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Metabolic engineering of the 
pentose phosphate pathway for 
enhanced limonene production in 
the cyanobacterium Synechocystis 
sp. PCC 6803
Po-Cheng Lin1, Rajib Saha2,3, Fuzhong Zhang1 & Himadri B. Pakrasi1,2

Isoprenoids are diverse natural compounds, which have various applications as pharmaceuticals, 

fragrances, and solvents. The low yield of isoprenoids in plants makes them difficult for cost-effective 
production, and chemical synthesis of complex isoprenoids is impractical. Microbial production of 

isoprenoids has been considered as a promising approach to increase the yield. In this study, we 

engineered the model cyanobacterium Synechocystis sp. PCC 6803 for sustainable production of a 
commercially valuable isoprenoid, limonene. Limonene synthases from the plants Mentha spicata and 

Citrus limon were expressed in cyanobacteria for limonene production. Production of limonene was 

two-fold higher with limonene synthase from M. spicata than that from C. limon. To enhance isoprenoid 

production, computational strain design was conducted by applying the OptForce strain design 

algorithm on Synechocystis 6803. Based on the metabolic interventions suggested by this algorithm, 
genes (ribose 5-phosphate isomerase and ribulose 5-phosphate 3-epimerase) in the pentose phosphate 

pathway were overexpressed, and a geranyl diphosphate synthase from the plant Abies grandis was 

expressed to optimize the limonene biosynthetic pathway. The optimized strain produced 6.7 mg/L 
of limonene, a 2.3-fold improvement in productivity. Thus, this study presents a feasible strategy to 
engineer cyanobacteria for photosynthetic production of isoprenoids.

Recent studies have demonstrated the potential of using cyanobacteria as biological platforms to produce fuels 
and high-value chemicals1,2. Harnessing solar energy using the photosynthetic apparatus, atmospheric CO2 is 
�xed into sugars, which can be further converted to desired products by engineered cyanobacteria. Due to the 
recent development of genetic tools for model cyanobacteria3, expression of heterologous genes and pathways has 
become more feasible, thus facilitating the construction of engineered cyanobacteria for biotechnological applica-
tions. In this study, we engineered the model cyanobacterium Synechocystis sp. PCC 6803 (herea�er, Synechocystis 
6803) for production of a commercially valuable isoprenoid, limonene.

Isoprenoids are one of the most diverse groups of natural products, with more than 55,000 compounds4. 
Isoprenoids have multiple commercial applications, including natural pharmaceuticals, nutraceuticals, solvents, 
and perfume components5,6. To date, commercially-used isoprenoids are mainly extracted from plants, but the 
low quantities of these naturally-produced chemicals have become an impediment for cost-e�ective produc-
tion. Successful microbial production of valuable isoprenoids by engineered yeast and E. coli have been demon-
strated7,8, whereas fewer researchers have studied production of isoprenoids by cyanobacteria. To improve 
photosynthetic production of isoprenoids, optimization of isoprenoid biosynthetic pathways in cyanobacteria is 
needed using metabolic engineering coupled with computational approaches.

Limonene is a 10-carbon isoprenoid produced by plants. (R)-limonene has a characteristic fragrance of 
orange, and commonly exists in the rinds of citrus fruits. It is commercially used as a fragrance in perfumes or a 
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solvent in cleaning products. (S)-Limonene is a precursor for the biosynthesis of (S)-menthol, which is the major 
component of mint. Recently, limonene has been evaluated as a “drop-in” replacement for diesel9 and jet fuels10. 
�e fully hydrogenated form of limonene was used as a diesel additive, exhibiting similar chemical properties 
compared to diesel fuel9. Moreover, the physical properties of limonene, such as viscosity, freezing point, and 
boiling point, are highly comparable to aviation fuel Jet A-110.

Cyanobacteria use the methylerythritol 4-phosphate (MEP) pathway to produce isopentenyl pyrophosphate 
(IPP) and dimethylallyl pyrophosphate (DMAPP), which are the building blocks for isoprenoid biosynthesis. 
�e MEP pathway is a seven-step pathway that starts with glyceraldehyde 3-phosphate (GAP) and pyruvate, and 
ends with IPP and DMAPP. Further, IPP and DMAPP undergo a series of head-to-tail condensations to produce 
diphosphate substrates, which are then converted to isoprenoids by isoprenoid synthases. To increase isoprenoid 
production, the amounts of IPP and DMAPP need to be enhanced by increasing the carbon �ux toward the MEP 
pathway.

