
sulfate-depleted environments, it is possible that sulfate reducers 

may be metabolically active by living in association with metha-

nogenic bacteria instead of reducing sulfate (Bryant et al., 1977; 

McInerney et al., 1981). This symbiotic process is known as “syn-

trophy” and is a widespread type of microbial interaction especially 

in methanogenic environments (Bryant et al., 1967; Schink, 1997; 

Stams and Plugge, 2009). Two major life styles are thus performed 

by some SRB: the sulfidogenic and the syntrophic metabolism. 

The advantage of having different metabolic potentials is that it 

enhances the chance of survival of communities of SRB in environ-

ments when electron acceptors become depleted.

In sulfate-depleted marine sediments, SRB and methanogens do 

not compete but rather complement each other in the degradation 

of organic matter. Also in sulfate-rich marine sediments, SRB and 

methanogens co-exist, but presumably by competing for common 

substrates, such as H
2
 (Oremland et al., 1982; Winfrey and Ward, 

1983; Kuivila et al., 1990; Holmer and Kristensen, 1994). Recently, 

it was found that sulfate reducers were still abundant in the metha-

nogenic zones of Aarhus Bay (Leloup et al., 2009).

In the past decades significant progress has been made through 

extensive studies of pure cultures, in SRB particularly with its model 

species Desulfovibrio vulgaris. Genomic analysis gave insight how 

the utilization of H
2
 and organic acids (formate and lactate) as 

electron donors is coupled to sulfate reduction, ATP synthesis and 

growth (Heidelberg et al., 2004). Lactate is oxidized through several 

Dissimilatory sulfate-reducing prokaryotes (SRB) are a diverse 

group of anaerobic bacteria that are widespread in nature and play 

an essential role in the global cycling of carbon and sulfur. The SRB 

mainly use sulfate, the most oxidized form of sulfur, as the terminal 

electron acceptor in the oxidation of hydrogen and various organic 

compounds (Widdel and Hansen, 1991; Rabus et al., 2006; Muyzer 

and Stams, 2008). Some SRB can use nitrate as electron acceptor, 

and their possible microaerophilic nature has also been discussed 

(Cypionka, 2000).

The anaerobic food chain changes largely when sulfate enters 

the methanogenic zone. In that case sulfate-reducing bacteria will 

outcompete methanogenic archaea for hydrogen, formate and ace-

tate, and syntrophic methanogenic communities for substrates like 

propionate and butyrate (Stams, 1994; Muyzer and Stams, 2008). 

Interestingly, sulfate reducers can also grow without sulfate and in 

some cases they grow only in syntrophic association with metha-

nogens or other hydrogen-scavengers. Thus, sulfate reducers may 

compete with methanogens and grow in syntrophy with metha-

nogens depending on the prevailing environmental conditions 

(Muyzer and Stams, 2008). Already in the 1970s, the metabolic flex-

ibility of SRB was investigated. Bryant et al. (1977) demonstrated 

growth of Desulfovibrio on lactate in the absence of sulfate but in 

the presence of a methanogen. They concluded that the sulfate 

reducer produced H
2
 which is used by the methanogen, acting as 

an alternative electron sink in the absence of sulfate. Therefore, in 
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excreted by the other species. The results of these initial model 

simulations predicted that D. vulgaris, growing optimally, converts 

the majority of the carbon contained in the substrate lactate into 

acetate, and that only 4.8% of the carbon is directed to biomass. 

The remaining carbon is lost as CO
2
 or formate. To maintain redox 

balance in the absence of an external electron acceptor, evolution 

of a reduced compound, either formate or hydrogen, is predicted. 

The model shows that when acetate is available, it is the preferred 

source of biomass carbon for M. maripaludis over the CO dehydro-

genase pathway to fix carbon dioxide. This prediction is consistent 

with published data and the experimental results showed that M. 

maripaludis consumes acetate and presumably uses it as a carbon 

source (Stolyar et al., 2007).

