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Abstract | One element of classical systems analysis treats a system as a black or grey box, 
the inner structure and behaviour of which can be analysed and modelled by varying an 
internal or external condition, probing it from outside and studying the effect of the variation on 
the external observables. The result is an understanding of the inner make-up and workings of 
the system. The equivalent of this in biology is to observe what a cell or system excretes under 
controlled conditions — the ‘metabolic footprint’ or exometabolome — as this is readily and 
accurately measurable. Here, we review the principles, experimental approaches and scientific 
outcomes that have been obtained with this useful and convenient strategy.

The METABOLOME is defined as the quantitative comple-
ment of low-molecular-weight metabolites present in 
a cell under a given set of physiological conditions1–9. 
It lends itself readily to functional genomic and other 
analyses, as changes in a cell’s physiology as a result of 
gene deletion or overexpression are amplified through 
the hierarchy of the TRANSCRIPTOME and the PROTEOME, 
and are therefore more easily measurable through the 
metabolome, even when changes in metabolic fluxes 
are negligible1,10–12. In addition, the default assump-
tion underlying transcriptome and proteome analysis 
— that an x-fold increase in a transcript or protein 
necessarily results in an x-fold increase in the effective 
activity — does not normally reflect reality. At any given 
time, the rate of an enzymatic reaction is a function of 
the available substrates, products and modifiers as well 
as gene expression13, and the formalism of metabolic 
control analysis14–16 tells us that, although changes in 
the expression level of individual proteins might have 
little influence on fluxes, they can and do have large 
effects on the concentrations of intermediary metabo-
lites. Consequently, the metabolome is expected — and 
found17 — to be more sensitive to perturbations than 

either the transcriptome or proteome. This is because 
the activities of metabolic pathways are reflected 
more accurately in the concentrations of pools of 
metabolites than in the concentrations of the relevant 
enzymes (or indeed the concentrations of the mRNAs 
encoding them).

Metabolomics is therefore considered to be, in 
many senses, more ‘useful’ (that is, ‘discriminatory’) 
than transcriptomics and proteomics, for the following 
reasons. Metabolomics is ‘downstream’ — changes in the 
metabolome are amplified relative to changes in the tran-
scriptome and proteome, and are arguably numerically 
more tractable1. There is no need for a whole genome 
sequence or for large expressed-sequence-tag databases 
to be available for each species. Metabolic profiling is 
cheaper and more high-throughput than proteomics 
and transcriptomics, making it feasible to examine 
large numbers of samples from organisms that have 
been ‘grown’ under a wide range of conditions. Finally, 
the technology involved in metabolomics is generic, as 
a given metabolite — unlike a transcript or protein — is 
the same in every organism that contains it (other than 
for secondary metabolites, as originally defined18).
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METABOLOME
Nominally all of the small-
molecular-weight metabolites in 
a sample. For practical reasons, 
this is rarely, if ever, achieved 
using a single extraction 
method, and subsets of 
metabolites (‘metabolic profiles’) 
are more typically obtained.

TRANSCRIPTOME
All the mRNA molecules 
(transcripts) in a sample.

PROTEOME
Nominally all the proteins in a 
sample. This measurement is 
not usually achieved because of 
poor solubilities, especially of 
membrane proteins, and 
sometimes protein digests are 
used, from which peptides 
representing the proteome are 
analysed. The concept of the 
proteome should also include 
all the post-translational 
modifications that might occur.

CE-MS
A technique in which 
metabolites are separated using 
capillary electrophoresis and 
then analysed using mass 
spectrometry. Two different runs 
are used for cations and anions, 
whereas neutral molecules can 
be separated using techniques 
that give them an effective 
charge.

GCMS
A high-resolution analytical 
technique in which molecules, 
typically derivatized to enhance 
their volatility, are separated 
and then identified using mass 
spectrometry.

