Dewick & Haslam, 1969; Werner et al., 2004). Chorismate
serves as the precursor for p-aminobenzoate (an intermediate in
tetrahydrofolate biosynthesis; Basset et al., 2004) and the aromatic
amino acids phenylalanine, tyrosine and tryptophan (Knaggs,
2003). Phenylalanine is produced from chorismate by the action of
two enzymes, a dehydratase and an aminotransferase, the exact
order of action being unknown (Cho et al., 2007; Yamada et al.,
2008; Corea et al., 2012). Tryptophan is necessary for the
production of auxin and secondary indolic metabolites, such as
indolic glucosinolates and camalexin (Malitsky et al., 2008). In
addition, chorismate is the main precursor for salicylic acid in
Arabidopsis, although salicylic acid can also be produced from
benzoic acid (Léon et al., 1995;Wildermuth et al., 2001;Métraux,
2002; Strawn et al., 2007).
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The general phenylpropanoid pathway uses phenylalanine as an
entry substrate and results, after seven steps, in feruloyl-CoA
(Humphreys & Chapple, 2002; Boerjan et al., 2003). Following
deamination of phenylalanine to cinnamate by phenylalanine
ammonia-lyase (PAL), hydroxylation of the aromatic ring leads to
p-coumarate, a reaction catalyzed by cinnamate 4-hydroxylase
(C4H). In grasses, a PAL isozyme catalyzing the deamination of
both phenylalanine (PAL activity) and tyrosine (tyrosine ammonia-
lyase activity) in vitromight be implicated in the direct conversion
of tyrosine to p-coumarate in vivo (Rösler et al., 1997). Activation
of the acid to a thioester by 4-coumarate: CoA ligase (4CL) yields
p-coumaroyl-CoA.The subsequent 3-hydroxylation of p-coumaroyl-
CoA to caffeoyl-CoA involves three enzymatic steps, at least in
dicots. First, p-coumaroyl-CoA is transesterified to its quinic
or shikimic acid ester derivative by hydroxycinnamoyl-CoA:
shikimate/quinate hydroxycinnamoyltransferase (HCT). p-Coumaroyl
shikimate or quinate is then hydroxylated by p-coumarate
3-hydroxylase (C3H, named when it was assumed that p-coum-
arate was the direct substrate) and then transesterified again by
HCT to caffeoyl-CoA. Recently, an alternative 3-hydroxylation
route has been found; the poplar (Populus trichocarpa) hetero-
dimeric C4H/C3H protein complex efficiently converts p-coumaric
acid to caffeic acid (Chen et al., 2011), after which 4CL might
convert caffeic acid into caffeoyl-CoA. Further methylation of
the 3-hydroxyl group by caffeoyl-CoA O-methyltransferase
(CCoAOMT) yields feruloyl-CoA. Various pathways branch off
from the general phenylpropanoid pathway, including the mono-
lignol-specific pathway and the pathways towards flavonoids,
benzenoids, coumarins, and sinapate and ferulate esters.

The monolignol-specific pathway includes four well-studied
enzymatic steps that convert feruloyl-CoA into the monolignols
coniferyl alcohol and sinapyl alcohol (Humphreys & Chapple,
2002; Boerjan et al., 2003). First, feruloyl-CoA is reduced to
coniferaldehyde by cinnamoyl-CoA reductase (CCR). Hydrox-
ylation at the 5-position is catalyzed by ferulate 5-hydroxylase
(F5H), which is also now often called coniferaldehyde 5-hydrox-
ylase (CAld5H) to reflect its preferred substrate, to produce
5-hydroxyconiferaldehyde (Humphreys et al., 1999; Osakabe
et al., 1999). The subsequent methylation of the newly intro-
duced 5-hydroxyl group is catalyzed by caffeic acid O-methyl-
transferase (COMT), whose preferred substrate is also now
known to be the aldehyde (Li et al., 2000; Parvathi et al., 2001),
to provide sinapaldehyde. Further reduction to their correspond-
ing alcohols, coniferyl alcohol and sinapyl alcohol, is catalyzed by

cinnamyl alcohol dehydrogenase (CAD). A specific sinapyl
alcohol dehydrogenase (SAD) involved in the reduction to
sinapyl alcohol has been proposed in aspen (Populus tremuloides)
based on in vitro enzymatic assays (Li et al., 2001), but an in vivo
role of SAD in monolignol biosynthesis has never been convinc-
ingly demonstrated (Guo et al., 2010; Barakate et al., 2011).
Although the depicted pathway is thought to occur in many
species (certainly Arabidopsis, tobacco (Nicotiana tabacum) and
poplar), an alternative sequence of reactions for sinapyl alcohol
production probably occurs inMedicago (Lee et al., 2011) and the
pathways in grasses are currently being evaluated (Withers et al.,
2012). In Medicago, the flux towards coniferyl and sinapyl alcohol
bifurcates after caffeoyl-CoA production (Lee et al., 2011).
Caffeoyl-CoA destined for sinapyl alcohol synthesis is reduced
by CCR to caffealdehyde, which is then converted to sinapalde-
hyde by the sequential actions of COMT, F5H and COMT.

The monolignols that result from the above-described mono-
lignol-specific pathway are used for at least three different product
classes: oligolignols/lignin, monolignol 4-O-hexosides and (neo)
lignans. Oligolignols are racemic radical coupling products of
monolignols that arise during lignin polymerization (Morreel
et al., 2004a, 2010a,b; Ralph et al., 2004b). Lignans are formed by
the initial stereospecific b-b coupling (see Fig. 2 for nomenclature)
of two monolignol radicals (Umezawa, 2003). Secondary metab-
olites arising from two monolignol radicals that are stereospecif-
ically b-O-4- or b-5-coupled are called neolignans (Umezawa,
2003). Stereospecific coupling reactions in (neo)lignan biosynthe-
sis appear to be assisted by dirigent proteins (Davin et al., 1997;
Umezawa, 2003; Beejmohun et al., 2007; Pickel et al., 2010).
Because of their antioxidant properties, (neo)lignans are believed to
be involved in defense responses (Davin et al., 1997). Some may
also have a hormonal function; dehydrodiconiferyl alcohol gluco-
side (DCG) has been associated with cell division-promoting
activities (Binns et al., 1987; Teutonico et al., 1991; Li et al.,
2010). The third metabolic class derived from monolignols
includes the 4-O-glucosylated monolignols (e.g. coniferin and
syringin). Several glucosyl transferases involved in their biosynthe-
sis have been described inArabidopsis, as well asb-glucosidases that
convert the monolignol 4-O-glucosides back to their respective
aglycones (Lim et al., 2005; Escamilla-Treviño et al., 2006; Lanot
et al., 2006). The biological role of monolignol 4-O-hexosides has
not been unequivocally defined, but they could serve as storage
forms for their aglycones (Lim et al., 2005; Vanholme et al.,
2012). This hypothesis is supported by the finding thatmonolignol

Fig. 1 Phenolic metabolism in plants. The phenolic metabolite classes are given (in gray frames), as well as pathways and metabolic sinks that use phenolic
metabolites or shikimate pathway intermediates as substrates. Representative metabolites are given for phenolic classes. Not every phenolic metabolic class
shown is present in every plant species. The major route towards the monolignols p-coumaryl, coniferyl and sinapyl alcohol is given in color; the shikimate
pathway (yellow), phenylalanine biosynthesis (orange), general phenylpropanoid pathway (pink) and monolignol-specific pathway (purple). Arrows with
dashed linesdesignate knownroutes that involvemultiple enzymatic steps; for simplicity, the individual enzymatic steps arenot shown.Arrowswithdotted lines
designate unknown or unauthenticated routes. Arrows with a questionmark are routes that have been suggested in the literature. DHS, 3-deoxy-D-arabino-
heptulosonate7-phosphate synthase;DQS,3-dehydroquinate synthase;DHQD,3-dehydroquinatedehydratase; SD, shikimatedehydrogenase; SK, shikimate
kinase; EPSPS, 5-enolpyruvylshikimate-3-phosphate synthase; CS, chorismate synthase; AT, amino transferase; TAL, tyrosine ammonia-lyase; PAL,
phenylalanine ammonia-lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate: CoA ligase; HCT, hydroxycinnamoyl-CoA: shikimate/quinate
hydroxycinnamoyltransferase; C3H, p-coumarate 3-hydroxylase; CCoAOMT, caffeoyl-CoAO-methyltransferase; CCR, cinnamoyl-CoA reductase; F5H,
ferulate 5-hydroxylase; COMT, caffeic acidO-methyltransferase; CAD, cinnamyl alcohol dehydrogenase; UGT, UDP-glucosyltransferase; HCALDH,
hydroxycinnamaldehyde dehydrogenase; BGLU, b-glucosidase.
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4-O-glucosides are sequestered into the vacuoles of Arabidopsis,
whereas monolignol aglycones are transported to the apoplast
(Miao & Liu, 2010; Alejandro et al., 2012).

The general phenylpropanoid- and monolignol-specific path-
ways also provide hydroxycinnamic acids, which include
p-coumaric, caffeic, ferulic and sinapic acids. Hydroxycinnamic
acids can be esterified or amidated by a variety of moieties such as
malate, quinate, glucose, sucrose, choline, putrescine, spermidine,
hydroxyanthranilate and tyramine; this can differ between plant
species and plant tissues (Dimberg et al., 1993; Martin-Tanguy,
1997; Schmidt et al., 1999; Mahesh et al., 2007; Milkowski &

Strack, 2010). In Arabidopsis, the largest portion of the ferulic and
sinapic acid pool is made from coniferaldehyde and sinapaldehyde
via hydroxycinnamaldehyde dehydrogenase (HCALDH) (Nair
et al., 2004). The presence of ferulate and sinapate esters in hcaldh
and ccr1 mutants, however, proves the existence of an alternative
pathway probably involving feruloyl-CoA (Nair et al., 2004; Chen
et al., 2006a;Mir Derikvand et al., 2008; Vanholme et al., 2012).
Alternatively, ferulic acid might be made from p-coumaric acid via
3-hydroxylation and 3-O-methylation by C3H/C4H and COMT
(Chen et al., 2011). Sinapate esters (e.g. sinapoyl glucose and
sinapoyl malate) are putatively important as UV-protectants in

(a)

(b)

(c)

(d)