Attempts have been made to engineer the MEP pathway for improving cyanobacterial limonene production. 
However, production titers are extremely low compared to other compounds such as ethanol11, butanol12, and free 
fatty acid13. Genes involving in the bottlenecks of the MEP pathway were overexpressed in Synechocystis 680314. 
�e recombinant strain showed a 1.4-fold increase of limonene, and the �nal titer reached 1 mg/L a�er 30-day 
cultivation14. In addition, researchers used similar strategies to engineer the MEP pathway in the nitrogen-�xing 
cyanobacterium Anabaena sp. PCC 7120 for production of limonene15. �e limonene yield increased up to 
6.8-fold. However, the �nal titer remained low (0.5 mg/L over 12-day incubation)15.

A previous in vitro study suggested that isoprenoid production in Synechocystis 6803 is stimulated by com-
pounds in the pentose phosphate (PP) pathway but not by substrates in the MEP pathway16. Using Synechocystis 
6803 cell extracts, isoprenoid biosynthesis was signi�cantly improved by supplying xylulose 5-phosphate (X5P) 
in the PP pathway, whereas providing substrates (GAP, pyruvate, and MEP) in the MEP pathway showed lower 
stimulation of isoprenoid production16. �ese results indicated a connection between the PP pathway and isopre-
noid production in Synechocystis 6803.

In addition to experimental engineering approaches, computational strain design techniques can be useful to 
develop non-intuitive genetic interventions to achieve the desired level of production of a particular bioproduct. 
To this end, the OptForce procedure17 �rst characterizes the wild-type strain in the form of reaction �ux ranges 
by utilizing the 13C MFA (Metabolic Flux Analysis) �ux estimations as additional regulations. OptForce then con-
trasts the wild-type �ux ranges with those in the overproducing phenotype. As a result, the algorithm identi�es a 
set of genetic interventions (i.e., up/down-regulations and deletions) that must happen in the metabolic reaction 
network for a desired level of yield. Finally, OptForce pinpoints the minimal interventions (from these changes) 
that are directly related to achieving the desired yield. �ese strategies can then be tested in an experimental 
setting.

In this work, we engineered Synechocystis 6803 for photosynthetic limonene production (Fig. 1). To construct 
limonene-producing strains, genes encoding limonene synthase (lims) from Mentha spicata and Citrus limon were 
introduced into Synechocystis 6803. For generating computation-driven non-intuitive strain engineering strate-
gies, we applied the OptForce algorithm17 on the genome-scale Synechocystis 6803 model iSyn73118 and also uti-
lized 13C MFA �ux estimations19 under photosynthetic wild-type condition. OptForce predicted the up-regulation 
of two PP pathway genes, ribose 5-phosphate isomerase (rpi) and ribulose 5-phosphate 3-epimerase (rpe), in 
limonene-producing strains in order to divert the carbon �ux toward limonene production. Furthermore, based 
on the prediction made by OptForce to further improve limonene production, a geranyl diphosphate synthase 

Figure 1. Schematic representation of engineering Synechocystis 6803 for production of limonene. Codon-
optimized limonene synthases from Mentha spicata and Citrus limon were heterologously expressed in 
Synechocystis 6803 to produce S-limonene and R-limonene, respectively. �e limonene biosynthetic pathway 
was optimized by overexpressing genes in the pentose phosphate (PP) pathway and a geranyl diphosphate 
synthase from Abies grandis. G3P, glyceraldehyde 3-phosphate; MEP, methylerythritol-4-phosphate; IPP, 
isopentenyl diphosphate; DMAPP, dimethylallyl diphosphate; GPP, geranyl diphosphate; lims, limonene 
synthase; gpps, geranyl diphosphate synthase.
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(gpps) from Abies grandis was expressed to optimize the limonene production pathway. �e �nal recombinant 
strain led to a 2.3-fold improvement in yield, producing 6.7 mg/L of limonene in 7 days. �e metabolic engineer-
ing strategies used in this study demonstrate the feasibility of increasing limonene production in Synechocystis 
6803 and can be applied to phototrophic production of other high-value isoprenoids.