Comparative transcriptomic analysis to investigate syntrophic 

systems was done recently. In one study, comparative transcrip-

tional analysis of D. vulgaris in two culture conditions was per-

formed: syntrophic co-cultures with M. maripaludis strain S2 

(without sulfate) and sulfate-limited monocultures (Walker 

et al., 2009). During syntrophic growth on lactate with a hydrog-

enotrophic methanogen, numerous genes involved in electron 

transfer and energy generation were up-regulated in D. vulgaris 

compared with their expression in sulfate-limited pure cultures. 

In another study, whole-genome D. vulgaris microarrays were used 

to determine relative transcript levels when D. vulgaris shifted 

its lifestyle from syntroph in a lactate-oxidizing co-culture with 

Methanosarcina barkeri to a sulfidogenic lifestyle (Plugge et al., 

2010). In the study, syntrophic co-cultures were grown in two 

independent chemostats and perturbation was introduced after six 

volume changes with the addition of sulfate. Functional analyses 

revealed that genes involved in cell envelope and energy metabo-

lism were the most regulated when comparing syntrophic and 

sulfidogenic metabolism. These two studies are similar in many 

ways, however, there are four major differences in experimental 

design between the two studies: (i) the methanogenic partner in the 

study of Walker et al. (2009) was M. maripaludis, whereas it was M. 

barkeri in the study of Plugge et al. (2010); (ii) the D. vulgaris and 

M. maripaludis co-culture and the D. vulgaris monoculture were 

cultivated in parallel in different chemostats by Walker et al. (2009), 

while a perturbation experiment by adding sulfate was performed 

to the chemostat co-culture to produce the D. vulgaris sulfidogenic 

metabolism in Plugge et al. (2010); (iii) the sulfidogenic mono-

culture of Walker et al. (2009) was sulfate-limited, whereas the 

D. vulgaris sulfidogenic metabolism was lactate-limited (Plugge 

et al., 2010); and (iv) the cell ratio (between D. vulgaris and M. 

maripaludis) during steady-state co-culture growth was higher 

(4:1) compared with the 1:1 in the D. vulgaris M. barkeri co-culture. 

Nevertheless, some similar results were obtained. These included 

the identification of a five-gene cluster encoding several lipo- and 

membrane-bound proteins which was down-regulated when cells 

were shifted to a sulfidogenic metabolism (Figure 1). Interestingly, 

this gene cluster has orthologs found only in the syntrophic bacte-

rium Syntrophobacter fumaroxidans and four recently sequenced 

Desulfovibrio strains, suggesting that these genes are possible “syn-

trophic genes.” Both studies demonstrated that syntrophic growth 

and sulfate respiration use mostly independent energy generation 

pathways, implying that the molecular mechanism of microbial 

syntrophic processes cannot be fully interpreted by studying only 

enzymatic steps to acetate resulting in ATP synthesis (Heidelberg 

et al., 2004). Besides substrate-level ATP synthesis, additional ATP 

is generated from a proton gradient according to a chemiosmotic 

model (Peck, 1966), in which the protons and electrons produced 

during lactate oxidation react with cytoplasmic hydrogenases to 

form H
2
, which then diffuses across the membrane where it is re-

oxidized by periplasmic hydrogenases to form a proton gradient 

(Odom and Peck, 1981; Heidelberg et al., 2004). The electrons gen-

erated during lactate oxidation are channeled to sulfate through 

a vast network of hemes that is created by various interconnected 

c-type cytochromes and involving several transmembrane com-

plexes (Aubert et al., 2000; Heidelberg et al., 2004). Nowadays, 

research efforts with SRB are significantly aided by the availability 

of over 20 genome sequences of which 12 representatives of the 

genus Desulfovibrio (http://img.jgi.doe.gov; Integrated Microbial 

Genomes). Numerous research groups have since then reported 

global transcriptomic and proteomic analyses of D. vulgaris under 

various growth or stress conditions (Chhabra et al., 2006; Clark 

et al., 2006; He et al., 2006; Mukhopadhyay et al., 2006, 2007; Zhang 

et al., 2006a,b,c; Bender et al., 2007; Tang et al., 2007; Pereira et al., 

2008; Walker et al., 2009; Plugge et al., 2010). As a result, there has 

been a better understanding of the electron transfer and energy con-

servation mechanisms of D. vulgaris mainly associated with lactate 

oxidation during sulfidogenic growth. Yet, the energy metabolism 

of D. vulgaris is very complex and flexible and as such deserves 

further study (Pereira et al., 2008).