Fig. 2 Oxidative radicalization (i.e. dehydrogenation) and coupling of the traditional lignin monomer, coniferyl alcohol. (a) The 4-O-localized radical formed
upon dehydrogenation is stabilized via delocalization, as shown by the five resonance forms. By convention, a, b and c, and 7, 8 and 9 are used to indicate
the aliphatic carbonpositions in ligninmonomers/polymers and (neo)lignan/oligolignols, respectively. To ensure consistent nomenclature in the text,a,b and c
are used for both lignins and (neo)lignan/oligolignols. (b) b-O-4 coupling of two coniferyl alcohol monomers. An external nucleophile (Nu:) provides the
pathway for re-aromatization of the quinone methide intermediate. In the (common) case where the nucleophile is water, this results in the hydroxylation at
the Ca position. However, if the nucleophile is a hydroxyl function from a hemicellulosic sugar moiety, a covalent ether bond between lignin and the
hemicellulose is formed (see Fig. 4). (c) b-5 coupling of two coniferyl alcohol monomers. Re-aromatization of the quinonemethide intermediate is via internal
trapping (via the formal4-OHthat canalsobe considered to result fromketo-enol tautomerizationof the intermediate shown), andaphenylcoumaranstructure
is formed. (d) b-b coupling of two coniferyl alcohol monomers. The c-hydroxyl groups serve as nucleophiles for internal trapping of the quinone methide,
resulting in two re-aromatization reactions (that are likely to be sequential, and not necessarily concerted as shown here), and the formation of a resinol
structure. The bond formed during the radical coupling reaction is the one used to describe the various dehydrodimerization reactions and is shown in bold.
Lignification proceeds mainly via endwise addition of newmonolignols to the free-phenolic end, following renewed radicalization, at the 4-O- or 5-positions
(and also, to a small extent, at the 1-position) shown by the dotted arrows.
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Brassicaceae and the genes involved in their biosynthesis are well
described inArabidopsis (Lorenzen et al., 1996; Fraser et al., 2007;
Sinlapadech et al., 2007). By contrast, the biological function and
biosynthesis of ferulate esters are poorly understood. Ferulate esters
are likely intermediates in the production of cell wall-bound
ferulates (Rohde et al., 2004; Mir Derikvand et al., 2008) and of
suberins (Bernards et al., 1995; Franke & Schreiber, 2007; Soler
et al., 2007; Molina et al., 2009; Rautengarten et al., 2012).
Ferulate-polysaccharide esters have well-established roles in
polysaccharide–polysaccharide and lignin–polysaccharide cross-
linking in grasses (Ralph et al., 1994a,b, 1998; Hatfield et al.,
1999; Grabber et al., 2000; Ralph, 2010), and may even function
as nucleation sites for lignification (Ralph et al., 1995; Grabber
et al., 2002). Ferulate esters are also found in neolignan oligomers
(e.g. G(b-O-4)feruloylmalate) for which the biological role is as yet
unknown (Rohde et al., 2004; Böttcher et al., 2008; Meißner
et al., 2008; Huis et al., 2012; Vanholme et al., 2012). Hydroxy-
cinnamic acid polyamine conjugates are present in numerous plant
species (Martin-Tanguy, 1997) and several of their biosynthetic
genes have been characterized in Arabidopsis (Fellenberg et al.,
2009; Grienenberger et al., 2009; Matsuno et al., 2009).
Hydroxycinnamic acids are also 4-O-glucosylated, resulting in
metabolites that share characteristics with 4-O-glucosylatedmono-
lignols and hydroxycinnamaldehydes (Lim et al., 2005). Finally,
sinapyl and coniferyl p-coumarate esters serve as (nontraditional)
monolignols of lignin (Lu & Ralph, 1999; Ralph, 2010).

Via the action of polyketide synthases, several phenolic
pathways diverge from phenylpropanoid biosynthesis (Yu &
Jez, 2008). For instance, the flavonoid biosynthetic pathway
derives mainly from p-coumaroyl-CoA. The flavonoid biosyn-
thetic pathway can be further divided into the general flavonoid,
flavonol, isoflavonoid, anthocyanin and proanthocyanin (con-
densed tannin) pathways (Tanner et al., 2003; Lapčı́k, 2007;
Yonekura-Sakakibara et al., 2008). Structural genes of the
general flavonoid pathway are well characterized in Arabidopsis
(Yonekura-Sakakibara et al., 2008), but enzymatic steps involved
in flavonoid modification (e.g. glycosylation and acylation) are
poorly understood. The committed step towards flavonoids,
catalyzed by the polyketide synthase chalcone synthase (CHS),
condenses p-coumaroyl-CoA with three acetyl-CoA molecules to
produce naringenin chalcone. Although aromatic hydroxylations
can occur within the flavonoid pathway itself, in some species
CHS may accept multiple hydroxycinnamoyl-CoA substrates to
create a diverse set of hydroxylated and methoxylated flavonoids
after the first step in flavonoid biosynthesis (Dao et al., 2011).
For example, sinapoyl, caffeoyl and p-coumaroyl-CoA are at least
formal precursors of various flavones, such as tricin (found in
grasses), luteolin and apigenin. Flavonoid biosynthesis and
monolignol biosynthesis are even more intertwined; for example,
Arabidopsis COMT also carries out its methoxylation reaction
on flavonols to convert quercetin to isorhamnetin (Muzac et al.,
2000; Goujon et al., 2003), and tricin has just been implicated as
a monomer in grass lignins (del Rı́o et al., 2012). In specific
plant species, hydroxycinnamoyl-CoAs are the substrates for
other polyketide reactions. For instance, stilbene synthase
catalyzes the biosynthesis of stilbenes in pine (Pinus sylvestris

and Pinus densiflora), grape (Vitis vinifera), peanut (Arachis
hypogaea) and sorghum (Sorgum bicolor) (Hammerbacher et al.,
2011).

Benzenoids are characterized by a C6-C1 skeleton. Some
benzenoids, such as benzoic, p-hydroxybenzoic and vanillic acids,
are made via chain-shortening of the C6-C3 skeleton of phenyl-
propanoids, whereas others, such as gallic acid, are synthesized from
3-dehydroshikimate. As described in the second paragraph of
Section II, salicylic acid can be synthesized via chorismate or from
benzoic acid. Two possible routes have been proposed for the
biosynthesis of benzoic acid from cinnamic acid: the CoA-
independent (non-b-oxidative) route via benzaldehyde and the
CoA-dependent (b-oxidative) route via benzoyl-CoA (Hertweck
et al., 2001; Boatright et al., 2004; Ibdah et al., 2009). Except for
an aldehyde oxidase involved in the CoA-independent biosynthesis
of benzoic acid in seeds of Arabidopsis (Ibdah et al., 2009) and a
cinnamate:CoA ligase (CNL) and a 3-ketoacyl-CoA thiolase
involved in the CoA-dependent biosynthesis of benzoic acid in
petunia (Petunia hybrida BA) flowers (Van Moerkercke et al.,
2009; Klempien et al., 2012), none of the genes involved in these
pathways have been described. Because of similarities between fatty
acid catabolism and the CoA-dependent chain-shortening of
phenylpropanoids to benzenoids, the respective enzymes of these
routes are expected to be (distant) homologs (Hertweck et al.,
2001). p-Hydroxybenzoates acylate lignins in Populus, Salix and
Palmae species (Ralph, 2010), and benzenoids such as methylsa-
licilate, methylbenzoate, benzylbenzoate and benzylacetate, are
volatiles and part of the floral scent (Dudareva et al., 2004).

Another biosynthetic route that branches from the general
phenylpropanoid biosynthetic pathway leads to coumarins.
FollowingC2-hydroxylation of the hydroxycinnamoyl-CoA esters,
lactonization of the side-chain produces the corresponding
coumarins, which are often stored as glycosides. This yields
umbelliferone, esculetin and scopoletin as the coumarin products
of p-coumaric, caffeic and ferulic acids, respectively. The enzyme
responsible for the first step, that is, the C6′ hydroxylation of
feruloyl-CoA, has been described in Arabidopsis (Kai et al., 2008).

Although much information about phenolic metabolism has
been gathered over recent decades, the low proportion of identified
metabolites in phenolic profiling studies (Morreel et al., 2010a;
Vanholme et al., 2010c) underscores the complexity of these
pathways and the need for methods to speed up structural
characterization. Certainly, knowledge gaps in metabolic products
and pathways will hamper attempts to bioengineer new types of
lignin using alternative monomers from the phenylpropanoid
metabolism.

III. Lignin biosynthesis and structure

After their biosynthesis, monolignols are translocated to the
apoplast via a largely unresolved mechanism probably involving
ATP-binding cassette (ABC) transporters (Miao & Liu, 2010).
Recently, an Arabidopsis ABC transporter (AtABCG29) has been
identified that is capable of transporting p-coumaryl alcohol when
expressed in yeast, whereas Arabidopsismutated for this transporter
contained less lignin and was more sensitive to p-coumaryl alcohol
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(Alejandro et al., 2012). Upon entering the cell wall matrix,
monolignols are oxidized by peroxidases and/or laccases to
monolignol radicals that eventually polymerize into the lignin
macromolecule via combinatorial radical–radical coupling reac-
tions (Fig. 2). Laccases and peroxidases are encoded by large gene
families and the individual members have overlapping activities
(Vanholme et al., 2010a). Two laccases involved in lignification
have been identified (Berthet et al., 2011). Direct contact between
the peroxidase/laccase and the substrate is not needed – radical-
transfer reactions can also pass the radical from one molecule to
another. All radical coupling reactions in lignification are termi-
nation events; thus, continued lignification of cell walls requires
new hydrogen-abstraction of monomers and the growing lignin
oligomer following each coupling reaction. It is assumed, but not
proven, that amonolignol radical can transfer its single electron to the
growing polymer, but other transfer agents may be involved. For
instance, the p-coumarate moiety in sinapyl p-coumarate, or
manganese oxalate, may act as radical shuttles (Takahama et al.,
1996;Takahama&Oniki, 1997; Önnerud et al., 2002;Ralph et al.,
2004a; Hatfield et al., 2008). Because radical coupling is a purely
chemically driven process, independent of control by any protein-
aceous agent, any phenolic molecule having the proper chemical
kinetic and thermodynamic radical-generation and cross-coupling
propensities can couple into the ligninpolymer (Harkin, 1967; Lu&
Ralph, 1999, 2002, 2008; Boerjan et al., 2003; Morreel et al.,
2004a; Ralph et al., 2004b; Ralph, 2006; Vanholme et al., 2010a).

The monolignol radical is resonance-stabilized, having various
sites of enhanced single-electron density in the molecule (Fig. 2a).
Mutual coupling of monolignols (dimerization) and cross-cou-
pling with the growing polymer lead not only to the characteristic
H, G and S units, but also to various inter-unit linkage types
(Fig. 2b–d). At least 60% of the inter-unit linkages in dicots are
b-aryl ethers arising from b-O-4 coupling of a monolignol at
its b-position to the 4-O-position of the growing oligomer. These
b-aryl ether linkages can, unlike other prevalent interunit linkages,
be cleaved by harsh alkaline or acidic pretreatment of the
lignocellulosic biomass (Sarkanen & Ludwig, 1971). The two
other major inter-unit linkages in lignin are phenylcoumarans and
resinols formed by b-5 and b-b coupling, respectively. Both are
carbon–carbon linkages (among the so-called ‘condensed linkages’)
that can only be broken under extremely harsh conditions that
would also degrade the polysaccharides. For the three major types
of linkages, the incomingmonolignol radical reacts exclusively at its
b-position, enabling the resulting 4-O-phenolic function produced
after re-aromatization of the quinonemethide intermediate to enter
another coupling reaction. Although the b-O-4, b-5, and b-b
couplings yield a linear polymer, branching can occur whenever the
4-O- or 5-position of one lignin oligomer or polymer couples with
the 5-position of another lignin oligomer or polymer, producing
5-5 and 4-O-5 linkages. The coupling reactions involved in
lignification have been previously reviewed in detail (Ralph et al.,
2004b).