LCMS
A technique in which 
metabolites are separated 
according to their polarity. In 
metabolomics, reverse-phase 
chromatography (in which the 
column is hydrophobic and an 
organic solvent such as methanol 
or acetonitrile is used for 
elution) is most popular, 
although polar chromato-
graphies are also used.

METABOLIC FOOTPRINTING
A strategy for analysing the 
properties of cells or tissues by 
looking in a high-throughout 
manner at the metabolites that 
they excrete or fail to take up 
from their surroundings.

METABOLIC FINGERPRINTING
Classification of samples on the 
basis of their biological status or 
origin, using high-throughput 
methods, usually spectroscopic.

However, measurement of a complete set of intra-
cellular microbial metabolites not only requires rapid 
quenching of metabolism19,20 and a time-consuming 
and often inadequate extraction and separation pro-
cedure20–22, but also the development of a method 
suitable for detecting and quantifying large numbers 
of metabolites that can be present at widely differing 
concentrations. Although several diverse techniques 
have previously been used for this purpose, including 
enzymatic metabolite quantification12, nuclear mag-
netic resonance (NMR) spectroscopy12,23, capillary 
electrophoresis coupled to mass spectrometry CEMS24, 
gas chromatography coupled to mass spectrometry 
GCMS25–28 and liquid chromatography coupled to mass 
spectrometry LCMS29–32, none of these completely ful-
fils the need for an accurate, simple and, in particular, 
rapid method with a broad dynamic range. We note 
especially the rapid timescale for the turnover of an 
intracellular metabolite (the turnover time is approxi-
mately equal to the concentration of the metabolite 
divided by the flux through the pathway of which it is 
a member33), which can be under 1 second in microbial 
systems, even for metabolites at mM concentrations19.

Metabolite secretion, excretion and footprinting
It has long been known that microorganisms (and 
humans7,23,34,35) secrete a large number of metabolites 
into their external environment (especially under con-
ditions of unbalanced growth). Fermented beverages 
provide an obvious example of what is now known to 
be microbial activity. Other examples include staling 
factors36,37, uracil and xanthine38, 1,5-anhydroglucitol39, 
furanones40,41, a vast array of intercellular signalling 
molecules18,42–45 , many charged but uncharacterized 
metabolites46 and the many biologically active products 
of both ‘primary’47,48 and ‘secondary’ metabolism18, 
which are often of applied interest49.

As such secretory activities clearly reflect cellular 
metabolic activity (and the level of transcription and 
translation of relevant genes), it occurred to us that 
the global measurement of secreted metabolites might 
be exploited to analytical advantage. In particular, 
the rapid quenching required to profile intracellular 
metabolites would be avoided, as the turnover time 
of metabolites diluted into the greater extracellular 
space is decreased in proportion to the relative ratios 
of extracellular and intracellular volumes. Although 
the characterization of metabolites in microbial cul-
ture broths has already been carried out using various 
detection methods50,51 (and in culture off-gas using 
an electronic ‘nose’48,52,53), such analyses were largely 
confined to specific metabolites and have not been 
done on a global scale.

Consequently, we devised METABOLIC FOOTPRINTING54 
as a novel method for the functional analysis and 
characterization of cells using the metabolome 
(FIG. 1). Metabolic footprinting as described relies 
not on the measurement of intracellular metabolites 
(a technique which is widely referred to as METABOLIC 

FINGERPRINTING55) but on the monitoring of metabo-
lites consumed from, and secreted into, the growth 
medium by batch cultures of yeast using direct-
injection MS, in which samples of culture media are 
injected directly into an electrospray ionization mass 
spectrometer. To maximize the excretion of metabo-
lites, overflow metabolism56 is stimulated by adding to 
the fully defined medium various carbon compounds 
that ‘probe’ metabolically active networks in the same 
way that an engineer might probe an electrical cir-
cuit57. Although such reasoning is not entirely water-
tight58, it is reasonable to infer that those metabolites 
that do not appear in the medium in a particular 
gene knockout (or conversely those that increase 
in concentration when the encoding gene is cloned 