Results
Engineering Synechocystis 6803 for production of limonene. Limonene is a C10 cyclic isoprenoid 
converted from geranyl diphosphate (GPP). Due to the complex nature of carbocation rearrangement from 
GPP to limonene, limonene synthase produces not only limonene but also other monoterpenes such as bicyclic 
α-pinene and acyclic mycene20. To avoid the production of other unwanted byproducts, we chose limonene syn-
thases which have the highest speci�city for limonene production. Based on previous studies, limonene synthase 
from Citrus limon and Mentha spicata produce limonene of high purity. Expression of each of these limonene 
synthases in E. coli showed that the former produces 99% pure (R)-limonene21, and the latter generates 94% of 
(S)-limonene22. �e coding sequences of lims were codon optimized for Synechocystis 6803, and the plastid target-
ing sequences were removed23,24. �e truncated enzyme is known to have better catalytic activity than the native 
protein25. Genes were cloned into a pCC5.2 neutral-site-targeting plasmid and driven by the trc1O promoter for 
higher level expression of lims (Fig. 2A). Expression of an enhanced yellow �uorescent protein (EYFP) from the 
pCC5.2 endogenous plasmid is 8 to 14 times higher than that on the chromosome26.

When the lims was cloned into a suicide plasmid and transformed into E. coli, we found that the gene accu-
mulated random mutations in the E. coli host, leading to changes in amino acid residues or truncated proteins. 
�is was presumably because the lims product is toxic to E. coli cells. To introduce a lims without mutations into 
Synechocystis 6803, we circumvented the E. coli cloning step by �rst cloning the lims into the suicide plasmid via 
Gibson assembly, and used the assembled product as template for PCR to amplify the lims cassette �anked by 
upstream and downstream homologous sequences of the neutral site in pCC5.226. Subsequently, the PCR product 
was directly used for natural transformation into Synechocystis 6803. �e lims was introduced into Synechocystis 
6803 genome via double homologous recombination (Fig. 2A). DNA sequencing results showed that the lims has 
no mutation in Synechocystis 6803 (data not shown). Mutants were fully segregated a�er re-streaking the cells 
several times on BG-11 plates with antibiotics.

Limonene production by engineered Synechocystis 6803 was tested by incubating cultures for 7 days. Because 
of the volatility of limonene, a dodecane overlay was applied on cultures to collect limonene in the organic layer. It 
has been reported that over 99% of limonene escapes from the cyanobacterial cultures14, and covering an organic 
overlay on cultures had little in�uence on growth in cyanobacteria23. �e limonene yield by the strain expressing 
lims from M. spicata was two-fold higher than that by the strain expressing lims from C. limon (Fig. 2B). �ese 
results suggest that the limonene synthase from M. spicata exhibited better catalytic activity in Synechocystis 6803, 
and hence, the strain was used for further engineering.

Computational modeling. �e iSyn731 metabolic model of Synechocystis 680318 was used to perform the 
computational strain designs using the OptForce algorithm17 for overproduction of limonene. Based on the cur-
rent understanding as reported in literature16,27, a connection between Calvin Benson Cycle (CBC)/PP pathway 
and MEP pathway (Fig. 3) was included in the iSyn731 model. By superimposing the photoautotrophic �ux meas-
urements19 of 31 reactions of central carbon metabolism including the CBC and PP pathways of Synechocystis 
6803 onto the iSyn731 model, the phenotypic space of the base strain was de�ned. All simulations were performed 

Figure 2. Production of limonene by engineered Synechocystis 6803. (A) Introduction of limonene synthases 
into a neutral site on endogenous pCC5.2 plasmid to create limonene-producing mutants. (B) Time-course 
limonene production. Results were mean  ± SD of three biological replicates. lims (Ms), limonene synthase from 
M. spicata; lims (Cl), limonene synthase from C. limon; Ptrc1O, trc1O promoter; NS, neutral site; Ter, terminator; 
KmR, kanamycin resistance cassette.
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for a basis of 100 millimoles of CO2 plus H2CO3 uptake and unlimited photon supply19. �e uptake �uxes for the 
remaining metabolites present in the BG11 medium was set to -1,000 and the non-growth associated ATP main-
tenance was set at 8.39 mmole/gDW-h. In addition, the biomass �ux was �xed at the optimal value subject to the 
experimental �ux measurements19. �e upper bound of the �uxes of the remaining reactions was set to 1,000 
mmole/gDW-h, whereas the lower bound was set to zero and -1,000 mmole/gDW-h for irreversible and reversible 
reactions, respectively.

