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The roles of duplicate genes and their contribution to the phenomenon of enzyme dispensability are a central issue
in molecular and genome evolution. A comprehensive classification of the mechanisms that may have led to their
preservation, however, is currently lacking. In a systems biology approach, we classify here back-up, regulatory, and
gene dosage functions for the 105 duplicate gene families of Saccharomyces cerevisiae metabolism. The key tool was the
reconciled genome-scale metabolic model iLL672, which was based on the older iFF708. Computational predictions of
all metabolic gene knockouts were validated with the experimentally determined phenotypes of the entire singleton
yeast library of 4658 mutants under five environmental conditions. iLL672 correctly identified 96%–98% and
73%–80% of the viable and lethal singleton phenotypes, respectively. Functional roles for each duplicate family
were identified by integrating the iLL672-predicted in silico duplicate knockout phenotypes, genome-scale
carbon-flux distributions, singleton mutant phenotypes, and network topology analysis. The results provide no
evidence for a particular dominant function that maintains duplicate genes in the genome. In particular, the back-up
function is not favored by evolutionary selection because duplicates do not occur more frequently in essential
reactions than singleton genes. Instead of a prevailing role, multigene-encoded enzymes cover different functions.
Thus, at least for metabolism, persistence of the paralog fraction in the genome can be better explained with an
array of different, often overlapping functional roles.

[Supplemental material is available online at www.genome.org.]

The genome of the yeast Saccharomyces cerevisiae encodes ∼1500
so-called duplicate genes that exist in multiple copies (Gu et al.
2003), about 496 of which resulted from an ancient genome du-
plication (Dietrich et al. 2004; Kellis et al. 2004). Their role in
compensating knockout mutations—often referred to as genetic
network robustness—has been recognized (Pal 2001; Gu 2003;
Gu et al. 2003; Blank et al. 2005), although others favor alterna-
tive pathways as the main reason that a substantial fraction of
gene deletions do not yield a significant phenotype (Wagner
2000). This redundancy-robustness connection or back-up func-
tion, however, is not the evolutionary driving force that retains
both gene copies. The reigning paradigm on the fate of duplicates
predicts that one of the duplicates is either lost or gains a new
function. Return to the single-copy state is then prevented by
specialization in function, expression, and localization (neo- and
subfunctionalization) (Ohno 1970; Kellis et al. 2004; Zhang and
Kishino 2004; Presgraves 2005) or increased gene dosage to boost
activity of key reactions (Seoighe and Wolfe 1999). More specifi-
cally, it has been suggested that many duplicates from the ge-
nome duplication played a direct role in the adaptation of S.
cerevisiae toward fermentation, and thus were largely selected for
in the domestication of yeast (Wolfe 2004).

Since duplicates are highly enriched in S. cerevisiae metabo-
lism (105 duplicate gene families with 295 members) (Conant
and Wagner 2002; Kellis et al. 2004), this subgroup has attracted
particular attention. Presently, gene dosage function (Papp et al.

2004) or differential regulation of reactions (Ihmels et al. 2004) is
advocated as the primary function of metabolic duplicates that
prevent their counterselection in yeast. However, a comprehen-
sive classification of duplicates based on the mechanism that
may have led to their conservation is missing, because genome-
scale experimental analysis would require a presently unavailable
multiple knockout library of entire duplicate gene families. Typi-
cally, duplicate gene functions are assessed indirectly through
genome-wide comparative sequence analysis (Lynch and Katju
2004) or transcriptional profiling (Ihmels et al. 2004; Kafri et al.
2005). In contrast to other cellular processes, however, metabo-
lism-wide functions of duplicate genes are more directly tractable
owing to the available single knockout library (Giaever et al.
2002), genome-scale models of metabolism (Förster et al. 2003a;
Duarte et al. 2004; Price et al. 2004), and methods for quantita-
tive fluxome analysis (Blank et al. 2005; Fischer and Sauer 2005).

Using yeast metabolism as a model, we attempt a functional
classification of duplicate genes to elucidate whether a prevailing
role is the basis of their conservation. Systematic categorization
of the 295 metabolic duplicates was achieved by a combined
approach that includes experimental phenotype data for the en-
tire S. cerevisiae single knockout library, genome-scale in vivo flux
data, in silico flux balancing with a genome-scale model, and
network topology analysis.