Figure 1 | The basis of metabolic footprinting. a | The basic metabolic footprinting strategy, starting with samples and 
proceeding through analysis to data processing until a classification can be effected or a scientific conclusion can be drawn. 
This can lead to the acquisition and analysis of further samples and subsequent loops around this cycle. b | A typical metabolic 
footprint (H.M.D. & D.B.K., unpublished data) using direct-injection positive-ionization low-resolution (to unit mass) electrospray 
mass spectrometry54. Shown is the average footprint from 250 single-gene yeast knockout strains. Note that there are peaks at 
every m/z (mass/charge ratio) value. Glucose can be identified at m/z 181, 203 (Na+ adduct) and 219 (K+ adduct). Other 
metabolites tentatively identified are glycerol-NH4

+ (m/z 110), valine (m/z 118), histidine (m/z 156) and phenylalanine-Na+ or 
methionine-K+ (m/z 188).
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GENETIC PROGRAMMING
A powerful but simple 
computational technique with 
which rules are evolved that can 
be used to solve classification or 
regression problems, for 
instance by using the 
metabolome or metabolic 
fingerprinting data as the 
inputs.

GCTOF MS 
A high-resolution analytical 
technique in which molecules, 
typically derivatized to enhance 
their volatility, are separated 
and then identified using 
time-of-flight mass 
spectrometry.

downstream of a high-expression promoter) are 
produced through flux- or information-controlling 
pathways that more or less directly involve the gene 
product in question.

Metabolic footprinting has proved useful for detect-
ing the patterns of metabolites in single-gene-knockout 
strains in functional genomic analyses54,59 as well as 
in mode-of-action studies60, in which the pattern of 
metabolites excreted when strains are challenged 
with sub-lethal concentrations of growth inhibitors 
makes it possible to discriminate the site or mode of 
action of those inhibitors. GENETIC PROGRAMMING61–63 
BOX 1 allows the evolution of simple rules that can 
both discriminate the mode of action and explain how 
this discrimination works60. It is evident that this kind 
of metabolic footprinting strategy could be useful in 
(‘forward’) chemical genetics and/or chemical genom-
ics64,65 in which xenobiotic compounds affect cells at 
unknown sites of interaction.

Global metabolite patterns
Because direct-injection MS is high-throughput, we 
could screen 250 mutants in triplicate over a period 
of 3 days. The large amounts of data (750 samples; 
mass/charge ratio (m/z values) from 45 to 1,000) reveal 
some interesting patterns when analysed in a ‘global’ 
sense using a data pipeline approach66. Some m/z val-
ues (relating to metabolites (M) present as [M+H]+, 
[M+NH4]

+, [M+Na]+ or [M+K]+ ions as minimal ion 
fragmentation is observed) are highly correlated with 
each other, indicating that they are metabolically linked 
or are different molecular ions of the same metabolite. 
Those m/z values that are not related to the same 
metabolite but are correlated with other metabolites 
are of greater interest67, and exact mass measurements 
can assist in finding them. A similar phenomenon has 
been observed when studying the natural co-variation 
of metabolites in individual plants68–70, but it is clearer 
when the range of concentrations is broadened (typi-
cally 3.5-fold) by looking at a series of gene knockouts 
(FIG. 2a). Other relationships between m/z values, 
such as a strong anti-correlation, are also commonly 
observed. More interesting perhaps is a frequent 
bimodal distribution in which individual m/z values 
show clear relationships, groups and clusters even if 
they are not well correlated per se (FIG. 2b). The analy-
sis of the contribution of different m/z values to the 
total ion current (for example, FIG. 2c) also frequently 
shows bimodality. One interpretation of these observa-
tions is that metabolism is organized in ‘modules’71–73 