Which primary units are present in the lignin polymer depends
largely on the taxon of the plant. In general, gymnosperm lignins
are rich in G units, with small amounts of H units, but no S units.
Lignins from dicots are composed of both G and S units with only

traces ofH units, whereas lignin ofmonocot grasses also containsG
and S units with modest levels (typically < 5%) of H units. It
should be pointed out that H unit proportions in grasses are often
overestimated because p-coumarate units acylating lignin are often
mistakenly quantified as H units (Boerjan et al., 2003; del Rı́o
et al., 2012). Nevertheless, it should be stressed that the lignin unit
composition is highly variable, not only between species, but also
between tissue and cell types, and even within a single cell wall. In
addition, any phenolic molecule entering the cell wall region may
be oxidized and incorporated into the lignin polymer (Harkin,
1967; Lu & Ralph, 1999, 2002, 2008; Boerjan et al., 2003;
Morreel et al., 2004a;Ralph et al., 2004b;Ralph, 2006;Vanholme
et al., 2010a). Many alternative monomers are found in the lignin
of wild-type plants. For example, traditional monolignols are often
acylated at their c-position with acetate, p-hydroxybenzoate or p-
coumarate (Lu&Ralph, 1999, 2002, 2008;Morreel et al., 2004a).
Such acylated units can even be highly abundant; for example,
coniferyl and sinapyl acetate may constitute 50% or more of the
units in lignin from kenaf (Hibiscus cannabinus) (Ralph, 1996; Del
Rı́o et al., 2007). Also, dihydro-hydroxycinnamyl alcohols,
hydroxybenzaldehydes and hydroxycinnamic acids and products
from an incomplete monolignol biosynthesis, such as hydroxy-
cinnamaldehydes, are found in lignins of wild-type plants (Baucher
et al., 1996; Ralph et al., 1997, 2008a; Sibout et al., 2002; Boerjan
et al., 2003).

Lignin composition can be steered via genetic engineering. For
example, F5H-deficient plants produce lignin composed almost
entirely of G units rather than the normal complement of both S
and G units (Meyer et al., 1998; Marita et al., 1999). Conversely,
F5H up-regulation can lead to plants with extremely high
proportions of S units (Meyer et al., 1998; Marita et al., 1999;
Franke et al., 2000; Stewart et al., 2009). Plants deficient in
COMT produce elevated amounts of 5-hydroxyconiferyl alcohol,
an alternativemonomer that has a high propensity to undergob-O-
4 coupling, producing novel benzodioxane structures within the
lignin (Marita et al., 2001; Ralph et al., 2001a,b; Jouanin et al.,
2004; Morreel et al., 2004b; Lu et al., 2010). These inter-unit
linkages are below or close to the detection limit in wild-type plants
(Atanassova et al., 1995; Morreel et al., 2004b; Lu et al., 2010;
Huis et al., 2012). In an extreme case, an Arabidopsis comtmutant
with concomitant F5H overexpression produced a lignin with over
90% of its units linked by benzodioxane structures (Vanholme
et al., 2010b; Weng et al., 2010). The coupling of alternative
monomers into lignins was also enhanced in plants with reduced
CADorCCRactivity.Dicots that are deficient inCADaccumulate
lignin units derived from hydroxycinnamaldehydes (Kim et al.,
2000, 2002, 2003; Lapierre et al., 2004; Ralph et al., 2004b;
Sibout et al., 2005; Leplé et al., 2007) and plants deficient in CCR
are characterized by lignins containing small amounts of ferulic
acid-derived units (Dauwe et al., 2007; Leplé et al., 2007; Mir
Derikvand et al., 2008; Ralph et al., 2008b). The observation that
plants readily incorporate alternative monomers to form lignins
with altered physicochemical properties opens up the possibility of
bioengineering various phenolic pathways to produce phenolic
monomers that can be exported to the cell wall to create new types
of lignins designed for efficient industrial processing of biomass.
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IV. Alternative lignin monomers for biofuel
applications

Alternative lignin monomers must meet certain criteria to confer
increased susceptibility of biomass to pretreatments. As men-
tioned above, the monomer must meet the minimal requirement
for a molecule to be radicalized and to couple into the lignin
polymer. Given all available data about molecules that are
polymerized into lignin, both in vivo in wild-type and genetically
engineered plants and in vitro in synthetic lignins (dehydrogena-
tion polymers (DHPs)), this minimal requirement is the presence
of a phenolic function (Harkin, 1967; Lu & Ralph, 1999, 2002,
2008; Boerjan et al., 2003; Morreel et al., 2004a; Ralph et al.,
2004b; Ralph, 2006; Vanholme et al., 2010a). As a consequence
of incompatibilities in radical coupling reactions, p-hydroxyphe-
nyl moieties fare less well than guaiacyl or syringyl moieties, at
least when incorporating into guaiacyl-syringyl lignins, but other
phenolics have not been well studied. Phenolic molecules with an
accessible b-position (i.e. a side-chain conjugated to the phenol)
allowing for so-called ‘endwise’ b-O-4 coupling are also consid-
ered ideal (Ralph, 2006). Although the ability to efficiently cross-
couple with monolignols is a prerequisite, the ultimate utility of
alternative monomers is determined by their abilities to lessen the
inherent inhibitory effects of lignin on cell wall saccharification or
to render lignin easier to remove by chemical pretreatments. For
this purpose, we envision that five types of phenolics could prove
useful as alternative monomers for lignification. These include (1)
monomers that directly produce a readily cleavable functionality
in the polymer, (2) hydrophilic monomers, (3) difunctional
monomers and monomer conjugates linked via a readily cleavable
functionality, (4) monomers that minimize lignin–polysaccharide
cross-linking and (5) monomers that give rise to shorter lignin
polymers. As described in the one but last paragraph of this
Section (IV), alternative monomers can possess one or several of
these characteristics, which may be of value for enhancing the

conversion of biomass into fermentable sugars. In addition to the
above-mentioned restrictions, molecules composed of only car-
bon, oxygen and hydrogen are most attractive as alternative
monolignols for biofuel applications. This is because molecules
containing other elements, such as nitrogen and phosphorous,
although they might result in added-value degradation products
from lignin, would probably increase the need to provide plants
with increased nitrogen- and phosphorus-containing fertilizer for
their biosynthesis. In some cases, greater fertilizer use might be
justified, but as a general rule this would undesirably increase the
financial and environmental cost of growing biomass for biofuel
production.

Monomers that directly produce a readily cleavable functionality
in the lignin polymer Ferulic acid (11G) is an example of a
monomer that produces a cleavable functionality upon incorpo-
ration in the lignin polymer, in this case an acetal that can be readily
cleaved under mildly acidic conditions (Ralph et al., 2008b). By b-
O-4 coupling of ferulic acid with the growing polymer, decarbox-
ylation to form a side-chain truncated unit and b-O-4 coupling
again with a monomer or the polymer, an acetal is formed – the
reaction mechanism is depicted in Fig. 3. Ferulic acid is incorpo-
rated into the lignin of CCR-down-regulated plants (Dauwe et al.,
2007; Leplé et al., 2007; Mir Derikvand et al., 2008; Ralph et al.,
2008b). Heavily CCR-down-regulated plants (with lower lignin
contents) are compromised, usually having stunted growth and
collapsed vessels, but it is unlikely that this is solely attributable to
the incorporation of low amounts of ferulic acid into the lignins – it
is probably a result of the reduced lignin contents and other
metabolic and structural changes. Finding themeans to incorporate
ferulic acid or other related monomers might still prove to be
fruitful. In principle, other monomers with carboxylic acid side-
chains could form acetals too, but they must be capable of
undergoing the double b-O-4 coupling reactions. An alternative
strategy to introduce acetal-type inter-unit linkages in the lignin

Fig. 3 Formation of acetal functionalities in lignin via the incorporation of ferulic acid. Aromatization of the quinone methide intermediate of ferulic acid
b-O-4 coupled to aphenolic endgroup (of a generic guaiacyl lignin unit here) is via decarboxylationof theCc carboxylic acid function. Thenewlygenerateda-b
double bond allows the ferulic acid-derived unit to enter a second b-O-4 coupling reaction via its b-position, ultimately creating the acetal functionality
after the usual re-aromatization of the quinone methide. The dotted arrows indicate the positions where lignification can proceed.
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polymer is via alternative lignin monomers that bear a hydroxyl or
ether function at the b-position (as in compounds 16, 24, 26, 32,
48,57–59 and 79). In this case,b-O-4 couplingwill directly lead to
the formation of an acetal.

Hydrophylic monomers Incorporation of hydrophilic mono-
mers into lignin could enhance the penetration and, therefore, the
hydrolysis of the lignocellulosic biomass by saccharifying enzymes,
even without pretreatment. Lignin hydrophobicity could be
modulated by the incorporation of phenolics with extensive side-
chain or aromatic ring hydroxylation (e.g. monomers such as
guaiacylglycerol (4G)) or substitution with hydrophilic groups (e.
g. feruloyl quinate (28G), feruloyl glucose (35G) or isoconiferin
(34G)). Hydrophilic groups attached by ester and glycosidic
linkages would probably be cleaved under alkaline or acidic
conditions; thus, the value of alternative monomers containing
such groups would be diminished under many pretreatment
conditions. However, hydroxyl or carboxylic acid groups remain-
ing after pretreatment could enhance the extractability of lignin
fragments into aqueous media, aiding delignification. The effect of
hydrophilic lignin on plant growth and development is not obvious
at this stage. Hydrophobic lignin may facilitate water transport in
vessel elements but, while this has often been speculated to be the
case, this requirement has never been demonstrated experimen-
tally. If hydrophobic lignins are indeed required for water
transport, hydrophilic monomers could be targeted toward fibers
or other nonconducting tissues.

Difunctional monomers and monomer conjugates linked via a
readily cleavable functionality Introducing monomers or conju-
gates with compatible phenolic groups at both ‘ends’ of the
molecule allows lignification to proceed in both directions to
incorporate the monomer. If coupling at the side-chain b-position
is possible, such monomers can form important branch points in
the polymer. More importantly, if these units contain bonds that
are readily cleaved during anticipated processing, they introduce
labile groups into the polymer backbone, allowing it to be readily
‘unzipped’; delignification can therefore be achieved under less
stringent conditions, releasing the polysaccharides with lower
energy requirements and higher yields for enzymatic saccharifica-
tion or other uses. A wide array of phenolics meet these criteria, but
the simplest examples include coniferyl ferulate (7GG) (Grabber
et al., 2008; Ralph, 2010) linked by an alkali- and acid-labile ester
bond, 3-methoxytyramine ferulate (8GG) linked by a somewhat
acid-labile amide bond and compounds such as disinapoyl glucose
(78SS) and diferuloyl sucrose (81GG), where two phenolic units
are linkedby labile ester bonds to a core ‘spacer’. All possess guaiacyl
or syringyl type moieties compatible with oxidative coupling with
monolignols and are therefore expected to become integral
components of lignin. Monomers with one or more p-hydroxy-
phenyl moieties might also be utilized, but any molecule with a
lower propensity to undergo radical coupling might hinder full
incorporation into lignin. ortho-Diphenol (catechol) and 1,2,3-
triphenol (pyrogallol) monomers are also prevalent phenolic
metabolites and can profitably be considered. Unlike monomers
that upon incorporation render lignin more hydrophilic, such

difunctional monomers could maintain the hydrophobicity of
lignin that may be required for water transport or plant defense
responses. Their incorporation into hydrophobic polymers should
also shield their ester, amide or glycosidic linkages from attack by
hydrolytic enzymes produced by pathogenic fungi or bacteria.
Thus, these monomer substitutes are a way of introducing
‘zips’ into lignin that can be readily cleaved during processing
while maintaining the functional properties of lignin required by
plants.