Results

Reconstruction and experimental verification of a
genome-scale metabolic model

Elucidation of duplicate gene functions requires knowledge on
whether or not the specified reaction is essential or dispensable.
Since comprehensive knockout libraries for duplicate gene fami-
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lies are presently not available, we predicted lethality of meta-
bolic mutants with the recently described genome-scale model
iFF708 of S. cerevisiae (Förster et al. 2003a) by Flux Balance Analy-
sis (FBA) (Price et al. 2004). The alternative approach of elemen-
tary flux mode analysis to predict lethality from stoichiometry
does not yet work, unfortunately, at the genome scale (Stelling et
al. 2002). For experimental verification, we determined growth
phenotypes of the entire single-gene deletion library (Giaever et
al. 2002) under five environmental conditions, that is, complex
medium (YPD) or minimal medium with glucose, galactose, glyc-
erol, or ethanol as the sole carbon source, with a total of 23,290
experiments in duplicate (Supplemental Table S1). Then, FBA in
silico predictions were compared to the 3360 plate growth ex-
periments of all metabolic gene knockouts. The experimentally
determined singleton lethality was correctly predicted in 40%–
53% of the 79 to 146 cases (Fig. 1). While the more recent in silico
strain iND750 includes compartmentalization (Duarte et al.
2004), its accuracy for lethality predictions was lower than that
of iFF708 (Förster et al. 2003b). The low accuracy is not overly
surprising, since the comparatively small number of lethal mu-
tants is harder to predict than the more frequent viable mutants.
Even for a random choice, the odds to forecast true positives are
higher than to predict true negatives in this case (Provost and
Kohavi 1998; Guda et al. 2004). The apparent bias can be over-
come by using the geometric mean as a key number to quantify
the trade-off (Provost and Kohavi 1998; Guda et al. 2004) be-
tween both accuracies by a single value. This reformulation al-
lows to calculate the overall predictive accuracy (Kubat et al.
1998). For iFF708, the geometric mean of 60%–71% settles the
considerable difference in predictive accuracy for viable (90%–
96%) and lethal singleton deletions (40%–53%).

To improve lethality predictions, we reformulated the bio-
mass composition, by considering ergosterol, thiamin, folate,
and porphyrin as biomass components. These comparatively mi-
nor modifications improved the model predictions in the corre-
sponding biosynthesis pathways. Further analysis of the metabo-

lite balance equations revealed 151 metabolites that were either
not produced or not consumed. Such dead-end metabolites were
involved in 143 reactions, of which 110 were removed and 33
were connected based on new biological knowledge, thus closing
gaps in the biosynthetic pathways (Supplemental Tables S2 and
S3; http://www.gmm.gu.se/YSBN/models.htm). Examples for
new gene functions are the roles of ALD2 and ALD3 in �-alanine
synthesis (White et al. 2003) and elucidation of the sphingolipid
biosynthesis pathway (Obeid et al. 2002).

This reconciled stoichiometric model, henceforth referred
to as iLL672, includes 672 genes (95 of which participate in 24
enzyme complexes) that catalyze 579 biochemically distinct re-
actions and an additional 166 reactions that are not (yet) associ-
ated with any gene. Of these 745 reactions, 180 were involved in
various transport processes and 105 reactions were encoded by
295 duplicate genes. Members of 18 duplicate gene families were
present in two different compartments (Table 1; Huh et al. 2003).
In total, iLL672 comprises 636 metabolites and 1038 reactions,
which include isoenzyme reactions and others in the 745 bio-
chemical reactions. The stoichiometric matrix of the reconciled
network illustrates the overall structure of metabolism, where
most metabolites occur in only few reactions (the diagonal in Fig.
2) and cofactors can be exchanged between remote parts of the
network (Fig. 2; Csete and Doyle 2004). The high connectivity of
common metabolic currency metabolites, such as the end prod-
ucts of cofactor (e.g., NADH, NADPH) or nucleotide (e.g. ATP,
ADP, GTP) metabolism, is highlighted in this representation by
clusters of dots in the horizontal dimension. Generally, duplicate
gene-encoded reactions exhibit no particular clustering pattern,
but are randomly distributed throughout metabolism. An excep-
tion is their overrepresentation in central carbon metabolism
and in certain uptake reactions, for example, the 17-member
hexose transporter family (Wieczorke et al. 1999). On the basis of
the 3360 plate growth experiments of the 672 single-gene dele-
tion mutants that are represented in the genome-scale metabolic
model (Supplemental Table S1), the predictive capability of
iLL672 with the FBA algorithm improved to 96%–98% for viable

Figure 1. Correct prediction of S. cerevisiae mutant lethality with the in
silico strain iFF708 (Förster et al. 2003a) and the in silico strain iLL672
with FBA and MoMA optimization. In the latter case, experimentally de-
termined flux distributions were used as the reference solution (cf. Fig. 4).
The sole exception was YPD medium, for which the optimal FBA solution
was used. Cases in which a correct prediction is structurally not possible,
that is, lethals in single-deletion mutants of duplicate gene families, were
not taken into account.

Figure 2. Stoichiometric network representation of the reconciled S.
cerevisiae metabolic network iLL672. Metabolites (y-axis) and biochemi-
cal reactions (x-axis) are grouped into specific functional categories. Du-
plicate genes and singleton gene-encoded reactions are marked in black
and gray, respectively. The number of dots in the horizontal direction
highlights the reaction in which the corresponding metabolite is in-
volved.
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and 68%–80% for lethal singletons (Fig. 1), which results in a
geometric mean of 81%–89%.