(as is common in transcription networks74–77), so that 
a knockout in one module might have a large influ-
ence on flux within this module, whereas a knockout 
affecting a gene product not in this module will have 
correspondingly little effect (therefore bimodality: a 
gene product is either in a particular module or not). 
A second conclusion that can be drawn from plots 
such as that in FIG. 2c is that most gene knockouts have 
pleiotropic effects (see also REFS 78,79), causing changes 
in almost all m/z values. This emphasizes the power 
of metabolomics in providing a rich and highly dis-
criminatory source of data for functional genomics54. 
Additionally, some gene knockouts will simply cause a 
slow-growth phenotype, for which the footprint is less 
precise in terms of the specific lesion; the same is true 
for transcriptome analysis80.

From patterns to metabolites
The disadvantage of direct-injection MS is that we 
trade off knowledge of which metabolite(s) each 
m/z value represents for speed (the direct-injection 
method produces reliable spectra in under a minute). 
More recently, we have turned to methods that allow 
us to identify the metabolites in question chemically. 
Of these methods, gas chromatography coupled to 
time-of-flight mass spectrometry GCtof MS is probably 
the most widely used6,9,26. By combining evolutionary 
algorithms81,82 with an entirely automated closed-loop 
strategy83, we have succeeded in doubling the number 
of peaks observed in yeast supernatants to >350 and 
trebling the number of peaks observed in human 

Box 1 | Genetic programming

Genetic programming is an evolutionary computing or machine-learning technique. 
With such methods, we typically seek descriptive relationships between complex 
paired sets of highly multivariate inputs (in this case metabolite peak levels) and 
outputs representing a higher-order property of interest (for example, the presence 
or severity of, or susceptibility to, a disease, or a functional knockout, mode of 
action, physiological trait, and so on). Individual rules are encoded in the form of a 
tree (see figure, also known as a ‘parse tree’) in which the terminals represent the 
inputs, and nodes (curved rectangles) represent arithmetic operators such as +, –, *, 
/, log, √, or logical operators such as ‘IF…THEN…’, and so on. The tree is read from 
the terminals to the top and is assigned a fitness according to preference (usually this 
incorporates the idea that fitter individuals should have more examples classed 
correctly, and that simpler explanations are to be preferred over, and are fitter than, 
complex explanations). In each generation, typically thousands of such rules are 
evaluated and selection is used to favour (though not exclusively) those rules that are 
fitter. New rules are formed by manipulations that cause the mutation and 
recombination of these rules (trees), which occurs by changing or swapping parts of 
the tree below a node (this automatically preserves semantic correctness). This 
process continues until a desired stopping point (a certain number of generations or 
ideally a pre-determined degree of success on a ‘hold-out’ or ‘validation’ set not used 
in the formation of the rules). Finally, the rules are evaluated on an independent test 
set (one that was not used even in setting the stopping criterion).

Although there are some antecedents, genetic progamming was developed and 
popularized by John Koza63,131. For other surveys see REFS 61,62,132135, and for 
evolutionary computing more generally REF. 136. In the example given in the text60, 
a rule was evolved for a particular mode of action that decreased the number of 
variables involved in describing the effects of this mode of action on the 
exometabolome of yeast cells from 935 to just 2, therefore making the potential 
structural determination of the metabolites involved in these rules much easier.

Quantitative indicator

Output = (log(peak 27) + peak 342)/peak 596
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GC x GCtof MS
Similar to GC-tof MS, but 
involving two stages of gas-
chromatographic separation in 
which a sample is taken (split) 
from the first dimension of the 
separation (typically carried out 
using a non-polar stationary-
phase material) and effecting 
further ‘orthogonal’ separation 
(typically using a more polar 
stationary phase).

serum to ~950 REF. 28, while keeping the run time 
down to 13 and 20 minutes, respectively, and main-
taining a good signal/noise (S/N) ratio. All the detected 
peaks are a combination of metabolite peaks, deriva-
tization of which can produce more than one product 
per metabolite, and to a lesser extent blank related 
compounds such as phthalates. For yeast supernatants, 
>300 different metabolite peaks have been detected 
by one-dimensional GC-tof MS, and a typical result 
is 100–200 metabolite peaks per sample, correspond-
ing to 50–150 metabolites. Current research strategies 
include building metabolomics-based retention index/
mass spectral libraries to assist in metabolite identifi-
cation84. In the authors’ laboratories, ~70 metabolite 
peaks have been identified using chemical standards, 
and work is ongoing.