While the physiology of the symbiotic/syntrophic relationship 

has been studied for more than 40 years (Bryant et al., 1967, 1977; 

Stams, 1994; Schink, 1997; Stams and Plugge, 2009), relatively little 

is known about the metabolic and regulatory networks involved in 

syntrophic interactions. This may be due to the technical difficulties 

to establish stable mixed-culture systems and lack of analytical tools 

for direct large-scale measurement of various biological compo-

nents (i.e., RNA, proteins or metabolites). However, availability of 

complete genome sequences and various functional genomics tools 

in recent years have provided the most needed methodologies to 

analyze mixed-culture systems. In a recent study, a syntrophic pair, 

D. vulgaris and a hydrogenotrophic methanogen Methanococcus 

maripaludis, was cultured syntrophically on lactate in the absence 

of sulfate (Stolyar et al., 2007). Syntrophic associations were ini-

tiated by mixing equal volumes of stationary phase D. vulgaris 

and M. maripaludis cultures. Experimental measurements with 

the co-culture were used to test predictions derived from the first 

multi-species stoichiometric metabolic model involving the two 

species (Stolyar et al., 2007). The D. vulgaris and M. maripaludis 

flux-balance models were combined to form one model describing 

growth and metabolite accumulation when the organisms were 

growing together. To model the interaction between the two spe-

cies, a system of three “compartments” was proposed. The first two 

compartments each contained the metabolite fluxes for one of the 

single-species models analyzed above. These species’ compartments 

could each represent the action of single cells, or the combined 

flux of many cells of the same species. To model the interaction 

between the two species, a third compartment was added to the 

model, through which metabolites could be transferred between 

organisms. Exchange fluxes were added to the model in this com-

partment. With this modification, species could take up metabolites 
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nov., and P. isophthalicum sp. nov. (Qiu et al., 2006) involved in 

syntrophic degradation of phthalate isomers and also lacking the 

ability of sulfate reduction. Imachi et al. (2006) demonstrated that 

none of these species was able to use sulfate, sulfite, or organosul-

fonates as electron acceptors. A PCR-based screening for dsrAB 

genes (key genes of the sulfate respiration pathway encoding the 

alpha and beta subunits of the dissimilatory sulfite reductase) of all 

cultures tested was negative with the exception of P.  propionicicum. 

Based on these results it was proposed that subcluster Ih bacteria 

have adapted to anoxic, low-sulfate conditions and thus constitute a 

significant fraction of the Desulfotomaculum cluster I population in 

methanogenic microbial communities in a wide variety of metha-

nogenic environments, highlighting its ecological impact in anoxic 

environments low in sulfate (Imachi et al., 2006; Figure 2). As a 

consequence of this evolutionary process, they have lost the capa-

bility of dissimilatory sulfate reduction and adopted the syntrophic 

life style, in close proximity to hydrogen- and formate-consuming 

methanogens. In such a way they can maintain an energetically 

favorable, low-hydrogen partial pressure that is necessary for the 

syntrophic oxidation of organic substrates. Given their recognized 

phenotypes and wide occurrence in low-sulfate, methanogenic 

environments, descendants of the Desulfotomaculum subcluster Ih 

branch most likely function as non-sulfate-reducing, syntrophic 

degraders of organic substrates in situ. This hypothesis received 

further support from a study that showed, by using rRNA-based 

stable-isotope probing, that Pelotomaculum species were not only 

dominant, but also actively involved in syntrophic propionate oxi-

dation in a rice paddy soil (Lueders et al., 2004). Interestingly, the 

recently sequenced genome of P. thermopropionicum (Kosaka et al., 

2008) points out the presence of dsr and aps genes (aps is coding for 

pure cultures (Walker et al., 2009; Plugge et al., 2010). In addition, 

the studies also identified the upregulation during the D. vulgaris 

syntrophic metabolism of the high-molecular-mass cytochrome 

complex (DVU0533, encoding Hmc protein 4), the DVU0145–

0150 cellular membrane gene cluster of unknown function and 

heterodisulfide reductase (hdrAB), and the downregulation of 

genes involved in iron transport (feoB and feoA; Walker et al., 

2009; Plugge et al., 2010).