Similarly, the limonene overproducing phenotype was obtained by maximizing and minimizing each �ux of 
the metabolic model iteratively subject to the network stoichiometry, uptake and medium conditions, regulatory 
constraints, and overproduction target. In this work, a minimum production yield of 85% of the theoretical max-
imum of limonene (i.e., 15.3 mmole/gDW-h) was set as the overproduction target, while the biomass �ux was 
constrained to be at least 10% of its theoretical maximum (i.e., 0.021 h−1) with the basis of 100 millimoles of car-
bon �xed (i.e., CO2 plus H2CO3). �e remaining parameter values including medium conditions and regulatory 
constraints were the same as those in the wild-type. By contrasting the maximal range of �ux variability between 
the wild-type strain and the over-producing strain to meet the pre-speci�ed yield of limonene, OptForce was 
used to identify the minimal set of genetic interventions (i.e., deletions and up-/down-regulations). In order to 
�rst explore non-intuitive interventions, reactions from the MEP and isoprenoid biosynthesis pathways were not 
considered as the candidates for any form of intervention. Integer cuts were used to identify alternative optimal 
solutions (i.e., alternative genetic intervention choices) to achieve the minimum production yield of limonene 
as speci�ed earlier. �e termination criterion for the OptForce procedure was set as either meeting a production 
yield of at least 85% of the theoretical maximum for limonene or exceeding the maximum allowable number of 
reaction interventions (i.e., three). Note that the OptForce procedure works at the reaction level, which is why the 
set of genetic manipulations can subsequently be identi�ed by using gene-protein-reaction (GPR) associations 
from the iSyn731 model. �us, the OptForce procedure identi�ed up-regulation of rpi and rpe as the best possible 
solution, which can lead up to limonene yield at 89% of its theoretical maximum (i.e., 16.02 mmole/gDW-h). By 
up-regulating these two genes, OptForce suggested to force more �ux from the CBC/PP pathway toward MEP 
pathway that can ultimately increase the production yield of limonene (Fig. 3). Once the set of non-intuitive inter-
ventions was obtained, as a next step, it was logical to explore if their combination with any of the intuitive one(s) 

Figure 3. Metabolic interventions predicted by the OptForce algorithm. Up-regulation of rpe, rpi, and gpps 
(showed with pink arrows) leads to the improved production yield of limonene.
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from the MEP and isoprenoid biosynthesis pathways could further improve the limonene production yield that 
was otherwise not possible to achieve individually (i.e., by the non-intuitive candidates or by the intuitive ones). 
With a target of a minimum production yield of 90% of the theoretical maximum of limonene, the OptForce 
procedure identi�ed the up-regulation of gpps, rpe, and rpi that could lead the limonene production yield to 16.56 
mmole/gDW.h (i.e., 92% of its theoretical maximum). �us, the proposed interventions combined the ampli�ca-
tion (i.e., push) of �ux from the CBB/PP pathway to MEP pathway with a similar increase (i.e., pull) in the �ux of 
the limonene synthesis. As reported in the literature28, this kind of push-and-pull strategy can achieve the desired 
level of production yield with minimal e�ects caused by feedback inhibition.