Phenotype prediction by MoMA from genome-scale flux data

Although the predictive capability was clearly improved, central
metabolic deletions such as PGI1 and FBP1 were often falsely
predicted to be viable. This in silico viability was caused by bio-
logically irrelevant bypass reactions around the lesion. To reduce
such artifacts, we used the Minimization of Metabolic Adjust-
ment (MoMA) algorithm (Segre et al. 2002), which weighs the
deviation from the wild-type flux distribution by minimizing the
Euclidean distance between both solutions. While MoMA sup-
presses major flux rerouting, it is particularly sensitive to the
accuracy of the reference flux distribution. Originally it was sug-
gested to base MoMA on the reference fluxes of an FBA solution

with maximum growth yield (Segre et al. 2002), but the under-
lying flux solutions are typically not unique (Mahadevan and
Schilling 2003). To obtain a reference flux vector with high bio-
logical relevance, we estimated intracellular fluxes from 13C ex-
periments (Blank and Sauer 2004; Fischer et al. 2004; Blank et al.
2005) or from quantitative physiological data (Fig. 4 below;
Supplemental Table S4; Varma and Palsson 1994). These fluxes
were used to constrain the FBA solution space. A particular flux
solution was then identified by minimizing the overall intracel-
lular flux to largely exclude alternate optima. This modified
MoMA analysis further improved the in silico predictions under
several conditions by another 3% when compared with FBA (Fig.
1). The thus verified iLL672 model was used in the following to
predict lethality of entire duplicate family deletion mutants by
MoMA analysis. The relatively small improvement of MoMA

Table 1. Compartmentalization of duplicate gene families in S. cerevisiae metabolism

Duplicate
families ORF Localizationa

Growth
phenotypeb

Esssential
reactionc Duplication eventd

AAT1 YKL106W mit +/+/+/+/+ −/+/+/+/+
AAT2 YLR027C cyt +/+/+/+/+
ACC1 YNR016C cyt −e +/+/+/+/+ Genome duplication
HFA1 (ACC2) YMR207C mit +/+/+/+/+ Genome duplication
ADH1 YOL086C cyt +/+/+/+/+ −/−/−/−/+
ADH2 YMR303C cyt +/+/+/+/+
ADH3 YMR083W mit +/+/+/+/+
ADH4 YGL256W mit +/+/+/+/+ Genome duplication
ADH5 YBR145W cyt +/+/+/+/+ Genome duplication
ADK1 YDR226W cyt +/+/+/+/− +/+/+/+/+
ADK2 YER170W mit +/+/+/+/+
ALD4 YOR374W mit +/+/+/+/+ −/−/−/−/+
ALD5 YER073W mit +/+/+/+/+
ALD6 YPL061W cyt +/+/+/+/+
ALT1 YLR089C mit +/+/+/+/+ −/−/−/−/− Genome duplication
ALT2 YDR111C cyt +/+/+/+/+ Genome duplication
BAT1 YHR208W mit + +/+/+/+/+ Genome duplication
BAT2 YJR148W cyt +/+/+/+/+ Genome duplication
CIT1 YNR001C mit +/+/+/+/+ −/+/+/+/+ Genome duplication
CIT2 YCR005C cyt +/+/+/+/+ Genome duplication
CIT3 YPR001W mit +/+/+/+/+
DLD1 YDL174C mit +/+/+/+/+ −/−/−/−/−
DLD2 YDL178W mit +/+/+/+/+
DLD3 YEL071W cyt +
GLO2 YDR272W cyt +/+/+/+/+

−/−/−/−/−GLO4 YOR040W mit +/+/+/+/+
GPD1 YDL022W cyt +/+/+/+/+ −/−/−/−/− Genome duplication
GPD2 YOL059W cyt/mit +/+/+/+/+ Genome duplication
IDP1 YDL066W mit +/+/+/+/+ −/−/−/−/−
IDP2 YLR174W cyt +/+/+/+/+ Genome duplication
IDP3 YNL009W cyt +/+/+/+/+ Genome duplication
LEU4 YNL104 cyt +/+/+/+/+ −/−/−/−/− Genome duplication
LEU9 YOR108W mit +/+/+/+/+ Genome duplication
MDH1 YKL085W mit +/+/+/+/+ −/−/−/−/+
MDH2 YDL078C cyt +/+/+/+/−
MDH3 YOL126C cyt +/+/+/+/+
IPP1 (PPA1) YBR011C cyt − +/+/+/+/+
PPA2 YMR267W mit +/+/−/−/−
PSD1 YNL169C cyt +/+/+/+/+ −/−/−/−/−
PSD2 YGR170W mit +/+/+/+/+
SHM1 YBR263W mit +/+/+/+/+ −/−/−/−/−
SHM2 YLR058C cyt +/+/+/+/+
TRR1 YDR353W cyt + −/−/−/−/− Genome duplication
TRR2 YHR106W mit +/+/+/+/+ Genome duplication

aAccording to Huh et al. (2003). (cyt) cytosol; (mit) mitochondria.
bExperimental phenotype on YPD, glucose, galactose, glycerol, or ethanol-containing media.
cIn silico phenotype predictions on YPD, glucose, galactose, glycerol, or ethanol as the carbon source.
dAccording to Dietrich et al. (2004).
eAccording to SGD (http://www.yeastgenome.org/).
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compared to FBA also demonstrates that the choice of search
algorithm was not overly critical for a high predictive accuracy,
which largely was a function of the model structure.