FIGURE 3a shows a typical GC-tof MS total ion 
chromatogram of yeast supernatant, with some of 
the metabolites identified. This approach is 
semi-quantitative to aid the high-throughput 
approach. The application of emerging orthogonal 
multidimensional separation techniques, includ-
ing GC × GCtof MS, will increase both the number of 
metabolites detected and the measured S/N ratio85–88. 
A typical GC × GC-tof MS 3-dimensional plot of yeast 
supernatant is shown in FIG. 3b; up to 500 peaks can 
be detected in yeast supernatant, not all of which are 
visible at a single magnification.

From yeast to humans
Most of our work has used yeast, for all the usual and 
obvious reasons (for example, easy and safe to work 
with and grow, the availability of ‘bar-coded’ gene-
knockout mutants and the absence of ethical issues). 
However, yeast is also well recognized as a good model 
for mammalian studies89 — 42% of yeast genes have 
human homologues90 and trans-complementation has 
been shown for some genes91. One can also remark 
that, from the point of view of cells and tissues, bio-
logical fluids such as urine and even serum or plasma 

are the extracellular space into which molecules are 
secreted. Sampling these fluids is therefore, in some 
senses, equivalent to metabolic footprinting (and 
equivalently integrates the signals from all cells in a 
differentiated organism). A GC × GC-tof MS trace 
from human serum (FIG. 3d) shows both the dynamic 
range and the extent to which many overlapping peaks 
in the first dimension are successfully separated in the 
second dimension (>2,000 peaks are detectable with 
S/N>10 and relate to ~1,000 metabolite peaks; see also 
REF. 88).

Future directions: data standards and curation
An important need for large-scale studies of the type 
facilitated by metabolic footprinting is the ability to 
store metabolomics data in well-designed and curated 
databases that can store, handle and disseminate large 
amounts of metabolomics data efficiently and readily 
lend themselves to data mining and machine learn-
ing. Various omics data models (colloquially ‘data 
standards’) have been proposed, focusing on specific 
research areas and analytical methods. For example, 
MIAME (minimum information about a microarray 
experiment)92 and MAGE-OM (microarray-gene-
expression object model)93, and PEDRo/PSI (proteom-
ics experimental data repository/proteomics standards 
initiative)94–97 are the emerging standards for transcrip-
tomics and proteomics, respectively. Similar attempts 
are now coming through for metabolomics98–100, and 
other MS data standards such as mzXML (in which 
MS data-acquisition files are converted into extensi-
ble markup language, XML101) will be useful for both 
proteomics and metabolomics.

These data models all enable the storage of both 
metadata and analytical data. Storing the metadata 
(that is, information about the specific conditions, 
protocols and parameters used in wet experiments) 
together with the experimental results is necessary 
to interpret the data and support comparison and 
reproducibility. The metadata types supported in the 

Figure  2 | Patterns of m/z (mass/charge ratio) values in large-scale gene-knockout metabolic footprinting 
experiments. The values plotted are derived from the m/z values normalized to total ion count from 250 single-gene knockout 
experiments carried out in triplicate. a | Strong correlation between m/z 233 and 217 (these could be Na+ and K+ adducts of the 
same metabolite). b | Bimodal clustering of pairs of m/z values (here 107 and 208), consistent with a modular view of 
metabolism. c | The variation of the contribution of m/z 163 to the total ion current.
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omics data models depend on the type of data that are 
acquired by analytical experiments, and the analytical 
techniques used to produce these data can therefore be 
seen as common ground in these models. For example, 
some experimental techniques and data features (such 
as peaks and fractions) are shared by proteomics and 
metabolomics. Therefore, there is room to standard-
ize common parts across different omics models to 
facilitate their incorporation into an overall schema 
that reduces redundancies and reuses common com-
ponents. For example, SysBio-OM (systems-biology 
object model)102 has been developed as a single schema 
to document transcriptomics, proteomics and meta-
bolomics experiments using a common platform to 
represent all three types of data. This has been done by 