Genetic interventions of the PP pathway to improve limonene production. Based on the predic-
tion of the OptForce procedure, up-regulation of rpi and rpe genes in the PP pathway increases the �ux toward 
limonene production. To test this hypothesis, the rpi and rpe genes driven by the Synechocystis 6803 native rbcL 
promoter were expressed on a replicating plasmid in the limonene-producing strain, resulting in 1.3-fold increase 
in limonene yield (3.7 mg/L) a�er 7 days of cultivation (Fig. 4). Furthermore, we introduced a gene encoding a 
speci�c GPP synthase (GPPS) to optimize the limonene biosynthetic pathway. In Synechocystis 6803, formation 
of GPP is catalyzed by a farnesyl diphosphate (FPP) synthase, CrtE. It performs consecutive condensation of 
IPP with DMAPP, and only synthesizes GPP as an intermediate29. Although the PP pathway was engineered to 
stimulate the limonene yield, it is possible that the native isoprenoids pathway in Synechocystis 6803 provides 
insu�cient GPP for limonene production since the �ux is diverted toward FPP formation for pigment synthesis. 
In addition, OptForce also predicted an increase (i.e., from 89% to 92% of maximum theoretical limonene yield) 
when up-regulation of rpe and rpi was combined with the up-regulation of gpps. It was reported that the GPPS 
2 from Abies grandis speci�cally produces GPP30. Expressing this speci�c gpps with lims, the limonene yield 
increased 1.4-fold (4.1 mg/L) (Fig. 4). Finally, coexpression of rpi, rpe, gpps and lims resulted in a remarkable 
(2.3-fold) enhancement in productivity (6.7 mg/L) (Fig. 4).

Pigment content in engineered Synechocystis 6803. Carotenoids and the phytol tail of chlorophyll, 
photosynthetic pigments, are derived from geranylgeranyl diphosphate (GGPP), a C20-intermediate for isopre-
noid synthesis. Hence, production of limonene is expected to divert carbon �ux away from pigment synthesis. To 
investigate the e�ect of limonene production on pigment content in engineered Synechocystis 6803, we extracted 
and quanti�ed the chlorophyll and carotenoid contents. �e chlorophyll content decreased over 30% in the gpps 
expression strains, whereas carotenoid levels were similar among the limonene-producing strains (Fig. 5). �ese 
results indicate that the speci�c GPPS diverts the carbon �ux away from pigment synthesis.

Discussion
In this study, we combined metabolic engineering with model-driven strain design strategies to engineer 
Synechocystis 6803 for enhanced limonene production. To generate limonene-producing Synechocystis 6803, we 
�rst constructed a suicide plasmid26 to engineer the lims into the neutral site on the pCC5.2 endogenous plas-
mid via double homologous recombination. �is is the �rst time that the endogenous plasmid of Synechocystis 
6803 has been used for enhanced production for the purpose of metabolic engineering. Expression of a gene 
on the pCC5.2 plasmid leads to higher expression level than that on the chromosome as well as the RSF1010 

Figure 4. Increased limonene production by genetic modi�cations. Two genes in the PP pathway (rpi and rpe) 
were overexpressed in Synechocystis 6803 to divert carbon �ux toward limonene production. �e Abies grandis 
GPPS 2 that speci�cally produce GPP was expressed to ensure su�cient GPP for limonene production. Ms, 
Mentha spicata; Ag, Abies grandis. Results were mean  ± SD of three biological replicates.
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self-replicating plasmid26. Furthermore, during the stationary phase of cell growth, the copy numbers of the 
endogenous plasmids (pCA2.4, pCB2.4, pCC5.2) in Synechocystis 6803 are 3 to 7 per chromosome31. Using the 
endogenous plasmid to express the lims gene driven by the constitutive promoter trc1O allows high expression 
level at the stationary phase, decoupling growth and production, and thus leading to higher levels of production 
of limonene.

�e higher yield with limonene synthase from M. spicata than that from C. limon may be due to the di�er-
ence in enzyme kinetics of LIMS. Unfortunately, the kinetic parameters (both Km and kcat) are only available for 
the enzyme from M. spicata25. In addition, it may be attributed to di�erent protein expression levels. Although 
the same promoter was used to control the lims from two plant species, protein expression may vary because 
of di�erent mRNA sequences and codon usage. To date, the highest reported limonene productivity in cyano-
bacteria was achieved by engineered Synechococcus sp. PCC 700223. In their study, only a lims from M. spicata 
was overexpressed, and the yield was over 4 mg/L in 4 days23. Our results also suggested that the LIMS from M. 
spicata performed better in limonene production (Fig. 2B). �e doubling time of Synechococcus 7002 is shorter than 
Synechocystis 680332. �us, the higher limonene yield from Synechococcus 7002 may be due to its faster growth rate. 
A recent study engineered Synechococcus elongatus PCC 7942 to produce limonene, achieving a 100-fold improve-
ment in productivity33. However, it should be noted that such signi�cant increase is due to the low productivity of 
the original strain, which produced merely 8.5 µg/L/OD/d of limonene. �e best producing strain in this study, with 
a lims (M. spicata) controlled by the pea plant psbA promoter, produced 2.5 mg/L limonene in 5 days33.