Among the SRB members of the genus Desulfovibrio are easy to 

grow and they grow rapidly. Therefore, they have been the subject 

of the most intensive biochemical and molecular research (Postgate, 

1984; Peck, 1993; Voordouw, 1993). However, multiple studies have 

described physiology and metabolic mode of SRB in relation with 

their environment. In the following paragraphs we will review a 

variety of these SRB-containing communities and their role in 

anaerobic biodegradation.

METABOLIC FLEXIBILITY OF DESULFOTOMACULUM 

CLUSTER IH

Members of the Gram-positive Desulfotomaculum cluster I are 

commonly considered as regular sulfate-reducing bacteria. 

However, in the last decade new representatives have been iso-

lated that lack the ability of sulfate reduction, all phylogenetically 

grouping in Desulfotomaculum cluster Ih. These representatives are 

isolated from environments typically low in sulfate and producing 

methane: anaerobic bioreactors and rice paddy soils. Syntrophic 

propionate-oxidizing species of the genus Pelotomaculum are 

Pelotomaculum schinkii, P. thermopropionicum, and P. propionici-

cum (de Bok et al.,2005; Imachi et al., 2002, 2006, 2007). Additional 

members of Desulfotomaculum cluster Ih are P. terephthalicum sp. 

FIGURE 1 | A gene cluster with orthologs only in Syntrophobacter fumaroxidans and four recently sequences Desulfovibrio strains was significantly 

down-regulated during shift from syntrophic to sulfidogenic metabolism (Printed from Plugge et al., 2010, with permission of SGM).
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benzene degradation in the studies by Kleinsteuber et al. (2008) 

and Herrmann et al. (2010). Benzene was completely mineralized 

in the presence of sulfate by a consortium consisting of syntrophs, 

hydrogenotrophic sulfate reducers and to a minor extent aceticlastic 

methanogens. Also Laban et al. (2009) showed that organisms phy-

logenetically related to the Gram-positive genus Pelotomaculum were 

responsible for benzene degradationcoupled to sulfate reduction. 

However, the 16S rRNA gene-based sequence similarity to the next 

cultivated representative of Desulfotomaculum cluster Ih constituted 

only 95%. These sequences could be clustered between the genera 

Desulfotomaculum and Pelotomaculum. The similarity of the sequences 

of the Pelotomaculum-related phylotypes described by Kleinsteuber 

et al. (2008) to those identified by Laban et al. (2009) range from 88.8 

to 95.7% indicating that these phylotypes are indeed different.

Based on their results with a highly enriched culture, where only 

one dominant species was present, Laban et al. (2009) proposed 

that these bacteria with Pelotomaculum-related 16S rRNA gene 

sequences oxidize benzene directly coupled to sulfate reduction.

Clearly we cannot exclude that members of the Desulfotomaculum 

subcluster 1 h are capable of sulfate reduction, but apparently they 

can not be easily adapted to do so. The information presented here 

is based on our present knowledge.

METABOLIC FLEXIBILITY BY MEMBERS OF THE ORDER 

SYNTROPHOBACTERALES

The Syntrophobacterales are an order of the δ-Proteobacteria, 

with three families, the Syntrophaceae, Syntrophobacteraceae, 

and Syntrophorhabdaceae (McInerney et al., 2008). Many of 

adenylyl sulfate  reductase, another important enzyme in the sulfate 

respiration pathway that consists of an alpha and beta subunit). 

The genes are clustered in an operon (PTH_0235 to PTH_0242).