Monomers that minimize lignin–polysaccharide cross-
linking Monomers that minimize lignin–polysaccharide cross-
linking should enhance the inherent degradability of lignocellulosic
biomass by saccharifying enzymes. The adverse effects of lignin–
polysaccharide cross-linking on wall polysaccharide digestibility
have been demonstrated in grasses (Grabber et al., 1998a,b, 2000,
2002; Ralph et al., 1998; Hatfield et al., 1999; Grabber, 2005),
where cross-linking is mediated by ferulates on arabinoxylans (Fry,
1986; Fry & Miller, 1989; Yamamoto et al., 1989; Ralph et al.,
1998, 2004a;Hatfield et al., 1999; Ralph, 2010). As a result of this
finding, efforts are underway to attack this cross-linking mecha-
nism by targeting the putative transferase that acylates arabinoxy-
lanswith ferulate (Yoshida-Shimokawa et al., 2001;Mitchell et al.,
2007; Buanafina, 2009; Piston et al., 2010). In grasses and all other
plants, lignin–polysaccharide cross-linking also apparently results
from polysaccharides adding to the quinonemethide intermediates
produced during lignification and such cross-linkings also appear
to limit fiber saccharification (Grabber et al., 2003; Grabber &
Hatfield, 2005). During b-O-4 coupling, re-aromatization of the
quinone methide intermediate occurs mainly via the proton-
assisted nucleophilic attack of water at the a-position (Fig. 2).
Actually, any nucleophile present in the neighborhood can
participate in the reaction instead of water, an example being
hemicellulosic alcohol (or acid) groups (Ralph et al., 2004b;
Simmons et al., 2010). In the latter case, lignin becomes covalently
linked to the hemicellulosic network, rendering its removal more
difficult. Quantifying these benzyl ether and ester cross-links in cell
walls is problematic and limited to a small fraction of lignin that can
be extracted from cell walls (Balakshin et al., 2008, 2011).
Nevertheless, judicious choice of lignin monomers can minimize/
eliminate this cross-linking mechanism in plants. Alternative
monomers with ortho-diphenol structures, such as caffeyl alcohol
(1C), 5-hydroxyconiferyl alcohol (1F) or epicatechin (73C), and
with 1,2,3-triphenol structures, such as ethyl gallate and epigallo-
catechin (73L), readily form benzodioxane structures; rapid
internal trapping of the quinone methide, which is produced
following a monolignol’s b-O-4 coupling with such o-diphenols,
precludes any possibility of benzyl ether and ester cross-linking of
hemicellulosic alcohol or acid groups with those units (Fig. 4a).
Lignins derived solely from caffeyl alcohol have been discovered
in seed coats (Chen et al., 2012); lignins incorporating caffeyl
alcohol have been observed in CCoAOMT-deficient gymnosperm
cell cultures (Wagner et al., 2011). Lignins incorporating
5-hydroxyconiferyl alcohol derive from various COMT-deficient
dicots and monocots (Van Doorsselaere et al., 1995; Lapierre
et al., 1999; Marita et al., 2001; Ralph et al., 2001a,b; Morreel
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et al., 2004b; Lu et al., 2010;Vanholme et al., 2010b;Weng et al.,
2010). Where they have been tested, the cell walls from these
materials have enhanced digestibilities (Guo et al., 2001a,b; Fu
et al., 2011). The effect of introducing rosmarinic acid (49CC)
into lignins has recently been evaluated (see Section V) and found
to be effective at improving saccharification, even without
pretreatment (Tobimatsu et al., 2012).Other candidate alternative
monolignols, such as guaiacyl butenol, provide a side-chain-based
intramolecular pathway to trap lignin quinone methides that are
formed from the monomer itself following b-O-4, b-b, or b-5
coupling (e.g. 25, 27, 43–47). Trapping by the d- or e-hydroxyl
group would result in tetrahydrofuran (oxolane) or tetrahydropy-
ran (oxane) structures (Fig. 4b).

Monomers that give rise to shorter lignin polymers Decreasing
the average length of the lignin polymers should also enhance the
extractability of lignin. Alternative monomers that, upon poly-
merization, end up as an aliphatic or phenolic end group, rather
than becoming an internal unit, might serve as polymerization
initiation or termination monomers, respectively. Augmenting
their availability at the lignification site might lead to a higher rate
of lignin initiation or termination reactions, probably yielding a
higher number of shorter lignin molecules, that is, lignins with
lower degrees of polymerization. Monomers that initiate polymer-
ization, for example dihydroconiferyl alcohol (2G) (Ralph et al.,
1997) or benzenoids (9, 20), enter only into a single coupling
reaction, that is, at the 4-O- or 5-position, thus consuming the
phenolic function during initial coupling. A proof of principle is
apparent in a study in which the bacterial hydroxycinnamoyl-CoA
hydratase-lyase (HCHL) was expressed in Arabidopsis (Eudes
et al., 2012). p-Hydroxybenzaldehyde (9H) and p-hydroxybenzo-
ate (20H) were incorporated into the lignin of HCHL engineered
plants, which resulted in lignin with a reduced molecular weight

and an improved saccharification of pretreated stem cell walls
(Eudes et al., 2012). Importantly, total lignin and biomass yield
were not affected. Alternatively, co-polymerization with a mono-
mer possessing a rather high oxidation potential enhances the
termination of polymerization and reduces the average length of the
lignin polymers. Among the traditional monolignols, p-coumaryl
alcohol has the highest oxidation potential (Syrjänen & Brunow,
1998). Consequently, phenolic profiling (see Section VI) of flax
(Linum usitatissimum) stem tissues showed that H units were
preferentially phenolic end groups of oligolignols (Huis et al.,
2012) and thioacidolysis shows that a high fraction of H-units are
free-phenolic (Lapierre et al., 1988; Pitre et al., 2007; Lapierre,
2010). In part, this is thought to be attributable to radical transfer
(to more stable units) in the radical-limited system – a similar
phenomenon occurs with p-coumarate esters, which also remain
uncoupled (Ralph et al., 1994a, 2004a; Hatfield et al., 2008).
Furthermore, lignins from transgenic ormutant plants that contain
a high level of H units are of lower molecular weight (Ziebell et al.,
2010) and are enriched in b-5 and b-b linkages as compared with
wild-type lignin (Ralph et al., 2006; Wagner et al., 2007). The
relative decrease in b-O-4 coupling reactions, which are the main
lignin polymer elongation reactions, suggests the presence of
shorter lignins in these transgenic and mutant plants.

Finally, alternative monomers combining several of the above-
mentioned mechanisms for altering lignin properties would be
especially attractive as genetic engineering targets. For example,
disinapoyl glucose (78SS) features two readily incorporated
sinapate moieties attached to a hydrophilic moiety by readily
cleavable ester linkages. Rosmarinic acid (49CC, noted above),
epigallocatechin gallate (74LL) and dicaffeoyl quinate (72CC) all
possess two cross-link-preventing o-diphenol functionalities
connected by labile ester linkages, and in addition the latter
molecule also contain a hydrophilic moiety. Finally, gallotannins

(a)

(b)

Fig. 4 An interestingway toavert lignin–polysaccharide cross-linkingduringb-O-4coupling. (a) Thequinonemethide intermediate formedviab-O-4 coupling
is trapped via an intra-molecular reaction of the novel C5-phenolic function, thereby precluding the possibility of inter-molecular nucleophilic attack by
hemicellulose (indicated by a crossed arrow). (b) Similarly, the intra-molecular trapping via an alcoholic functionon the d (n = 1) or e (n = 2) position of suitable
alternate ligninmonomers also avoids the inter-molecular nucleophilic attack by hemicellulose (crossed arrow). The dotted arrows indicate the positionswhere
lignification can proceed.
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(86) contain multiple pyrogallol units connected by labile ester
linkages and the extensive hydroxylation of this molecule could
make an altered lignin more hydrophilic.

To exploit the biochemical variation of potential alternative
monolignols, we screened the SciFinder Scholar database (CAS;
http://www.cas.org/products/scifindr/index.html)forplantmetab-

(a)

(b)

Fig. 5 Compounds found within the plant kingdom that (potentially) satisfy criteria for alternative lignin monomers. (a) Monomers that have already been
authenticated or implicated in lignification. (b) Alternative monomers that, upon incorporation into the lignin polymer, potentially make the lignin more
susceptible to biomass pretreatment. Aromatic ring units are all phenols, invariably p-hydroxy-aryl units here. Substituents are labeled R/R′ for the ‘first’
aromatic ring, X/X′ for the second, Y/Y′ for the third and Z/Z′ for the fourth. In all cases, the descriptor notation uses the compound number followed by the
defined rings, in theorder describedas:H (p-hydroxyphenyl),G (guaiacyl), S (syringyl), C (caffeyl), F (5-hydroxyguaiacyl), or L (gallyl)withAbeingused for any
or all (generic) units. The convention is illustrated with compounds 7 as follows: 7SG, sinapyl ferulate (R = R′ = OMe, X = OMe, X′ = H); 7AH, general
hydroxycinnamyl p-coumarate (R,R′ = H/OH/OMe; X = X′ = H).Where necessary, other variable substituents are used (P, T) and a variable single or double
bond in some structures is designated with one solid and one dashed bond line. The names of the compounds, the plant species in which the compounds are
found and references to the literature are available in Supporting Information Notes S1.
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olites that fulfill one of the above-mentioned criteria, that is, the
metabolites must have a phenolic function, upon incorporation in
the lignin polymer theymust render it easier to degrade by chemical
pretreatments, and they must be composed of carbon, oxygen and

hydrogen only. Over 160 plant metabolites satisfying the above-
mentioned criteria for promising alternative ligninmonomers were
identified (Fig. 5). Given the fact that only a small proportion of
plant metabolites have been characterized thus far, the list of

(b)
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candidate alternative ligninmonomers will grow further as targeted
phenolic profiling studies are being carried out. Bacteria and fungi
also contain attractive enzymatic activities for other types of
phenolic compounds that might be exploited for modifying plant
lignin (Masai et al., 2007; Merali et al., 2007; Eudes et al., 2012).

In principle, such lignin modifications can be accomplished in
lignocellulosic biomass crops by cloning and expressing alternative
monomer biosynthetic pathways in conjunction with appropriate
tissue-specific promoters. In vitro testing is necessary to cut down
this large number of the ‘candidate’ alternative lignin monomers

(b)
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(Grabber et al., 2008, 2010; Tobimatsu et al., 2012). Such in vitro
tests should at least include the co-polymerization of the proposed
alternative monomers with traditional monolignols in DHPs or
biomimetic in vitro lignified cell walls followed by analysis of the
DHPs and lignified cell walls for the effects of pretreatment on
delignification and by analysis of the lignified cell walls for the
saccharification potential. In addition, DHPs and in vitro lignified
cell walls should be analyzed for the incorporation of the alternative
monomer by phenolic profiling (Morreel et al., 2004a) andnuclear
magnetic resonance (NMR) (Grabber et al., 2010; Tobimatsu
et al., 2012). These tests are to determine whether the proposed
alternative ligninmonomersdo incorporate in sufficient amounts in
the lignin polymer, and also to what extent the efficiency of
incorporation of the monomers depends on the competing
phenolics present in the cell wall matrix.