Previously, researchers have engineered Synechocystis 6803 for limonene production by overexpressing genes 
involved in the bottleneck steps of the MEP pathway14. It is known that enzymes 1-deoxy-D-xylulose-5-phosphate 
synthase (DXS) and isopentenyl diphosphate isomerase (IDI) catalyze the rate-limiting reactions in the MEP 
pathway34,35. With the introduction of an additional copy of endogenous dxs, idi, and gpps genes, the engineered 
Synechocystis 6803 produced 1.4-fold higher yield than that of the parent strain14. However, such improvement 
was less e�ective than the strategy used in the current study. As mentioned in the Results section, the endogenous 
gpps gene may not be suitable for enhancing the production of limonene. In addition, the MEP pathway is highly 
regulated at genetic and metabolic levels36. Expressing endogenous genes in the MEP pathway may be subject to 
native regulations, presenting a less e�ective engineering approach.

Instead of manipulating the MEP pathway, we took a systematic model-driven metabolic engineering 
approach for �nding genetic interventions in order to increase the limonene production yield. As explained in 
the Materials and Methods section, the OptForce procedure �nds the minimal interventions to reach a desired 
production target. To this end, we employed OptForce on our previously developed genome-scale model iSyn731 
in order to ‘push’ more �ux to MEP pathway and also to create better ‘pull’ for limonene synthesis (Fig. 3). From 
this in silico analysis, by up-regulating rpe and rpi, the metabolite pool of X5 P was found to be increased that, 
eventually, led to increased �ux through the connection between the CBC/PP pathway and the MEP pathway. 
In addition, up-regulation of gpps created an improved ‘pull’ for limonene synthesis. �us, the combination of 
this push-and-pull mechanism was proposed to be the best strategy to improve limonene yield by circumventing 
additional regulations (e.g. feedback inhibition). Interestingly, the same rationale could be applied to engineer 
cyanobacteria to produce other isoprenoid compounds.

Expression of the speci�c gpps modestly increased the limonene titer (Fig. 4), whereas the cellular chlorophyll con-
tent was greatly in�uenced (Fig. 5). Synthesis of limonene and the phytol tail of chlorophyll requires the same precur-
sors, IPP and DMAPP. Table 1 compares the changes in chlorophyll and limonene contents between the strain with lims 
only and the two gpps-expressing strains. Compared to the lims-expressing strain, additional expression of gpps resulted 
in similar level of decrease in chlorophyll content in both strains. However, expression of rpi and rpe genes further led 

Figure 5. Pigment content of engineered Synechocystis 6803 strains. Chlorophyll and carotenoid contents of 
limonene-producing strains. Ms, Mentha spicata; Ag, Abies grandis. Results were mean ± SD of three biological 
replicates.



www.nature.com/scientificreports/

7SCIENTIFIC REPORTS | 7: 17503  | DOI:10.1038/s41598-017-17831-y

to 1.5-fold higher limonene productivity in the gpps-expressing strains (122 vs. 81 µM/OD730 isoprene unit). �is result 
suggests that up-regulation of rpi and rpe enhances the carbon �ux toward limonene synthesis.

Our results showed that overexpressing the genes in the PP pathway led to improved limonene production, 
suggesting an unidenti�ed connection between the PP pathway and isoprenoids biosynthesis (Fig. 4). Our obser-
vation is consistent with previous in vitro study using Synechocystis 6803 cell lysate16. However, the connection 
between the PP pathway and isoprenoids biosynthesis remains to be elucidated. It was �rst shown that in vitro 
isoprenoid production increased signi�cantly by providing substrates in the PP pathway16, while a recent study 
showed that increased production of isoprenoids by PP pathway substrates does not occur through the MEP 
pathway37. By removing the terminal enzyme of the MEP pathway in Synechocystis 6803 cell lysate, isoprenoid 
synthesis still increased by substrates in the PP pathway37. Taken together, it is still unclear how the PP pathway 
and isoprenoid production are connected in Synechocystis 6803. While our results made a strong argument for 
this connection, further investigation needs to be conducted to explore the details in terms of chemical conver-
sions and genes/enzymes associated. From the modeling context, these details sometimes do not make much of a 
di�erence if they only involve aggregating linear reaction steps.