In the absence of a duplicate knockout library, we assessed
the predictive quality of in silico duplicate knockouts from a
subgroup of our phenotype data. Since 22 single-gene knockouts
of the 295 duplicates were experimentally lethal, they can be
used to verify in silico duplicate lethality predictions because the
encoded reactions were obviously essential. With four of these 22
as falsely predicted nonessential reactions, the predictive accu-
racy was in the range obtained for singleton knockouts. A more
qualitative cross-check with 16 published duplicate phenotypes
further underlines the predictive accuracy of our calculations
(Table 2).

Essential reactions

Back-up of important or essential functions with duplicate genes
plays an important role in genetic network robustness (Gu et al.
2003; Blank et al. 2005), where null mutations often do not result
in observable phenotypes. If, indeed, duplicate genes were se-
lected for this function during evolution, one would expect them
to be enriched in reactions that are essential for growth. To elu-
cidate whether duplicate genes are statistically overrepresented
in these essential metabolic reactions, we compared the fraction
of lethal mutants in singletons and duplicate genes of S. cerevi-
siae. For any given condition, 159–171 singletons and 38–42 du-
plicate gene family mutants were predicted to be lethal.

To obtain a biologically meaningful proportion of essential
duplicates and singletons, their quantity should be related to the
number of active reactions under a given condition. Therefore,
we identified all active reactions in the wild type for each con-
dition, defined by carrying a nonzero flux, from the genome-
scale flux solutions (Supplemental Table S4). About 52%–56% of
all reactions were inactive under each of the four conditions,
which agrees favorably with a recent estimate (Papp et al. 2004).
For growth on a single carbon source, there was no significant
difference in the fraction of lethal phenotypes among active
singleton (63%–71%) and active duplicate (53%–74%) genes (Fig.
3). Thus, essential reactions are not more likely to be encoded by

duplicate genes than by singleton genes, which indicates that
genetic redundancy is not maintained by evolutionary selection.

Back-up function

While the above results demonstrate that evolution does not
generally favor maintenance of duplicate genes to back up essen-
tial reactions, the results do not exclude, however, a potential
role of individual duplicates in the compensation of genetic dys-
functions (Pal 2001; Gu 2003; Gu et al. 2003; Hurst and Pal
2005). If a gene exhibits such a back-up function, single-gene
deletions in duplicate-encoded essential reactions should be vi-
able. Hence, we compared our experimental singleton pheno-
types with the in silico phenotype predictions of complete dele-
tions of duplicate gene families. Of the 52 essential duplicate
families, 32 were experimentally viable when a single gene mem-
ber was knocked out, but lethal when the entire duplicate gene
family was deleted in silico. This indicates that the remaining
enzymes in these families compensate the loss of function of the
deleted gene, which is, in turn, a very strong indicator for back-
up function of these duplicate genes. This back-up function does
not necessarily imply that it is the primary reason why both
copies were retained and may simply result from a gradual sub-
functionalization, recent duplication events, or reprogramming
of the duplicate family members (Kafri et al. 2005). Indication for
such subfunctionalization was, indeed, obtained for the two du-
plicate gene families LAG1/LAC1 and ADK1/2, which exhibited
back-up function under only two and three conditions, respec-
tively.

In the remaining 18 essential duplicate gene families, a
single member was essential for growth. This indicates that the
other members have acquired a specialized function, restricted
expression, or localization pattern that precludes functional
complementation. Such duplicates are henceforth referred to as
of specialized function, defined as genes that encode an essential
reaction, yet lack the capability to back up the deletion of an-
other family member. Largely in contrast to the above 32, the 18
duplicate gene families of this group exhibit highly imbalanced
protein expression levels, where one member accounts for >95%
of the entire enzyme population of this family (Ghaemmaghami
et al. 2003). The only duplicate families with back-up function
and unbalanced protein numbers of >90% are the transketolase
(TKL1p accounts for 99.6%) and pyruvate decarboxylase families
(PDC5p accounts for 97.5%).