V. Candidate alternative monolignols in biomimetic
systems

Plant genetic engineering studies will, of course, ultimately
determine the feasibility and utility of modified lignins and their
compatibility with plant growth and development. The engineer-
ing of plants will, however, be much more efficient if in vitroDHP
studies and biomimetic cell wall lignification studies are first carried
out to test the compatibility of the various monolignol substitutes
with lignification, and to determine their potential effects on cell

wall delignification and saccharification. In the latter case, for
example, isolated maize (Zea mays) cell walls containing bound
peroxidases are stirred in water or buffer solutions and artificially
lignified by slowly adding separate solutions of lignin precursors
and dilute hydrogen peroxide (Grabber et al., 1996b, 1998c).
Candidate monolignol substitutes are typically added with normal
monolignols to comprise 35–45% of the weight of the precursor
mixture, potentially yielding a shift in lignin composition compa-
rable to that observed in some mutant or transgenic plants with
altered lignin biosynthesis. The effects of alternative monomer on
lignin formation and the susceptibility of cell walls to chemical
pretreatments and saccharification are compared with lignified
controls prepared with normal monolignols (Grabber et al., 2008,
2010, 2012; Tobimatsu et al., 2012).

Thus far the work with the DHPs and lignified cell wall model
systems has mainly focused on difunctional monomers or
monomer conjugates linked via a readily cleaved functionality
and monomers that minimize lignin–polysaccharide cross-link-
ing. For instance, incorporation of coniferyl ferulate (7GG)
facilitated lignin depolymerization and increased lignin extract-
ability by up to twofold in aqueous NaOH, providing an avenue
for producing fiber with less lignin contamination and deligni-
fying at lower temperatures or lower chemical consumption
(Grabber et al., 2008; Ralph, 2010).

As alluded to in Section IV, more recent model studies have
demonstrated the utility of rosmarinic acid (49CC), an ester

(b)
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conjugate with two catechol moieties (Tobimatsu et al., 2012). In
in vitro DHP experiments, rosmarinic acid readily underwent
peroxidase-catalyzed copolymerization with monolignols to form
polymers with benzodioxane inter-unit linkages, suggesting that
fewer lignin–carbohydrate cross-links could be formed via lignin
quinone methide intermediates. Incorporation of rosmarinic acid
permitted extensive depolymerization of in vitro lignified cell walls
by mild alkaline hydrolysis, via cleavage of ester linkages within the
rosmarinic acid moiety (in the lignin) itself. Copolymerization of
rosmarinic acid with monolignols modestly depressed lignification
of cell walls and promoted subsequent cell wall saccharification by
fungal enzymes after mild alkali pretreatment. Incorporating
rosmarinic acid also improved cell wall saccharification by fungal
enzymes and by rumen microflora even without alkaline pretreat-
ments, possibly by modulating lignin hydrophobicity and/or
limiting cell wall cross-linking.

In other studies (Grabber et al., 2010, 2012), epigallocatechin
gallate (74LL), epicatechin gallate (74CL), epicatechin vanillate
(74CG), epigallocatechin (73L), galloyl hyperin (77CL) and
pentagalloyl glucose (86) formed wall-bound lignin at moderate to
high concentrations and their incorporation increased in vitro
ruminal fiber fermentability by 20 to 33% relative to lignified
controls. By contrast, ethyl gallate and corilagin (87) severely
depressed lignification and increased fermentability by c. 50%.
Thus, addition of these units probably acted indirectly to improve
fermentability through severely reducing lignin content. Regardless
of the mechanism, ethyl gallate and corilagin would probably be of
limited value as target monomers, because they severely disrupted
cell wall lignification. Such reductions in lignin content, also
already attained by down-regulating enzymes in the general
phenylpropanoid and monolignol pathway, often reduce plant
fitness (Gallego-Giraldo et al., 2011b; Voelker et al., 2011).
Improvements in fermentability with flavan-3-ols were associated
with increased hydroxylation, but this response was not necessarily
caused by increased lignin hydrophilicity because flavonol glyco-
sides and gallate esters with more extensive hydroxylation (e.g.
hyperoside (76C, P=Gal), galloyl hyperin (77CL), and pentagal-
loyl glucose (86)) had less pronounced effects on cell wall
fermentability. Among flavan-3-ols (73), gains in cell wall
fermentability were related to the presence of gallate and
pyrogalloyl units. Furthermore, the copolymerization of mono-
lignols with epicatechin gallate (74CL), epigallocatechin gallate
(74LL) and, to a lesser degree, pentagalloyl glucose (86)
reduced the proportion of ferulates that underwent cross-linking
with lignin (Grabber et al., 2010, 2012). These reductions in
ferulate–lignin cross-linking should contribute to the improved
cell wall fermentability (Grabber et al., 2009). From these
experiments, epigallocatechin gallate (74LL) appeared a prom-
ising target for incorporation into lignin for improving the
delignification and saccharification of biomass crops (Grabber
et al., 2012).

In addition to studying the incorporation of the alternative
monomers in lignin and the resulting cell wall properties, the
biomimetic systems are also interesting systems with which to
reveal peroxidase inactivation. For instance, partial substitution of
coniferyl alcohol with coniferyl ferulate (7GG) tended to accelerate

peroxidase inactivation and reduce cell wall lignification and cross-
linking of feruloylated xylans to lignin (Grabber et al., 2008).
Analogous effects were seen with sinapyl p-coumarate (7SH),
which is, however, a monomer conjugate that is heavily implicated
as being successfully incorporated into grass lignins (Ralph et al.,
1994a; Grabber et al., 1996a; Lu & Ralph, 1999, 2008; Hatfield
et al., 2009; Ralph, 2010; Withers et al., 2012). Notably, because
non-bound apoplastic peroxidases were removed before artificial
lignification in these experiments, peroxidase inactivationwould be
more markedly manifested in the model system than in plants.
Nevertheless, such observations need to be trackedwhen genetically
altered plants are developed.

VI. From phenolic profiling to lignomics

Phenolic profiling is a technique ideally suited for identifying new
alternative lignin monomers and pathway intermediates, and in
addition for verifying their incorporation into in vivo or in vitro
lignins and for monitoring plant responses to phenolic pathway
engineering. Basically, this technique includes the identification of
phenolic metabolites by reversed-phase (ultra) high-pressure liquid
chromatography coupled to mass spectrometry (UHPLC-MS).
This technique permits the detection and quantification of
essentially every small phenolic molecule with a molecular mass
below 1500 Da at concentrations in the micromolar to millimolar
range. An important bottleneck in the field of phenolic profiling is
the structural characterization of detected compounds in the
UHPLC-MS chromatogram. The identification of unknown
compounds might be revealed via NMR upon compound
purification (Nakabayashi et al., 2009). However, purification is
often impossible because of co-eluting impurities, compound
degradation or extremely low compound concentrations. In such
cases, retention times and MS data (including high mass accuracy
MS, fromwhich the chemical formula can be determined, andMSn

spectra) are often the only means for resolving the structure.
Concerning the identification of alternative monomers, the

study and identification of metabolites that make up the lignome
are of special interest. The lignome is defined as the ensemble of all
phenolics for which the biosynthesis is co-regulated with lignin
biosynthesis and includes the oligolignol (small lignin polymers)
pool (Morreel et al., 2010a). The oligolignol pool inmodel species
such as poplar and Arabidopsis has been well characterized
(Morreel et al., 2004a, 2010b). Although the main lignome
components have been elucidated in these species, the identity of
many compounds, which are potentially useful as alternative
monomers, remains unknown. Important progress in the structural
elucidation of oligolignols was made when it was discovered that
various lignin units (i.e. G and S) and linkage types (i.e. b-O-4, b-5
and b-b) show characteristic MS fragmentation patterns (Morreel
et al., 2010a,b). Given the characteristic MS fragmentation, an
algorithm was developed allowing the sequencing of oligolignols,
that is, determining the order of themonolignols in the polymer, as
well as the bonds connecting them (Morreel et al., 2010a). This
approach greatly simplifies the identification of oligolignols and
aids the discovery of alternative lignin units. The algorithm allowed
the complete sequencing of 36 of the 134 oligolignols present in
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poplar xylem extracts; for the remaining compounds only partial
sequences were obtained because of the presence of unidentified
units (bonds ormonomers) (Morreel et al., 2010a). These partially
identified compounds are therefore prime targets for further
structural elucidation, which can help in finding new monomers
and elucidating their coupling propensities. For example, an MS
fragmentation pattern associated with the presence of an arylglyc-
erol unit was frequently encounteredwhen sequencing small poplar
lignin polymers (Morreel et al., 2010a). Four G(b-O-4)S(b-5)
Gglycerol isomers were detected. Intriguingly, the arylglycerol was
always b-5-, but never b-O-4-coupled, suggesting that the glycerol
monomer has different coupling propensities than coniferyl
alcohol. An algorithm for annotating oligolignols is particularly
useful for studying the lignome of plants that are genetically
modified to synthesize alternative monomers and for sequencing
the oligolignol fraction of DHPsmade with alternative monomers.
Thus far, the lignome of many taxa such as grasses and
gymnosperms remains largely unexplored and may contain new
types of alternative ligninmonomers thatmay prove to be useful for
modifying lignin properties.

Our Scifinder-based search resulted in over 160 reported plant
metabolites that fit the criteria to be used as alternative monomers
(see Section IV). Nevertheless, as only a fraction of the secondary
metabolites are currently known (Hadacek, 2002; Saito &
Matsuda, 2010), many more alternative monomers are waiting to
be identified together with their biosynthetic pathways. Structural
elucidation of plant phenolics is thus of prime interest. Given the
above-mentioned limitations for isolating and identifying pheno-
lics, many researchers have invested heavily in annotating metab-
olites by MS2 spectral information, often leading to the
construction of species-specific databases (Moco et al., 2006;
Farag et al., 2007; Böttcher et al., 2008; Matsuda et al., 2009,
2010, 2011). In addition to the use of MS2 spectral libraries,
information about other phenolic metabolites within the same
plant extract can be used for structural elucidation. This is because
the substrates and products of well-known enzymatic conversions,
such asmethylation or glycosylation, are often observed in the same
chromatogram (Iijima et al., 2008). To search for these ‘candidate
substrate product pairs’ (CSPPs), an algorithm was developed that
uses the input of mass differences corresponding to particular
enzymatic conversions (K. Morreel et al., unpublished). This tool
is expected to significantly accelerate the identification of alterna-
tive monomers and their pathway intermediates.

VII. Phenolic pathway engineering towards
alternative monolignols

According to the strategy outlined in this paper, pathway
engineering in lignocellulosic biomass crops should entail the
biosynthesis of themost promising alternative monomers and their
incorporation in the lignin polymer. In some cases, the cloning of a
biosynthetic pathway might need to be combined with the
mutation of (an) endogenous gene(s) to re-direct the flux into the
newly established pathway to reduce the competition for substrates
at the level of biosynthesis of the monomers, their transport and
their polymerization.