integrating proteomics data (supported by PEDRo94–96) 
and metabolomics experiments (in particular MS 
and NMR methods) into the MAGE-OM model for 
transcriptomics93.

Obviously, what must be supported in these data 
models are the analytical techniques. A good way to 
standardize models across different fields of research 
is to develop a universal separate module that can be 
fitted into each different data model (for example, by 
using name spaces in XML schemas) or reproduced 
if necessary. At present, there are plenty of ‘dialects’ 
describing analytical methods and data (BOX 2 lists 
some) but still no widely accepted standard. Some 
models (for example, AGML (annotated gel markup 
language)) target specific techniques, whereas others 

Figure 3 | Modern technology applied to metabolic footprinting. a | Gas chromatography coupled to time-of-flight mass 
spectrometry (GC-tof MS) total ion chromatogram for a typical metabolic footprint of Saccharomyces cerevisiae. a, glycerol; 
b, malonic acid; c, succinic acid; d, uracil; e, malic acid; f, 2-hydroxyglutaric acid; g, 2-oxoglutaric acid; h, citric acid; i, 
tryptophan; j, stearic acid; k, disaccharides. b | GC × GC-tof MS total ion chromatogram 3D plot for a typical metabolic footprint 
of Saccharomyces cerevisiae. c | GC-tof MS total ion chromatogram of human serum. d | GC × GC-tof MS traces of the human 
serum metabolome. e | Base peak ion chromatogram of human serum collected by UPLC (ultra-performance liquid 
chromatography)-tof MS. More than 10,000 peaks are typically detected with this technique, with the signal/noise ratio >5 after 
chromatogram deconvolution using the MarkerLynx software (Waters). The identification and number of metabolites and blank 
related compounds is not yet fully established, though it can be expected that 2,000–5,000 peaks are endogenous-metabolite-
related, with others coming from xenobiotic metabolism in the gut and elsewhere. TIC, total ion current.

3.0

2.5

2.0

1.5

1.0

0.5

100

90

80

70

60

50

%
 o

f h
ig

he
st

 p
ea

k

TI
C

 (×
10

7 )

Time (min)

Time (s)

40

30

20

10

0

400

2 4 6 8 10 12 14 16 18 20 22 24 26

500 600 700 800 900 1000 1100 1200

a

b
c

d
e

h

f
g i

j k

2.5

TI
C

 (×
10

7 )

Time (s)

2.0

1.5

1.0

0.5

300 400 500 600 700

2576.67 2776.67 2796.67

3.
59

96
5.

87
4.

87
3.

87
2.

872880.98

2380.98

1880.98

4.
59

96

750
250

1,250
1,750 0.75

2.75

4.75

a c

b

e

d

NATURE REVIEWS | MICROBIOLOGY  ADVANCE ONLINE PUBLICATION | 5

R E V I E W S



© 2005 Nature Publishing Group 

 

2DE/MS
A proteomics technique in 
which proteins are separated 
according to their mass and 
charge, using two-dimensional 
gel electrophoresis, and 
subsequently identified, and 
sometimes quantified, using 
mass spectrometric methods.

(for example, anIML (analytical information markup 
language)) cover a range of different techniques.