Gene dosage

Another hypothesis on duplicate gene function is gene dosage,
meaning occurrence in pathways that catalyze high fluxes to

Table 2. Comparison of in vivo and in silico lethality/viability of
duplicate knockouts in a confusion matrix

Experimental Viable Lethal

Computational

Viable True positives:
GDH1/3,a GSY1/2,b

PFK26/27,c LCB4/5,d

HOR2/RHR2e

False positives:
PYC1/2,f SER3/33g

Lethal False negatives:
MEP1/2/3h

True negatives:
ADE16/17,i ARO8/9,j

ASN1/2,k HMG1/2,l

PDC1/5/6,m SAM1/2,n

TKL1/2,o URA7/8p

aAvendano et al. (1997); bFarkas et al. (1991); cMuller et al. (1997);
dNagiec et al. (1998); ePahlman et al. (2001); fStucka et al. (1991); gAl-
bers et al. (2003); hMarini et al. (1997); iTibbetts and Appling (2000);
jUrrestarazu et al. (1998); kRamos and Wiame (1980); lBasson et al.
(1986); mFlikweert et al. (1999); nCherest and Surdin-Kerjan (1978);
oSchaaff-Gerstenschlager et al. (1993); pOzier-Kalogeropoulos et al.
(1994).

Figure 3. Relative occurrence of singleton (gray bars) and duplicate
(black bars) genes in essential reactions during growth on four different
single carbon substrates. The numbers are normalized to the active re-
actions under each growth condition.
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boost activity of critical enzymes (Papp et al. 2004). To test this
hypothesis, we related the experimentally determined flux data
(Fig. 4) to the localization of duplicate-catalyzed reactions. High
flux was defined as 5% or higher of the substrate uptake rate
(Table 3). Based on these genome-scale flux solutions (Supple-
mental Table S4), only 30 of all duplicate families were localized
in high flux reactions. In several cases, however, a single major
isoform was essential, hence excluding gene dosage function. For
the example of growth on glucose, 21 duplicate gene families
encode high flux reactions but ACO1, CDC19, ENO2, and GPM1
are essential, lowering the number of gene duplicate families
with potential gene dosage function to 17. Overall, 19 duplicate
families were categorized to exhibit a potential dosage function
under at least one of the four conditions for which flux solutions
were available (Fig. 5). It should be noted, that this number is an
upper bound that has to be verified experimentally for each case.

Regulatory role of duplicate genes

Generally, the positioning of duplicate genes at key points of the
network topology provides circumstantial evidence for differen-
tial regulation of the encoded isoenzymes. Genome-scale analy-
sis of the reconciled model with the flux coupling finder (Burgard
et al. 2004) revealed between 65 and 67 coupled reaction sets that

consisted of at least three consecutive reactions. Two-thirds of
these putatively coregulated pathway subsets were part of ana-
bolic pathways that catalyze biosynthesis of biomass compo-
nents. In 18 cases, duplicate family-encoded reactions were lo-
cated at the beginning or end of such linearly coupled reaction
sets, indicating differential regulation of the isoenzymes. Further
support comes from promoter motif analysis since the motif-
content overlap (Kafri et al. 2005) showed very little agreement
between members of duplicate families located at the beginning
or end of biosynthetic pathways (Supplemental Table S5). This

strongly indicates that these duplicate
families are, indeed, regulated differen-
tially. A prominent example of proven
biological relevance is the superpathway
of aromatic amino acids biosynthesis
(Hartmann et al. 2003) that links the up-
stream duplicate genes ARO3 and ARO4
with two linear pathways downstream
of the prephenate branch point (Fig. 6).
Thus, we have evidence that at least 18
of the 105 duplicate gene families in me-
tabolism have a potential role in differ-
ential regulation of pathways.

Discussion
Despite extensive research on the func-
tional role of duplicate genes in yeast, no
general consensus has been reached to
date and typically the prevalence of a
particular function as the selective pres-
sure for duplicate retention was favored
(Ihmels et al. 2004; Papp et al. 2004). By
integrating experimental and computa-
tional analysis, we show that the 105
yeast duplicate families in metabolism
do not have a single major but rather an
array of different, often overlapping
functions (Fig. 7A). While the capability
for back-up can hardly be seen as the se-
lective pressure that retains both copies,
32 of the 105 metabolic duplicates were
capable of functionally replacing one
another under all conditions tested. An-
other two could substitute the deleted
family member under at least two tested
conditions. Although catalyzing essen-
tial reactions, another 18 duplicate fami-

Table 3. Potential gene dosage function of duplicate genes in
highly active reactions

Medium
High average carbon flux

(>5% of substrate uptake rate)

Reactions encoded by duplicate genes
YPDa 22 (35)b

Glucose 21 (34)
Galactose 23 (45)
Glycerol 25 (48)
Ethanol 14 (30)

aSubstrate uptake rate defined as the uptake rate of glucose.
b“Total high-flux reactions.”