Pathway engineering of lignocellulosic biomass crops implies
the cloning of biosynthetic pathways. Unfortunately, for most of
the candidate alternative lignin monomers depicted in Fig. 5, the
biosynthetic enzymes are unknown. Nevertheless, the occurrence
of these candidate alternative lignin monomers in plant species
opens up the possibility of elucidating their biosynthetic pathways.
The few exceptions whose pathways have been well elucidated are
sinapate esters (29S, 35S, 78SS) (Nair et al., 2004; Niggeweg
et al., 2004; Fraser et al., 2007; Sinlapadech et al., 2007; Liu,
2010) and rosmarinic acid (49CC) (Ellis & Towers, 1970;
Matsuno et al., 2002; Petersen et al., 2009; Liu, 2010). Recently,
enzymes capable of synthesizing ferulate conjugates (7AG) have
been obtained (Wilkerson et al., 2011), and the putative p-coum-
arate analog in grasses has been identified (Withers et al., 2012). In
addition, an enzyme that is likely to catalyze the first committed
step towards phenylbutanoids has been isolated from rhubarb
(Rheum palmatum; Abe et al., 2001). This enzyme, benzalacetone
synthase (BAS), belongs to the polyketide synthase family and
makes the phenylbutanoid p-hydroxybenzalacetone frommalonyl-
CoA and p-coumaric acid (Shimokawa et al., 2010). For some
other alternative lignin monomers that are found in plants, an
enzymatic activity might be conjectured. For example, for the
biosynthesis of monomer conjugates linked by ester or amide
functionalities, at least one acylation reactionmight be suggested to
take place. Acyltransferases, currently known to be responsible for
the transfer of hydroxycinnamic acids to recipient molecules, fall
into three families. They all generally depend on CoA- or glucose-
conjugated phenylpropanoids (Steffens, 2000; D’Auria, 2006;
Kang et al., 2006; Liu, 2010) and they produce O- or N-linked
products depending on the specific acyltransferase. Hydroxycin-
namoyl-CoA-dependent BAHD (BEAT, AHCT, HCBT and
DAT – after the first four members characterized) superfamily
acyltransferases and the 1-O-acylglucose ester-dependent serine
carboxypeptidase-like proteins (SCPLs) catalyze both O- and
N-transacylation, while the general control non-depressible 5
(GCN5)-related N-acyltransferases (GNAT) catalyze only
N-transacylation (Milkowski & Strack, 2004; Vetting et al.,
2005; D’Auria, 2006). Searching BAHD, SCPL and GNAT-
coding expressed sequence tags (ESTs) in the tissue where the
alternative lignin monomer is also found might therefore result in
candidate genes that can further be tested via feeding assays and
other reverse genetic tools. In addition, phenolic profiling can also
help in pathway elucidation, as it might identify molecules that are
structurally related to alternative ligninmonomers. Given a pool of
structurally related molecules, enzymatic conversions can be
proposed for their synthesis, which again enables the search for
ESTs.

The exact subcellular location of the biosynthesis and storage of
most candidate alternative monomers is unknown. Several mono-
mers might be recognized in planta as ‘true’ monomers, because of
their structural similarity to them, and therefore transported by
default to the cell wall. That this is indeed the case is proven by the
increase of ferulic acid, 5-hydroxyconiferyl alcohol and
cinnamaldehydes in the lignin of CCR-, COMT- and CAD-
deficient plants, respectively (Atanassova et al., 1995; Ralph et al.,
2001b; Kim et al., 2003; Morreel et al., 2004b; Sibout et al.,
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2005; Dauwe et al., 2007;Mir Derikvand et al., 2008), and by the
incorporation of hydroxybenzaldehyde and hydroxybenzoate in
HCHL engineered plants (Eudes et al., 2012). However, alterna-
tive lignin monomers that bear a glucose, malate or quinate moiety
are more prone to be stored in the vacuole, both in their
endogenous species and when produced in lignocellulosic biomass
crops (Wink, 1997; Bartholomew et al., 2002; Dean et al., 2003).
This subcellular localization has been proven via vacuolar isolation
followed by phenolic profiling for sinapoyl glucose (35S) and
sinapoyl malate (29S) in Raphanus sativus and for chlorogenic acid
(28C) in Catharanthus roseus (Sharma & Strack, 1985; Ferreres
et al., 2011). For these monomers, rerouting to the cell wall is
needed.

An important issue with genetic engineering of the lignin
pathway is that plants with perturbed lignification often show
unwanted pleiotropic effects (Chen&Dixon, 2007; Li&Chapple,
2010; Li et al., 2010; Vanholme et al., 2010b; Gallego-Giraldo
et al., 2011b). Although the exact cause(s) of these effects is not
fully known, they have been attributed to impaired water transport
(Jones et al., 2001; Franke et al., 2002), altered levels of dehyd-
rodiconiferyl alcohol glucoside (DCG) that might influence cell
proliferation and expansion (Abdulrazzak et al., 2006; Li &
Chapple, 2010), the lack of cell wall integrity or the release of
elicitors that trigger responses at the level of gene expression (Li &
Chapple, 2010; Seifert & Blaukopf, 2010), and the accumulation
of phenylpropanoid pathway intermediates or products
(Vanholme et al., 2010b; Gallego-Giraldo et al., 2011a). In this
respect, the recent finding that reduced growth in Arabidopsis
plantswith impaired lignin biosynthesis is correlatedwith increased
concentrations of salicylic acid is of particular interest (Gallego-
Giraldo et al., 2011a; Lee et al., 2011). While HCT-down-
regulated Arabidopsis plants were severely affected in growth,
reducing salicylic acid biosynthesis by crossing in a mutation in the
isochorismate synthase (ICS) gene could partially restore plant
growth (Gallego-Giraldo et al., 2011a). This is an interesting
observation because it shows that growth defects are (partly) caused
by the unintended accumulation of phenolics, and that these
defects can be (partly) complemented by redirecting the flux. How
the phenolic steady state will react to pathway engineering will
differ case by case and is difficult to predict. In the ideal case, the
pathway engineering would only alter lignin biosynthesis and not
plant growth and performance, but if it does, possible solutions are
to engineer the new pathway in specific cell types only; for example,
the use of fiber-specific promoters might restrict the altered lignin
to be deposited in supportive but not conductive tissues. Alterna-
tively, suppressor screens might be carried out to identify the
molecular causes of the pleiotropic effects and to identify the genes
to mitigate the unwanted phenotypes (Halpin, 2010).

It has been noted that the main building blocks of lignin seem
relatively conserved over different taxonomic clades (Weng &
Chapple, 2010).However, this observationmay result from the fact
that only few plant species have been investigated with current
analytical (including powerful NMR) methods able to detect and
identify ‘novel units’ and often the novelty is missed by failing to
recognize that the lignins may have derived from, for example,
acylated monolignols. There are numerous examples of lignins, in

both ‘natural’ and transgenic plants, being partially to substantially
derived from monomers that are not the three classical monolig-
nols; these include the conjugates: monolignol acetates in many
plants, monolignol p-coumarates in all grasses, monolignol
p-hydroxybenzoates in Salix, Populus, and Palmae; but also
catechol-type monomers such as caffeyl and 5-hydroxyconiferyl
alcohol, double-bond-reducedmonomers such as dihydroconiferyl
alcohol, the hydroxycinnamaldehydes, etc. – as all noted in
Sections I and III (Ralph et al., 1997, 2008a; Lu & Ralph, 1999;
Lu et al., 2004; Morreel et al., 2004a; Vanholme et al., 2008;
Stewart et al., 2009; Ralph, 2010; Chen et al., 2012; del Rı́o et al.,
2012). It is currently not clear whether these nontraditional lignins
confer different properties to the plants that havemade evolution to
select these lignins over the classical HGS-type lignins, but they
clearly have their niches. It also will remain to be tested how plants
respond to the incorporation of high amounts of the proposed
alternative monomers in terms of growth and development, biotic
and abiotic stresses and mechanical properties. In cases such as
introducing readily cleavable bonds into the backbone of the lignin
polymer by utilizing various ester conjugates as monomer replace-
ments, however, it may be sufficient to introduce these at
reasonably low levels that will not greatly alter the structural
properties but will render the polymer dramatically easier to cleave
into smaller fragments during pretreatments. Evidence suggests
that modifications such as some of the ones proposed here could
lead to significantly improved plant materials (from the point of
view of biomass conversion) and that some of the suggested
modifications are likely to prove game-changing for plant cell wall
utilization. Interesting times are ahead as researchers strive to
introduce some of these new traits into important biomass crops.
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Supporting Information Notes S1 
(Full legend to Fig. 5 in the main text) Compounds found within the plant kingdom that (potentially) satisfy 

criteria for alternative lignin monomers. (a) Monomers that have already been authenticated or implicated 
in lignification. (b) Alternative monomers that, upon incorporation into the lignin polymer, potentially 
make the lignin more susceptible to biomass pretreatment. 

 
Naming conventions. Aromatic ring units are all phenols, invariably p-hydroxy-aryl units here. Substituents are 
labeled R/R´ for the ‘first’ aromatic ring, X/X´ for the second, Y/Y´ for the third and Z/Z´ for the fourth. In all 
cases, the descriptor notation uses the compound number followed by the defined rings, in the order described 
as: H (p-hydroxyphenyl), G (guaiacyl), S (syringyl), C (caffeyl), F (5-hydroxyguaiacyl), or L (gallyl) with A 
being used for any or all (generic) units. The convention is illustrated with compounds 7 as follows… 
7HH – p-coumaryl p-coumarate (R = R´ = X = X´ = H) 
7GH – coniferyl p-coumarate (R = OMe, R´ = X = X´ = H) 
7SH – sinapyl p-coumarate (R = R´ = OMe, X = X´ = H) 
7GG – coniferyl ferulate (R = OMe, R´ = H, X = OMe, X´ = H) 
7SG – sinapyl ferulate (R = R´ = OMe, X = OMe, X´ = H) 
7SS – sinapyl sinapate (R = R´ = X = X´ = OMe) 
7AH – general hydroxycinnamyl p-coumarate (R,R´ = H/OH/OMe; X = X´ = H) 
7SA – sinapyl general-hydroxycinnamate (R = R´ = OMe; X,X´ = H/OH/OMe) 
… etc. 
Where necessary, other variable substituents are used (P, T) and designated directly in the structure caption; a 
variable single-or-double bond in some structures is designated as such directly in the structure caption (here) 
also. 

 
1 The hydroxycinnamyl alcohols: 1H, 1G, and 1S are the traditional monolignols: 
1H p-Coumaryl alcohol: the precursor of H-units in lignin (Boerjan et al., 2003), 
1G Coniferyl alcohol: the precursor of G-units in lignin (Boerjan et al., 2003), 
1S Sinapyl alcohol: the precursor of S-units in lignin (Boerjan et al., 2003), 
1C Caffeyl alcohol: produces catechyl units (usually as benzodioxanes) in lignins (Wagner et al., 2011), 
1F 5-Hydroxyconiferyl alcohol: produces 5-hydroxyguaiacyl units (usually as benzodioxanes) in lignins of 

COMT-deficient plants (Lu et al., 2010), 
1L 3,4,5-Trihydroxycinnamyl alcohol: would produce gallyl units in lignins (this compound has not been found 

in plants and is hypothetical only). 
2 Dihydro-hydroxycinnamyl alcohols: dihydroconiferyl alcohol 2G is found in softwoods, particularly in a 

loblolly pine cad mutant (Ralph et al., 1997). 
3 Arylpropane-1,3-diols: in particular, 3G is found in softwoods (Ralph et al., 1999). 
4 Arylglycerols: previously thought to derive from β-ethers during lignin isolation, but may be monomers 

derived from hydroxycinnamyl alcohols via H2O2 (Hammel et al., 1994; Morreel et al., 2010). 
5 Hydroxycinnamyl acetates: Monolignol conjugates directly used in lignification in kenaf (Ralph, 1996), 

some grasses, and many other plant species (and apparently as minor components in hardwood lignification 
(Ralph, 1997). 

6 Hydroxycinnamyl p-hydroxybenzoates: Monolignol conjugates directly used in lignification especially in 
Salix, Palmae and Populus species (Lu et al., 2004; Morreel et al., 2004; Stewart et al., 2009). Conjugate 
6SH appears predominant. 