Conclusions
In this study, we engineered the model cyanobacterium Synechocystis 6803 to produce the isoprenoid, limonene. 
We applied computational strain design by using the OptForce procedure to identify minimal genetic interven-
tions for improving limonene yield. Based on the prediction, the rpi and rpe genes in the PP pathway were overex-
pressed, and a speci�c gpps was introduced to optimize the limonene biosynthetic pathway. �e �nal engineered 
strain produced 6.7 mg/L of limonene, which is a 2.3-fold improvement in productivity. �e approach that we 
demonstrated can be applied to engineer cyanobacteria to produce other valuable isoprenoids.

Materials and Methods
Chemicals and reagents. All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) unless 
otherwise speci�ed. Phusion DNA polymerase were purchased from �ermo Fisher Scienti�c (Waltham, MA, 
USA).

Culture medium and condition. All strains were maintained in liquid BG-11 medium or on solid BG-11 
plates with appropriate antibiotics at 30 °C continuous white light (50 µmoles photons m−2s−1).

DNA manipulations. Coding sequences of lims from Mentha spicata and Citrus limon were codon opti-
mized for Synechocystis 6803 and synthesized by IDT (San Jose, CA, USA). �e genes were cloned into a suicide 
plasmid, allowing gene insertion into the neutral site (NSP1) on the endogenous plasmid pCC5.2 in Synechocystis 
680326. �e constructed plasmids were directly used as templates for PCR to amplify a fragment which con-
tains the lims and a kanamycin resistance cassette �anking by upstream and downstream homologous sequences 
of the NSP1 (Fig. 2A). �e PCR product was then puri�ed by DNA electrophoresis, and the linear DNA was 
transformed into Synechocystis 6803. �e rpi, rpe, and gpps genes were cloned into a broad-host-range plasmid 
RSF1010 harboring a spectinomycin resistance cassette38. All the cloning works were done by Gibson isothermal 
DNA assembly method39.

Strains construction and transformation. The lims expression cassette was transformed into 
Synechocystis 6803 through homologous recombination. Cells at mid-log phase (OD730 of 0.4 to 0.6) were incu-
bated with 600 ng of linear DNA overnight at 30 °C in the dark. Cells were then grown on BG-11 plates supple-
mented with 10 µg/mL of kanamycin for selection of transformants. Colonies were patched on BG-11 plates with 
20 µg/mL of kanamycin for segregation. PCR was used to verify strain segregation. For the construction of rpi, 
rpe, and gpps expressing strains, self-replicating plasmids (600 ng per transformation) were transformed into the 
strain expressing lims. Transformants were selected by BG-11 plates with 2 µg/mL of spectinomycin and 5 µg/mL 
of kanamycin.

Limonene production by engineered cyanobacteria. Strains were inoculated in BG-11 medium with 
kanamycin (10 µg/mL) and spectinomycin (4 µg/mL) to mid-log phase at 30 °C with continuous white light (50 
µmoles photons m−2s−1). Cells were collected by centrifugation at 7,000 x g, and washed by BG-11 medium to 
remove antibiotics. To test limonene production, the initial OD730 was adjusted to 0.34 (~0.5 g/L of biomass), and 
50 mL of cell cultures were grown in 250-mL �asks at 30 °C with continuous white light (130 µmoles photons 
m−2s−1). A 10% (v/v) dodecane overlay was covered on top of cultures to trap evaporated limonene.

Quantification of limonene. Limonene samples were prepared by diluting 10 µL of dodecane overlay in 
990 µL of ethyl acetate, and analyzed using a gas chromatography instrument with a �ame ionization detector 
(Hewlett-Packard model 7890 A, Agilent Technologies, CA, USA) equipped with a 30 m DB5-MS column (J&W 

Strains lims lims, gpps lims, gpps, rpi, rpe

Chlorophyll* 66 49 47

Limonene* 53 81 122

Table 1. Comparison of chlorophyll and limonene contents. *Presented as µM/OD730 isoprenes.
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Scienti�c). �e oven temperature program initiated at 60 °C, and increased at 12 °C/min to 300 °C. Limonene was 
quanti�ed using a (R)-limonene standard.