Models have also been developed for some of the 
analytical aspects of metabolomics. Some parts (for 
example, MS and GC-MS experiments) already exist in 
ArMet98 (architecture for metabolomics, a framework 
for the description of plant metabolomics experiments 
and their results), but we have also extended our 
model to support other analytical techniques, includ-
ing NMR and Fourier-transform infrared (FT-IR) 
spectroscopy. Our approach is instrument-orientated 
(a separate schema for each machine) for three main 
reasons: the current lack of common standards; easy 
conversion of metadata into the schema format; and 
to prevent the loss of instrument-specific metadata 
that can be caused by using minimum information 
to describe a certain technique. We use an extensible 
modular approach in which different metadata mod-
ules (implemented as separate XML schemas) can be 
inputted into the overall metabolomics schema (both 
relational and XML versions). The XML representa-
tion (using the XML schema language) also facilitates 
the conversion from one format into another by using 
freely available tools (for example, Java Web Services 
Developer Pack) for automatic processing of the 
corresponding XML documents.

As predicted by Achard and colleagues103, XML 
is becoming the predominant means of information 
modelling in the biological sciences (including metabo-
lomics104), allowing the design of customized markup 
languages BOX 2, web-enabled data exchange and 
full data management, including modelling (schemas 
defined by document type definition (DTD) or XML 
schema), storing (XML documents that can be stored 
as files or in databases) and querying (using XML 
query languages, for example, Xquery or XPath). Its 
scalability is particularly suitable for biological applica-
tions because new types of data and relationships are 
constantly emerging; data mining and machine learning 
also produce new data and complex models can be built 
using different data types and relationships.

It usually takes time for a research community to 
agree on, and fully embrace, new standards. However, 
the systems biology experts correctly recognized the 
potential of XML. Systems biology markup language 
(SBML)105,106 is being developed as an XML format to 
represent models of biochemical reaction networks. 
Although far from complete, it has been widely 

accepted within the systems biology community as 
an information standard, allowing complex models 
to be shared, evaluated and developed cooperatively. 
Metabolomic models represented by SBML must still 
be integrated with proteome and metabolome data, 
and this integration represents a substantial part of 
the systems biology agenda. Specifically, the inte-
grated understanding of cellular function requires 
large amounts of omics data, but the development of 
this understanding has been slowed because exist-
ing research programmes have focused on partial 
aspects (for example, transcriptomics, proteomics or 
metabolomics) of biological systems, neglecting the 
relationships between them.

Therefore systems biology, although not so new in 
its essential thinking107,108, has emerged as an approach 
to the study of biological systems that aims to under-
stand how the heterogeneous parts combine to form 
the whole109,110 through systematic integration of tech-
nology, biology and computation111. As such, it shares 
the same agenda as metabolic control analysis14–16,112 
and biochemical systems theory113. Data-mining and 
machine-learning techniques applied to databases of 
omics data to extract hidden patterns, followed by 
simulation-based analyses to generate predictions 
that can be further tested in vivo and/or in vitro, can 
help achieve the systems-biology objective114. The first 
step, however, is to develop and standardize the differ-
ent omics data models and fill them with curated data. 
The proteomics field has significantly advanced in such 
efforts: the Human Proteome Organization (HUPO) 
support the Protein Standards Initiative (PSI)97,115,116 
to develop an exchange standard for proteomics data 
(MIAPE — minimum information to describe a pro-
teomics experiment) based on the PEDRo schema94–96 
(itself using the Pedro data-entry tool95). It is now essen-
tial for similar steps to be taken by the metabolomics 
community99.

Concluding remarks
Metabolic footprinting was developed as a convenient, 
reproducible and high-throughput technique for the 
genome-wide, physiological-level characterization of 
microorganisms. The fluxes to extracellular products 
depend on the metabolic pathways operating and, in 
most cases, the metabolic footprint of even single-gene 
knockouts differs markedly from that of otherwise 
isogenic wild-type organisms54. As anticipated117, one 
can ‘calibrate’ the system with knockouts of genes with 
known function, to infer or suggest the function of 
other genes with unknown function. Equivalently, 
large and reproducible changes in the exometabo-
lome occur when cells are treated with sub-lethal 
concentrations of inhibitors with particular modes 
of action, thereby also allowing one to infer this60. 
Improved technical developments, such as CE-MS24, 
high-throughput LC-MS118,119 (FIG. 3e) and multi-
dimensional chromatography, including GC × GC-tof 
MS, will enable wider coverage of the metabolome 
and make these measurements more straightforward 
and discriminatory.