7 Hydroxycinnamyl p-hydroxycinnamates: coniferyl p-coumarate 7GH, sinapyl p-coumarate 7SH and possibly 
p-coumaryl p-coumarate 7HH are used directly in lignification in all (C3 and C4) grasses (Lu & Ralph, 
1998). Coniferyl ferulate 7GG is found in Rhizoma chuanxiong (Kong et al., 2006; Li et al., 2006), 
Apiaceae: Angelica sinensis (Zschocke et al., 1998) and Lomatium californicum (Chou et al., 2006). 

8 Hydroxycinnamoyl tyramines conjugates: N-trans-feruloyl tyramine 8G is found in tobacco (Negrel & 
Martin, 1984) and other Solanaceae (Turnock et al., 2001; Liu et al., 2011; Sun et al., 2011). 

9 Hydroxybenzaldehydes: vanillin 9G and syringaldehyde 9S are incorporated at low levels into most lignins 
(Boerjan et al., 2003), 9H is found in many plant species. 

10 Hydroxycinnamaldehydes: particularly coniferaldehyde 10G and sinapaldehyde 10S are incorporated at low 
levels into most lignins (Boerjan et al., 2003). 

11 Hydroxycinnamic acids: p-coumaric acid 11H, ferulic acid 11G, sinapic acid 11S and caffeic acid 11C are 
found in many plant species (Clifford, 1999; Gonthier et al., 2003), 5-hydroxyferulic acid 11F accumulates 
in COMT-deficient plants (Dauwe et al., 2007), 3,4,5-trihydroxycinnamic acid 11L is found in Aspalathus 
linearis (Rabe et al., 1994). Products of 11G are found in the lignin of CCR-deficient plants (Dauwe et al., 
2007; Leplé et al., 2007; Mir Derikvand et al., 2008). 

12 Flavanols: apigenin 12H, chrysoeriol 12G, tricin 12S and luteolin 12C are found in many plant species 
(Goławska et al., 2010; Xu et al., 2010; Wu et al., 2011). Units of 12S have been identified in grass lignins 
(Mouri & Laursen, 2011). 

13 Hydroxycinnamate esters (P = polysaccharide): Ferulate-polysaccharide esters 13G are found incorporated 
into grass lignins, possibly acting as lignin nucleation sites (Ralph et al., 1995; Marcia, 2009). 

14 5–5-Dehydro-hydroxycinnamates: 14GG is a major ferulate dehydrodimer in grasses (Ralph et al., 1994) and 
is also found in Eleocharis dulcis (Parr et al., 1996). 



15 β–5-Dehydro-hydroxycinnamates: 15GG is a major ferulate dehydrodimer in grasses (Ralph et al., 1994) and 
is also found in Eleocharis dulcis (Parr et al., 1996). 

 
16 β–O–4-Dehydro-hydroxycinnamates: 16GG is a major ferulate dehydrodimer in grasses (Ralph et al., 1994) 

and is the major ferulic acid dimer in Eleocharis dulcis (Parr et al., 1996). 
17 β–β-Dehydro-hydroxycinnamates (open form): 17GG is a major ferulate dehydrodimer in grasses (Ralph et 

al., 1994). 
18 β–β-Dehydro-hydroxycinnamates (THF form): 18GG is a major ferulate dehydrodimer in grasses (Ralph et 

al., 1994). 
19 β–β-Dehydro-hydroxycinnamates (cyclic form): 19GG is a major ferulate dehydrodimer in grasses (Ralph et 

al., 1994). Note that the 4–O–5- and another β–β-derived dehydrodimer (not shown) have also been found in 
grasses (Ralph et al., 1994). 

20 p-Hydroxybenzoic acids: p-hydroxybenzoic acid 20H, vanillic acid 20G, syringic acid 20S, protocatechuic 
acid 20C and gallic acid 20L are common to many plant species (Chrzanowski et al., 2011; Wang et al., 
2011; Skrzypczak-Pietraszek & Pietraszek, 2012). 

21 Allylphenols: chavicol 21H is found in Ocimum basilicum (Politeo et al., 2007), eugenol 21G is common to 
many plant species (Amma et al.; Dinh et al., 2012; Singh et al.). 

22 Propenylphenols: isoeugenol 22G is common to many plant species (Vassão et al., 2006). 
23 Vinylphenols: 4-vinylphenol 23H is made by yeast from 11H (Buron et al., 2011). 
24 Lespedezate 24H is found in Lespedeza cuneata (Shigemori et al., 1990). 
25 p-Hydroxyphenyl acrylic acids; 25H is found in Citrus medica (He et al., 1988). 
26 2-p-Hydroxyphenylvinyl acetate 26H is found in Fraxinus uhdei (Perez-Castorena et al., 1997). 
27 Guaiacyl butanol 27G is found in Zingiber cassumunar (Masuda & Jitoe, 1995). 
28 p-Hydroxycinnamoyl quinic acid conjugates: p-coumaroyl quinic acid 28H is found in Coffea species 

(Alonso-Salces Rosa Maria et al., 2009) and chlorogenic acid 28C and feruloyl quinic acid 28G are found in 
many plant species (Clifford et al., 2007; Dauwe et al., 2007; Jaiswal et al., 2010). 

29 p-Hydroxycinnamoyl malic acid conjugates: p-coumaroyl malic acid 29H, caffeoyl malic acid 29C and 
feruloyl malic 29G are found in Thunbergia alata (Housti et al., 2002) and Phaseolus vulgaris (Tanguy & 
Martin, 1972), sinapoyl malic acid 29S is found in Brassicaceae (Ruegger et al., 1999; Do et al., 2007). 

30 p-Hydroxycinnamoyl tartaric acid conjugates: p-coumaroyl tartrate 30H is found in Vitis vinifera 
(Ferrandino & Guidoni, 2010) and caffeoyl tartrate (caftaric acid) 30C is found in Vitis vinifera (Gunata et 
al., 1987) and Syringodium filiforme (Nuissier et al., 2010). 

31 p-Hydroxycinnamoyl glycerol conjugates: p-coumaroyl glycerol 31H is found in Zea mays (Fenz & Galensa, 
1989) and Juncus effusus (Shima et al., 1991), 1-O-feruloyl glycerol is found in Lilium auratum 
(Shimomura et al., 1987). 

32 Dehydrosalidroside 32H (P = Glc) is found in Betula pendula (Vainiotalo et al., 1991) and Ononis vaginalis 
(1-β-D-glucopyranosyl-2-(4´-hydroxyphenyl)-ethene) (Abdel-Kader, 1997), 32H (P = Rha) is found in 
Joannesia princeps (2-(4-hydroxyphenyl)ethenyl-α-L-rhamnopyranosides) (Achenbach & Benirschke, 
1997). 

33 p-Hydroxybenzoyl glucose: 1-O-galloyl-β-D-glucose 33L is found in many plant species (Gómez-Caravaca 
et al., 2011; Salem et al., 2011; Puppala et al., 2012). 

34 p-Hydroxycinnamyl alcohol--glucosides: triandrin 34H is found in Salix viminalis (Minakhmetov et al., 
2002), isoconiferin 34G is found in many plant species (Lewis et al., 1988; Mei et al., 2008; Lu et al., 2012).  

35 p-Hydroxycinnamoyl glucoses: p-coumaroyl glucose 35H is found in Ipomoea batatas (Kojima & Villegas, 
1984),1-feruloyl-β-D-glucose 35G is found in Nicotiana tabacum (Runeckles & Woolrich, 1963), sinapoyl 
glucose 35S is found in Brassicaceae (Milkowski et al., 2004). 

36 Dihydro-p-hydroxycinnamyl p-hydroxycinnamates; dihydroconiferyl ferulate 36GG and dihydrosinapyl 
ferulate 36SG are found in Peganum nigellastrum (Ma et al., 2000) and Relhania species (Tsichritzis & 
Jakupovic, 1990), dihydrosinapyl p-coumarate 36SH is found in Eremanthus glomeratus (Bohlmann et al., 
1981), dihydrosinapyl caffeate 36SC is found in Relhania species (Tsichritzis & Jakupovic, 1990), dihydro-
p-coumaryl caffeate 36HC is found in Cassinia and Ozothamnus species (Wollenweber et al., 2008). 

37 Petasiphenol 37CC is found in Petasites japonicum (Iriye et al., 1992). 
38 Solargin I 38SG (P = Glc-Rha), solargin II 38SC (P = Glc-Rha), solargin III 38SG (P = Glc-Rha-Rha) and 

solargin IV 38SC (P = Glc-Rha-Rha) are found in Solenostemma argel (Kamel, 2003). 
39 Angiferulate 39GG is found in Angelica sinensis (Deng et al., 2006). 
40 p-Coumaroyl hydroxydimethoxy phenyl propanone 40SH is found in Sasa quelpaertensis (Sultana & Lee, 

2009). 
41 Cimiracemate B 41CG (R=H) and cimiracemate D 41CG (R=H) are found in Cimicifuga racemosa (Chen et 

al., 2002). 
42 1-Methyl-3-(4´-hydroxyphenyl)-propyl caffeate 42HC and 1-methyl-3-(3´,4´-dihydroxyphenyl)-propyl 

caffeate 42CC are found in Zuccagnia punctate (Svetaz et al., 2004). 
43 Agatharesinol 43HH is found in Cryptomeria japonica (Imai et al., 2006a; Imai et al., 2006b) and 

Sequoiadendron gigantea (Henley-Smith & Whiting, 1976), sequosempervirin B 43HG and 
sequosempervirin C 43HS are found in Sequoia sempervirens (Zhang et al., 2005) and metasequirin D 43GG 
is found in Metasequoia glyptostroboides (Dong et al., 2011). 

44 Imperanene 44GG is found in Imperata cylindrica (Matsunaga et al., 1995). 



45 Diarylheptanoids 45HH and 45HC are found in Curcuma species (Kaewamatawong et al., 2009; Li J et al., 
2010). 

46 Yateresinol 46HH is found in Libocedrus yateensis (Erdtman & Harmatha, 1979) and Cryptomeria japonica 
(Takahashi et al., 1983). 

47 Galanganol B 47HH is found in Alpinia galanga (Kaur et al., 2010). 
48 Nepetoidin B 48CC is found in Plectranthus caninus (Lukhoba et al., 2006). 
49 Isorinic acid 49CH is found in Anthoceros agrestis (Vogelsang et al., 2006) and Helicteres isora (Satake et 

al., 1999) and rosmarinic acid 49CC commonly found in species of the Boraginaceae and the subfamily 
Nepetoideae of the Lamiaceae (Petersen et al., 2009). 

50 Hydroxycinnamoyl tyrosines: caffeoyl-N-tyrosine 50CH is found in Coffea canephora (Alonso-Salces R. M. 
et al., 2009), deoxyclovamide 50HH and clovamide 50CC are found in Theobroma cacao (Sanbongi et al., 
1998). 

51 51GG is found in Ehretia obtusifola (Iqbal et al., 2005). 
52 4-Hydroxy-3-methoxyphenyl ferulate 52GG is found in Hypericum hookeranum (Wilairat et al., 2005). 
53 p-Hydroxyphenethyl ferulate 53GH (T=H) is found in Angelica sinensis (Deng et al., 2006) and Sida spinosa 

(Darwish & Reinecke, 2003), decursidate 53GH (T=OH) is found in Peucedanum decursivum (Kong & Yao, 
2000; Yao et al., 2001). 