Identification of engineering interventions via OptForce. We applied the OptForce algorithm17 on 
the genome-scale Synechocystis 6803 model iSyn73118. In order to characterize the wild-type phenotype, we uti-
lized 13C MFA �ux estimations19 under photosynthetic condition. Below is the step-by-step procedure that we 
followed:
Step 1: Identify the maximum biomass and limonene yields under photosynthetic condition.
Maximize vbiomass or vls

Subject to

∑ = ∀ ∈ ……
=

s v 0 i 1, , n
(1)j

m

ij j
1

≤ ≤ ∀ ∈ ……a v v a v j 1, , m (2)j j
min

j j j
max

≤ ≤ ∀ ∈ −v v0 Nutrients Light, Carbon source(s), Micro nutrients (3)Nutrients Nutrients
max

Step 2: Characterize the wild-type phenotype
Maximize/Minimize ∀ ∈v jj  reactions without experimental �ux measurements
Subject to

∑ = ∀ ∈ ……
=

s v 0 i 1, , n
(1)j

m

ij j
1

≤ ≤ ∀ ∈ ……a v v a v j 1, , m (2)j j
min

j j j
max

≤ ≤ ∀ ∈ −v v0 Nutrients Light, Carbon source(s), Micro nutrients (3)Nutrients Nutrients
max

≥v v (4)biomass biomass
max

Step 3: Characterize the limonene over-producing phenotype
Maximize/Minimizevj ∀ j ∈ 1, ……,m
Subject to

∑ = ∀ ∈ ……
=

s v 0 i 1, , n
(1)j

m

ij j
1

≤ ≤ ∀ ∈ ……a v v a v j 1, , m (2)j j
min

j j j
max

≤ ≤ ∀ ∈ −v v0 Nutrients Light, Carbon source(s), Micro nutrients (3)Nutrients Nutrients
max

≥ .v v0 1 (5)biomass biomass
max

≥ .v v0 9 (6)ls ls
max

Step 4: Identify the MUST sets
In this step, �uxes ranging from step 2 and step 3 were compared to identify three di�erent sets: reactions to 

be up-regulated (MUSTU), down-regulated (MUSTL), and deleted (MUSTX).
Step 5: Identify the minimal engineering interventions
Maximize vj

(over MUST sets)
Subject to
Minimize vj

(over MUST sets)
Subject to

∑ = ∀ ∈ ……
=

s v 0 i 1, , n
(1)j

m

ij j
1
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≤ ≤ ∀ ∈ ……a v v a v j 1, , m (2)j j
min

j j j
max

≤ ≤ ∀ ∈ −v v0 Nutrients Light, Carbon source(s), Micro nutrients (3)Nutrients Nutrients
max

≥ .v v0 1 (5)biomass biomass
max

MUST set conditions (7)

∑ ≤of direct manipulations k# (8)

Here, Sij is the stoichiometric coefficient of metabolite i in reaction j and vj is the flux value of reaction j. 
Parameters vj,min and vj,max denote the minimum and maximum allowable �uxes for reaction j, respectively. Vbiomass 
and vls represent biomass and limonene synthesis reactions under photosynthetic conditions, whereas vmax

biomass 
and vmax

ls represent the maximum theoretical yields of biomass and limonene under photosynthetic conditions. 
�e minimal levels of biomass and the minimal target yield of limonene were set to be 10% of maximum biomass 
and 85% or 90% of maximum limonene yield, respectively. Finally, k represents the maximum number of inter-
ventions allowed.

Pigment content analysis. Cell cultures (1 mL) were collected by centrifugation at 16,000 x g for 7 min, 
and the supernatants were removed. To extract pigments in Synechocystis, pre-cooled methanol (1 mL) was added 
to the pellets, and mixed thoroughly by pipetting and vortexing. Samples were incubated at 4 °C for 20 mins, and 
centrifuged at 16,000 x g for 7 min. �e supernatants were removed for a spectroph-otometer analysis to quantify 
the concentrations of carotenoids and chlorophyll. �e following equations were used to calculate the pigment 
content: µ = . × − . ×A Achlorophyll ( g/mL) (16 29 ) (8 54 )665 552

40; µ = × −g Acarotenoids ( /mL) [(1000 )470  

µ. × Chl g mL(2 86 [ / ])]/221a
41.
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