Figure 4. Relative distributions of absolute carbon fluxes through S. cerevisiae central carbon me-
tabolism. Flux distributions were obtained with (A) 13C-constrained flux analysis based on the data of
Blank and Sauer (2004) (glucose) and stoichiometric flux balancing with (B) galactose; (C) glycerol;
and (D) ethanol. Flux values are relative to the specific substrate uptake rate.
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lies do not exhibit any back-up activity under the five conditions
tested. One copy of these paralogs has probably evolved new
(specialized) functions that are sufficiently different to preclude
functional complementation or restrict it to rare cases. Such spe-
cialized functions (Fig. 7A) may be nonmetabolic functions, an
extremely different expression pattern that first needed to be
reprogrammed (Hurst and Pal 2005; Kafri et al. 2005), or simply
activity in a different compartment. Indeed, six of the 18 dupli-
cate families with specialized function are located in different
compartments (Supplemental Table S6). The exposed location of
duplicates at the beginning or end of linear pathways indicates a
putative regulatory function for at least 18 duplicate families.
Little or no overlap in the promoter motifs of these genes (Kafri
et al. 2005) further supports such a regulatory differentiation.
Based on genome-scale in vivo flux data, we show that maxi-
mally 19 duplicate families exhibit a putative gene dosage func-
tion to boost activity. Since this is an upper bound, we did not
find evidence for gene dosage as the general selection mecha-
nism of duplicate gene retention, as was previously suggested
(Seoighe and Wolfe 1999; Papp et al. 2004).

Thus, only few of the classified duplicate genes appear to be

characterized by a single metabolic function, but not all combi-
nations may occur (Fig. 7B; Supplemental Table S6). On a given
functional level, different duplicate functions are mutually ex-
clusive (the concentric rings in Fig. 7B), for example, back-up and
specialized function that are directly determined from single
knockout phenotype data. At the activity modulation level, en-
zyme activity may either be boosted through parallel expression
(gene dosage) or differentially expressed through alternative
regulation mechanisms. Across the functional level, however,
duplicate genes may exhibit multiple functions with gene dosage
and back-up as a particularly frequent combination among es-
sential reactions. This is in contrast to ribosomal duplicates,
which have gene dosage function, but can only maintain growth
if both copies of the encoding gene are present (Seoighe and
Wolfe 1999). While identification of gene dosage and regulatory
function are not mutually exclusive, we found no overlap be-
tween both groups (Fig. 7A). This is not overly surprising since
fine-tuning via regulation and boosted activity are clearly an-
tagonistic. Duplicate gene families with a regulatory role, how-
ever, frequently also exhibit other functions (Fig. 7A), which
agrees with experimental data demonstrating back-up (Kafri et al.
2005) and specialized function (van den Berg et al. 1996) for
paralogs of this group.

The back-up function of duplicate genes is tightly connected
to the robustness of cellular functions to genetic perturbations, a
long-recognized key property of biological systems that is becom-
ing a focal research theme (Kitano 2004; Stelling et al. 2004).
While we show here that back-up is not the dominant function
of metabolic duplicate genes in S. cerevisiae (Fig. 7), this does not
exclude an important contribution of duplicates to genetic ro-
bustness. Indeed, it was recently shown that metabolic duplicate
genes are the major and alternative pathways the minor mecha-
nistic cause for the robustness of S. cerevisiae metabolism to
knockout mutations (Blank et al. 2005), as was also suggested for
all duplicate genes in yeast (Gu et al. 2003).

While experimental fluxome analysis (Blank et al. 2005;
Fischer and Sauer 2005) and appropriate genome-scale modeling
approaches (Förster et al. 2003b; Papin et al. 2004; Price et al.
2004) enable a mechanistic assessment of duplicate functions in
metabolism, other cellular processes are less directly accessible.
How representative then is the distribution of metabolic dupli-
cate functions for other cellular processes? Generally, there is no
reason to believe that they are not representative, because the
discussed functions are ubiquitous and all cellular processes are
subject to the same evolutionary forces. Not restricted to metabo-

Figure 5. Duplicate gene families with potential gene dosage function.
Gene duplicate family occurrence was mapped onto four genome-scale
flux distributions (glucose, galactose, glycerol, and ethanol minimal me-
dium) (Supplemental Table S4) to elucidate gene dosage function in
metabolism. Reactions carrying >5% of the substrate uptake flux were
considered for gene dosage function. Gene duplicate families in which a
single member is lethal (on any of the four media) were excluded, since
every gene duplicate family member involved in gene dosage must suf-
fice for growth.

Figure 6. Localization of duplicate genes in aromatic amino acid syn-
thesis of S. cerevisiae metabolism. Linear pathways (dashed boxes) were
identified by evaluation of the full genome size metabolic model iLL672
with the Flux Coupling Finder. The correlations between duplicate genes
and identified regulation knots were carried out manually.
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lism, statistical correlation between gene expression similarity
and back-up function revealed back-up capability in 53 yeast
duplicates (Kafri et al. 2005). Despite the fundamental difference
in approaches, 12 of the 18 metabolic duplicate families repre-
sented in both studies were consistently assigned a back-up func-
tion (Supplemental Table S6). Deviating assignments of the six
duplicate families are probably due to different conditions and
strain backgrounds. Since neither study provides any evidence
for a prevailing function of duplicate genes that might serve as a
basis for their conservation, future classifications into functional
groups must rely on quantitative data.