Gene clusters necessary for dissimilatory sulfate reduction, 

such as those for transmembrane electron transport complexes 

(Haveman et al., 2004), were not found in the genome of P. 

 thermopropionicum. This is consistent with previous physiological 

observations showing that this bacterium could not utilize sulfate as 

an electron acceptor (Imachi et al., 2002). The PCR-based screening 

for dsrAB genes by Imachi et al. (2006) that tested negative for P. 

thermopropionicum may have used primer sets that did not amplify 

the dsrAB genes in P. thermopropionicum. It is also possible that 

some of these dsrAB-carrying non-sulfate reducers use organo-

sulfonates as electron acceptors for anaerobic respiration instead. 

e.g., Bilophila wadsworthia degradestaurine to sulfite, which is the 

actual substrate for its dissimilatory sulfite reductase (Cook et al., 

1998). However, a whole range of organosulfonates did not sup-

port growth of the thermophilic spore-forming, low-G + C bacteria 

belonging to the genus Pelotomaculum (Imachi et al., 2006). An 

alternative explanation is that the real substrate for the dissimilatory 

sulfite reductase in syntrophic bacteria has not yet been identified.

Desulfotomaculum cluster Ih related species are also involved in 

the anaerobic mineralization of benzene in the presence of sulfate 

(Kleinsteuber et al., 2008; Laban et al., 2009; Herrmann et al., 2010). 

Identification of the benzene-degrading, sulfate-reducing communi-

ties was in all three studies based on culture-independent methods. 

A Pelotomaculum/Cryptanaerobacter-like phylotype represented a 

syntrophic community responsible for the initiation of the  anaerobic 

FIGURE 2 | Phylogenetic tree of Desulfotomaculum cluster I, showing the 

grouped phylogeny of Pelotomaculum ssp. The tree is based on comparative 

analyses of 16S rRNA gene sequences. The tree was constructed with 

sequences greater than 1,000 nucleotides using the latest released version of 

ARB (ARB 5.2, September 5, 2010). Bacillus subtilis was set as root. The 

reference bar indicates 10% sequence divergence.
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NON-EXISTING METABOLIC FLEXIBILITY BY BUTYRATE 

OXIDIZERS

Bacteria that grow on butyrate syntrophically with methanogens can 

only be found within the Gram-positive genera Syntrophomonas and 

Syntrophus. None of the members of these genera has the ability to 

reduce sulfate. The recently sequenced genomes of Syntrophomonas 

wolfei and Syntrophus aciditrophicus clearly show the lack of dsr 

and aps genes which explains on a molecular basis the inability 

of these organisms to do so. On the other hand, Gram-positive 

and Gram-negative butyrate-degrading sulfate-reducing genera 

have been described (e.g., Desulfobacterium, Desulfosarcina, and 

Desulfoarculus). None of the isolated sulfate-reducing species was 

ever shown to be able to grow in the absence of sulfate in syntrophy 

with methanogens (Rabus et al., 2006; Muyzer and Stams, 2008). 

This suggests that butyrate-degrading communities have a different 

response to changes in sulfate availability than propionate-degrad-

ing communities. In granular sludge butyrate-degrading bacteria 

that grow in syntrophy with methanogens are not easily outcom-

peted by sulfate-reducing bacteria (Oude Elferink et al., 1994). 

Instead, hydrogen-consuming methanogens seem to be replaced by 

hydrogen-consuming sulfate reducers, while  propionate-degrading 

communities are easily outcompeted by typical propionate-degrad-

ing sulfate-reducing bacteria. Recently, it was observed that in 

communities that degrade long-chain fatty acids Syntrophomonas 

sp. persisted when methanogenic sludge was exposed to increas-

ing levels of sulfate, but the hydrogen- consuming archaea were 

outcompeted by hydrogen-consuming sulfate- reducing bacteria 

(Sousa et al., 2009).

METABOLIC FLEXIBILITY OF SRB IN MARINE ENVIRONMENTS

In sulfate-rich marine sediments, sulfate-reducing bacteria typically 

use all the products of primary fermentations and oxidize them 

to CO
2 

coupled to sulfate reduction (Muyzer and Stams, 2008). 

Therefore, fermentation by syntrophic communities is thought 

to be unimportant. However, when sulfate becomes limited the 

organic matter is no longer mineralized coupled to sulfate reduc-

tion, but through methanogenesis. Kendall et al. (2006) described 

marine syntrophic propionate- and butyrate-degrading cultures. 