54 Calebin A 54GG is found in Curcuma longa (Park & Kim, 2002). 
55 p-Coumaroyl feruloyl methane 55GH is found in Curcuma longa (Gupta & Ghosh, 1999). 
56 2-feruloyl piscidic acid 56HG (T=H), 2-feruloyl fukiic acid (cimicifugic acid A) 56CG (T=H), 2-caffeoyl 

piscidic acid 56HC (T=H), caffeoyl fukiic acid 56CC (T=Me) and cimicifugic acid G 56CC (T=H) are found 
in Cimicifuga species (Takahira et al., 1998; Nuntanakorn et al., 2006). 

57 Sebestenoid A 57GGG is found in Cordia sebestena (Dai et al., 2010). 
58 Sebestenoid B 58CC is found in Cordia sebestena (Dai et al., 2010). 
59 Salvianolic acid H 59CCC is found in Salvia cavaleriei (Zhang & Li, 1994). 
60 Boehmenan C 60GGG (single bond) and boehmenan D 60SGG (single bond) are found in Ochroma lagopus 

(Paula et al., 1995). 60GGG (single bond), 60SGG (single bond) and boehmenan K 60GGH (double bond) are 
found in Hibiscus cannabinus (Seca et al., 2001), boehmenan X 60GHG (single bond) is found in Durio 
carinatus (Rudiyansyah et al., 2010). 

61 Methylcedrusin p-coumarate ((7R,8S)-3´-O-methylcedrusin 9-p-coumarate) 61GH is found in Larix olgensis 
(Yang et al., 2005). 

62 (+)-Lariciresinol 9´-caffeinate 62GC (T=H), (-)-7-hydroxylariciresinol 9´-p-coumarate 62GH (T=OH) and 
lariciresinol 9´-p-coumarate 62GH (T=H) are found in Larix olgensis (Yang et al., 2005). 

63 Carolignan E 63GGGG (single bond, T=H), carolignan X 63GFGH (single bond, T=H) and carolignan Y 
63GFGH (single bond, T=Me) are found in Durio species (Rudiyansyah et al., 2010). Carolignan F 63GSGG 

(single bond, T=H), carolignan K; 63GGHG (double bond, T=H) and 63GGGG (single bond, T=H) are found 
in Hibiscus cannabinus (Silva et al., 2002), carolignan M 63GLGG (single bond, T=H) is found in Sambucus 
williamsii (Yao et al., 2005), dadahol A 63GSHH (double bond, T=H) and dadahol B 63GGHH (double bond, 
T=H)) are found in genus Artocarpus (Hakim, 2010). 

64 Carolignan H 64GGG (single bond) is found in Hibiscus cannabinus (Silva et al., 2002). 
65 Hanultarin 65GGG is found in Berberis amurensis (Park et al., 2009) and Trichosanthes kirilowii (Moon et 

al., 2008; Lee et al., 2011) and (-)-(2R,3R)-1-O-feruloyl-8,8´-bisdihydrosiringenin 65SSG is found in 
Hypericum petiolulatum (Zhao et al., 2009). 

66 Diferuloyl secoisolariciresinol 66GGGG is found in Antidesma membranaceum (Buske et al., 1997), 
Penthorum chinense (Zhang et al., 2007) and Betula species (Fuchino et al., 1995). 9,9´-O-di-(E)-sinapoyl-
meso-dimethoxysecoisolariciresinol 66SSSS and 9,9´-O-di-feruloyl-meso-5,5´-dimethoxysecoisolariciresinol 
66SSGG are found in Lindera obtusiloba (Lee et al., 2010). 

67 Salvianolic acid A 67CCC is found in Salvia miltiorrhiza (Lai et al., 2011). 
68 Caffeoyl p-coumaroyl tartaric acid 68CH (Mulinacci et al., 2001), caffeoyl feruloyl tartaric acid 68CG and 

chicoric acid 68CC are found in Cichorium species (Mulinacci et al., 2001; Shaikh et al., 2010). 68CC is also 
found in Syringodium filiforme (Nuissier et al., 2010), and 68GG and 68CG are found in Echinacea 
angustifolia (Becker & Hsieh, 1985).  

69 di-p-Hydroxycinnamoyl glycerol conjugates: 3-O-Caffeoyl-1-O-feruloyl glycerol 69GC (T=H), 1,3-O-
dicaffeoyl glycerol 69CC (T=H) and 3-O-caffeoyl-1-O-p-coumaroyl glycerol 69HC (T=H) are found in 
Tillandsia streptocarpa (Delaporte et al., 2006), 1-O-p-coumaroyl-3-O-feruloyl glycerol 69HG (T=H) is 
found in Tillandsia streptocarpa (Delaporte et al., 2006), Asparagus offiinalis (Zhouxuan et al., 2009), 
Sparganium stoloniferum (Shirota et al., 1996) and Lilium species (Luo et al., 2012), 1,3-O-diferuloyl 
glycerol 69GG (T=H) is found in Lilium henryi (Shimomura et al., 1988) and Sparganium stoloniferum 
(Shirota et al., 1996) (the structural related 1-O-p-coumaroyl-2-O- feruloyl glycerol, 1,2-O-diferuloyl 
glycerol and 2-O-p-coumaroyl-1-O-p-feruloyl glycerol are found in Lilium henryi (Shimomura et al., 
1988)). Lasiocarpin A 69HH (T=H), lasiocarpin B 69HG (T=H) and lasiocarpin C 69GG (T=H) are found in 
Populus lasiocarpa (Asakawa et al., 1977). 

70 Isolariciresinol p-coumarate 70HGG is found in Larix olgensis (Yang et al., 2005). 
71 Caffeoyl dihydrocaffeoyl quinic acid 71HH (T=H, single bond) and salicornate 71HH (T=Me, double bond) 

are found in Salicornia herbacea (Kim et al., 2011). 
72 1,3-Dicaffeoyl quinic acid (Cynarine) 72CC is found in Cynara species (Trajtemberg et al., 2006; Sałata & 

Gruszecki). Homologues are found in many plant species, e.g., the 1,5-homologue (caftaric acid) is found in 



Asteraceae (Slanina et al., 2001; Binns et al., 2002), the 4,5- homologue is found in Pteris multifida 
(Harinantenaina et al., 2008) and the 3,5- homologue in Artemisia gmelinii (Könczöl et al., 2012), many 
homologues are also found in Ilex paraguariensis (Jaiswal et al., 2010; Hussein et al., 2011). 

73 (Epi)catechin 73C is found in Dimocarpus longan (Sudjaroen et al., 2012), 73C and (epi)gallocatechin 73L 
are found in Camelia sinensis (Hilal & Engelhardt, 2007; Song et al., 2012) and Theobroma cacao (Payne et 
al., 2010). 

74 Epigallocatechin gallate 74LL, epicatechin gallate 74CL, epicatechin 3-O-(3´-O-methyl) gallate 74CF and 
epiafzelechin gallate 74HL are found in Camelia sinensis (Manir et al., 2012). 

75 (-)-epigallocatechin 3-O-p-coumaroate 75LH is found in Camelia sinensis (Manir et al., 2012). 
76 Flavonol glycosides like kaempherol glycosides 76H (P=Gly) and quercetin glycosides 76C (e.g. hyperoside 

(P=Gal)) are found in many plant species (Bravo, 1998; Monagas et al., 2006; Segawa et al., 2006). 
77 Astragalin 2″-gallate 77HL, and the homologues astragalin 6″-gallate and astragalin 2″,6″-digallate are found 

in Loropetalum chinense (Romussi & Sancassan, 1983), astragalin 6´´-gallate is also found in Quercus ilex 
(Romussi & Sancassan, 1983), quercetin-3-β-D-galactopyranoside gallates (galloyl hyperin) 77CL is found 
in Euporbiacea (Nahrstedt et al., 1974; Li R et al., 2010). 

78 Disinapoylglucose 78SS is found in Brassicaceae (Baumert et al., 2005; Ferreres et al., 2007) and Raphanus 
sativus (Dahlbender & Strack, 1984). 

79 Dehydroacteoside 79CC (P=H) and isodehydroacteoside 79CC (P=Rha) are found in Monochasma savatieri 
(Yahara et al., 1986). 

80 80GG is found in Alpinia speciosa (Masuda et al., 2000). 
81 3,6´-O-diferuloylsucrose 81GG is found in Lilium henryi (Shimomura et al., 1988). 
82 Calceolarioside A 82CC (P1=H, P2=H,T=H) is found in Calceolaria hypericina (Capasso et al., 1993) and 

Fraxinus species. (Chen et al., 2009), syringalide C 82CG (P1=Rha, P2=H,T=H) is found in Syringa 
vulgaris (Kikuchi et al., 1988), leucosceptoside A 82HG (P1=Rha, P2=H,T=H) is found in Leucoseptrum 
japonicum (Miyase et al., 1982), cistanoside D 82GG (P1=Rha, P2=H,T=H) is found in Cistanchis herba 
(Kobayashi et al., 1984), betonyoside A 82CG (P1=Rha, P2=H,T=OH) is found in Stachys officinalis 
(Miyase et al., 1996), campneoside I 82CC (P1=Rha, P2=H,T=OMe) and campneoside II 82CC (P1=Rha, 
P2=H,T=OH) are found in Campsis chinensis (Imakura et al., 1985), ilicifolioside 1 82CC (P1=Rha, 
P2=H,T=OEt) is found in Acanthus ilicifolius (Wu et al., 2003), globusintenoside 82CC (P1= Rha-Glu-
feruloyl, P2=H,T=H) is found in Globularia sintenisii (Kırmızıbekmez et al., 2004), buddleoside A 82CC 

(P1=Rha, P2=Xyl-feruloyl, T=H) is found in Buddleia lindleyana (Lu et al., 2005) and forsythoside C 82CC 

(P1=H, P2=Rha, T=OH) and the methyl ether (S-suspensaside methyl ether) are 82CC (P1=H, P2=Rha, 
T=OMe) found in Forsythia species. (Endo & Hikino, 1982; Cui et al., 2010). Similar compounds are found 
Monochasma savatieri (Li et al., 2012). 

83 Gallotannins are found in many plant species (Barbehenn & Constabel, 2011) for instance, (1-O-(3-
methoxy-4-hydroxyphenyl)-6-O-galloyl-β-D-glucopyranoside 83GL and (1-O-(3,5-dimethoxy-4-
hydroxyphenyl)-6-O-galloyl glucopyranoside 83SL are found in Laguncularia racemosa (Shi et al., 2010). 

84 Acteoside 84LL is found in Plantago psyllium (Li et al., 2005) and Clerodendron species (Nagao et al., 
2001). 

85 Salicylic acid 2-O-β-D-(3´,6´-dicaffeoyl)-glucopyranoside 85CC is found in Merremia umbellate (Yan et al., 
2010). 

86 Gallotanins like penta-1,2,3,4,6-O-galloyl-β-D-glucose 86 are found in many plant species (Gross, 2008; 
Zhang et al., 2009). 

87 Corilagin, an ellagitanin found in Punica granatum (Nawwar et al., 1994) and Dimocarpus longan 
(Sudjaroen et al., 2012). 

88 Newbouldioside B 88SHF is found in Newbouldia laevis (Gormann et al., 2006). 
89 Newbouldioside C 89FHS is found in Newbouldia laevis (Gormann et al., 2006). 
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