Methods

Large-scale experimental lethality testing
For large-scale phenotyping of plate growth under different con-
ditions, we used the entire haploid yeast knockout library of
strain BY4741 (MATa his3�1 leu2�0 met15�0 ura3�0) (Winzeler
et al. 1999) with 4658 mutants. The composition of the yeast

minimal medium was, per liter (Verduyn et al. 1992), 5 g of
(NH4)2SO4, 3 g of KH2PO4, 0.5 g of MgSO4 · 7H2O, 4.5 mg of
ZnSO4 · 7H2O, 0.3 mg of CoCl2 · 6H2O, 1.0 mg of MnCl2 · 4H2O,
0.3 mg of CuSO4 · 5H2O, 4.5 mg of CaCl2 · 2H2O, 3.0 mg of
FeSO4 · 7H2O, 0.4 mg of NaMoO4 · 2H2O, 1.0 mg of H3BO3, 0.1
mg of KI, 15 mg of EDTA, 0.05 mg of biotin, 1.0 mg of Ca-
pantothenate, 1.0 mg of nicotinic acid, 25 mg of inositol, 1.0 mg
of pyridoxine, 0.2 mg of p-amino-benzoic acid, and 1.0 mg of
thiamine. The carbon sources (ethanol, galactose, glucose, and
glycerol) were added to a final concentration of 20 g/L. Strain
auxotrophies were complemented with 20 mg/L histidine, uracil,
methionine, and 60 mg/L leucine. About 50 strains of the yeast
collection are lysine auxotroph and were independently tested
for growth on plates supplemented with 20 mg/L lysine. The YPD
medium consisted, per liter, of 10 g of yeast extract, 20 g of
peptone, and 20 g of glucose.

The single-gene deletion library was organized in a 384 for-
mat that was also used for plate growth testing. Duplicate replica
plating was carried out with a Biomek Laboratory Automation
Workstation (Beckman Coulter Inc.). The plates were incubated
at 30°C for 3 d before scoring growth phenotypes and further
incubated for 1 wk to score slow growing mutants. Mutants of
uncertain growth phenotypes were re-evaluated by manual
streaking on fresh plates. In phenotype experiments of six mu-
tants (YAL012W, YDR300C, YFL018C, YHR018C, YOR184W,
and YOR221C), spontaneous suppressor mutations occurred that
were characterized by single colonies. These mutants were scored
as lethal.

Identification of duplicate genes
To identify all metabolic duplicate genes in the S. cerevisiae ge-
nome, we used genes included in the stoichiometric model as
bait for translated BLAST analysis (WU-BLAST2, on http://
www.yeastgenome.org/). We chose an arbitrary cut-off of P 1e�30

over 80% of the sequence. The results were identical to a recent
publication (Kellis et al. 2004), in which the authors used pro-
tein, nucleotide, and translation-aware nucleotide alignments to
identify all duplicate genes in the genome of S. cerevisiae, of
which the 105 duplicate families presented here are a subset.

Stoichiometric network analysis
Flux balance analysis (FBA) (Price et al. 2004) and minimization
of metabolic adjustment (MoMA) (Segre et al. 2002) were used to
predict mutant lethality. Both methods assume intracellular
quasi-steady state, such that the production and consumption of
each intracellular metabolite Mi is balanced. This yields the equa-
tion

S � v = 0 (1)

where S corresponds to the stoichiometric matrix and v to the
array of metabolic fluxes. Assuming maximization of the growth
rate µ as the objective function of cellular behavior in FBA (Ed-
wards and Palsson 2000; Price et al. 2004), a flux distribution v
can be obtained by linear programming (LP):

max �

s.t. S � v = 0 (2)

vlb,i � vi � vub,i

where i = 1, …, M and vlb,i and vub,i correspond to the upper and
lower bounds of a specific reaction i. Setting both reaction
bounds equal to zero mimics a gene deletion; thus FBA provides a
straightforward tool for qualitative mutant phenotype prediction.

Figure 7. Functional categorization of the 105 duplicate gene families
in S. cerevisiae metabolism. (A) Duplicate distribution of the major func-
tions among all 105 families. The functional roles are gene dosage to
boost enzyme activity, regulation by specific gene expression, back-up
capability for knockout compensation, and specialized functions where
knockout of one family member could not be compensated by the oth-
er(s). (B) Functional categorization of individual gene families. Each family
is represented by a 3.5° angle, as indicated for PFK1/PFK2. The central
circle specifies the computationally predicted essentiality of family knock-
outs. The first ring represents the experimentally determined single
knockout phenotypes in each family. A single lethal knockout indicates a
specialized function (gray) of the other(s), while viable single knockouts
in a family are separated into those that clearly exhibit back-up activity
(black) and those where no clear distinction can be made (white) either
because they are inactive or alternative pathways could potentially com-
pensate. The second ring specifies the experimentally determined activity
of a reaction under any of the five investigated growth conditions. The
third ring represents the enzyme activity modulation level. Specifically,
gene dosage (black) and potentially different genetic regulation pattern
(gray) can be estimated by the present data.
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Instead of growth rate maximization, MoMA uses the mini-
mization of the Euclidean distance between wild-type reference
(vWT) and mutant flux distribution (vmut) as the objective func-
tion. This results in a quadratic programming (QP) problem, with