This study implied that syntrophic communities contribute to the 

vast methane reservoirs in marine sediments. Microbial popula-

tions identified in shallow methanogenic sediments in the Gulf of 

Mexico revealed the presence of members of Syntrophobacteriaceae 

(Lloyd et al., 2006; McInerney et al., 2008). Cultured members 

of this family include syntrophic propionate oxidizers that can 

also reduce sulfate and as such have the capability to switch from 

sulfate-reducing life style to syntrophic life style as was discussed 

in paragraph “metabolic flexibility by members of the order 

Syntrophobacterales” (McInerney et al., 2008). Members of the 

Syntrophobacteriaceae were also found in the sulfate–methane 

transition zone in the Black Sea (Leloup et al., 2007, 2009). It was 

speculated that in these sediments, sulfate-reducing bacteria and 

methanogens do not compete but rather co-exist when mineral-

izing organic matter. In the absence of sulfate the reducing equiva-

lents produced (hydrogen or formate) by SRB can be shuttled to 

a methanogen, serving as the syntrophic partner. More recently 

in Aarhus Bay it was found, that sulfate reducers were still very 

abundant in the methanogenic zones (Leloup et al., 2009). It is still 

the members of these families are SRB, but also representa-

tives of these families have been isolated that lack the abil-

ity for anaerobic sulfate respiration, or can grow as SRB or 

fermentative organism, depending on the environmental 

conditions (Wallrabenstein et al., 1994, 1995; Van Kuijk and 

Stams, 1995; Liu et al., 1999; Chen et al., 2005). With respect 

to 16S rRNA phylogeny, no predictions can be made on their 

metabolic flexibility.

Research has focused on propionate-degrading bacteria from the 

order Syntrophobacterales, specifically members that were enriched 

and isolated in the absence of sulfate. All species studied (Table 1) 

were capable of propionate degradation in syntrophic co-culture 

with a syntrophic partner but also as a pure culture coupled to 

dissimilatory sulfate reduction.

It remains unknown why some bacteria have actively 

expressed dsrAB genes, but cannot utilize sulfate, sulfite, and/

or organosulfonates for anaerobic respiration. One might 

speculate that these microbes were formerly active sulfate 

reducers, but have lost this trait since they have to deal with 

low-sulfate and/or sulfite levels in methanogenic environments 

(Imachi et al., 2006). For this reason, the presence of dsrAB 

in these bacteria, which most often live in close association 

with  hydrogen-consuming microorganisms for the syntrophic 

oxidation of substrates, would be a genetic remnant and thus 

indicative of an ancient sulfate/sulfite-respiring potential. The 

physiological data on syntrophs from the Syntrophobacterales 

order, which are abundantly present in methanogenic environ-

ments (Loy et al., 2004; Lueders et al., 2004; Stams and Plugge, 

2009), indicate that all have retained their sulfate-reducing 

capability (Wallrabenstein et al., 1994; Van Kuijk and Stams, 

1995). Syntrophic dsrAB-containing non-SRBs, syntrophic 

SRBs, and real sulfate reducers are phylogenetically fused, indi-

cating an evolutionary connection between the sulfate-reducing 

and syntrophic lifestyle.

Table 1 | Growth rates of selected propionate-degrading bacteria with 

and without sulfate.

 Growth rate (day−1) References

 Propionate Propionate  

  + sulfate

Syntrophobacter 0.17 0.024 Van Kuijk and Stams (1995), 

fumaroxidans   Harmsen et al. (1998)

Syntrophobacter 0.066 0.063 Wallrabenstein et al. (1995)

pfennigii

Syntrophobacter n.d.* 0.12 Chen et al. (2005)

sulfatireducens

Syntrophobacter 6.7** 0.062 Wallrabenstein et al. (1994)

wolinii

Smithella n.d.* n.d.*** Liu et al. (1999)

propionica

*Capable of syntrophic growth on propionate, but growth rate not determined.

**Only a doubling time (days) was determined.

***Capable of sulfate reduction, but growth rate not reported.
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