Box 2 | Some omics and related markup languages

• AGML (annotated gel markup language): specialized markup language for 2DE/MS 
experimental data137.

• SpectroML138and mzXML101: markup languages for spectroscopic data.
• anIML (analytical information markup language): an effort to develop a single 

standard for analytical data139.
• GAML (generalized analytical markup language): a compact, generalized format for 

analytical data.
• SBML (systems biology markup language)105,106,140: a still-developing markup 

language that is now widely accepted as the information standard for systems biology.
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Metabolic footprinting will also have applications 
for metabolic engineering. Metabolic engineer-
ing seeks to establish those gene products that are 
important in increasing the productivity of biological 
processes, and to manipulate their concentrations or 
activities accordingly112,120,121. As such, the detection 
in the extracellular space of all metabolites that are 
not the desired products of interest shows directly 
which non-productive pathways are operating and 
therefore should, if possible, be eliminated122,123 (with 
concomitant savings in purification costs as well as in 
productivity enhancement).

Of course, the main programme to which metabolic 
footprinting data will contribute strongly is the genera-
tion and testing of mathematical models of cell behav-
iour, whose iterative interplay with ‘wet’ experiments is 
the hallmark of systems biology109,114. Most constraint-
based metabolic models of microbial cells124,125 can (but 
mainly do not) take large-scale metabolite secretion 
into account. However, in many cases cells are not in 
balanced growth and therefore, for stoichiometric rea-
sons alone, must excrete large amounts of metabolites. 

Indeed, quantitative models with too few ‘branches to 
exit’126 will not even form a steady state127, although 
one can be enforced by parameter optimization128. 
Therefore, measurement of the metabolic footprint 
(or exometabolome) before, or as well as, measure-
ment of the intracellular (or endo-) metabolome9,129 
can provide a useful set of constraints for metabolic 
models. Searching parameter space to optimize a meta-
bolic model that can reproduce experimental data is 
difficult128. However, once the model can reproduce 
the exometabolome accurately, many of the parameters 
will be sufficiently well determined to provide good 
starting points for the fine-tuning with which they can 
also reproduce the endometabolome, first as steady-
state ‘snapshots’16 and then as time series.

As a large-scale integrator of cellular activity, the 
metabolic footprint includes all the metabolites that 
(enter and) exit the cell, and their measurement pro-
vides a potent set of constraints on any cellular meta-
bolic model. Therefore, with apologies to Marshall 
McLuhan130, in metabolic footprinting the medium is 
the message.
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 Online links

FURTHER INFORMATION
Douglas Kell’s laboratory: http://dbk.ch.umist.ac.uk/
AGML: http://s04.muh.musc.edu/%7Eromy/agml_central/
index.php
AnIML: http://animl.sourceforge.net
ArMet: http://www.armet.org
GAML: http://www.gaml.org
Java Web Services Developer Pack: http://java.sun.com/
webservices/jwsdp
MAGE-OM: http://www.mged.org/Workgroups/MAGE/mage.
html
The Metabolic Control Analysis Web: http://dbk.ch.umist.
ac.uk/mca_home.htm
MIAME: http://www.mged.org/index.html
mzXML: http://tools.proteomecenter.org/mzXMLschema.php
PEDRo/PSI: http://psidev.sourceforge.net
SBML: http://www.sbml.o rg
SysBioOM: http://cebs.niehs.nih.gov/content_sysbio_om.html
XML schemas: http://www.w3.org/XML/Schema
Access to this interactive links box is free online.
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