min �
i

�vi
WT − vi

mut�2 (3)

as the objective function. Instead of the l2 norm of the Euclidean
distance, we used here the l1 norm, which allows the LP refor-
mulation of MoMA:

min �
i

�xi + yi�

s.t. xi − yi = vi
WT − vi

mut (4)

S � v = 0

vlb,i � vi � vub,i

where i = 1, …, M, and xi � 0, yi � 0. Note that minimizing the
sum of the strictly positive substitution variables x and y auto-
matically forces the difference between vWT and vmut to zero.
Note also that this reformulation is equivalent to minimizing the
Euclidean distance as shown in equation 3 or using absolute val-
ues as shown in equation 5, but allows them to be optimized with
LP solvers. All optimization problems were solved with the open
source GNU linear programming kit (Makhorin 2001; www.gnu.
org/software/glpk/glpk.html).

Originally, the wild-type reference flux solution vWT for
MoMA was obtained by FBA (Segre et al. 2002). This flux distri-
bution, however, represents the theoretical capabilities of the cell
(Edwards et al. 2001) and not a biological meaningful flux esti-
mate, since FBA solutions are typically not unique (Mahadevan
and Schilling 2003) and no experimental data are used. Here we
used experimentally determined fluxes (vexp) to obtain an experi-
mentally validated reference flux solution vWT for MoMA at the
genome scale. For glucose minimal medium, we constrained the
model iLL672 with 30 fluxes that were derived from 13C-labeling
experiments (Wiechert 2001; Sauer 2004). In particular, we used
13C-constrained flux analysis (Sauer et al. 1997; Fischer et al.
2004) for GC-MS-detected mass isotope distributions in proteino-
genic amino acids from a 20% [U-13C] glucose experiment and a
compartmentalized yeast model (Blank and Sauer 2004; Blank et
al. 2005). For the genome-scale flux solution, we used 20, 24, and
28 flux constraints, for ethanol, galactose, and glycerol growth,
respectively. These were calculated from physiological data with
a 34-reaction stoichiometric model as was described elsewhere
(Nissen et al. 1997; Gombert et al. 2001; Sonderegger et al. 2004).
These experimental data were to be kept within an accuracy � of
�10% when mapping the determined central metabolic fluxes to
the genome-scale reference flux solution. To overcome math-
ematical artifacts such as cycling, that is, a closed loop of fluxes
that bring no net change, the original LP problem (equation 2)
was modified. A minimization of the l1 norm, that is, the overall
intracellular flux, was chosen as the objective function:

min �
i
�vi

WT�

s.t. S � vWT = 0 (5)

vlb,i
WT � vi

WT � vub,i
WT

v j
exp � �1 − �� � vj

WT � v j
exp � �1 + ��

with j as the set of experimentally determined fluxes. This refor-
mulation widely excludes the existence of alternate optima and
can be solved according to equation 4.

Metabolic pathway analysis
Approaches for topological network analysis at the genome scale
consider either a hierarchical (Gagneur et al. 2003) or modular
decomposition (Burgard et al. 2004). We here used the Flux Cou-
pling Finder (Burgard et al. 2004) that elucidates connections
between different reactions by solving a sequence of fractional
programming problems. By keeping the flux through one reac-
tion constant while maximizing or minimizing another, it is thus
possible to detect dependencies between both reactions. The Flux
Coupling Finder thus reveals subsets of blocked or coupled en-
zymes.

Statistical data treatment
The predictive power of the computational model was evaluated
by means of a confusion matrix (Provost and Kohavi 1998) that,
for a two class identifier, groups the results into correct (true
positive [TP], true negative [TN]) and wrong predictions (false
negative [FN], false positive [FP]), respectively (Guda et al. 2004).
If the number of either total positive or total negative experimen-
tal results outperforms the other, the corresponding case will be
easier to predict (Kubat et al. 1998), since then the chances for a
correct prediction are higher even on a pure random choice. One
thus has to consider both accuracies equally. This can be done by
the geometric mean (Kubat et al. 1998), which weighs both the
positive (viable) and negative (lethal) case identically by multi-
plying sensitivity and specificity:

geometric mean =� TP
TP + FN

�
TN

TN + FP
(6)
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http://www.gmm.gu.se/YSBN/models.htm; The Yeast System Biology
Network is a consortium of researchers promoting Systems Biology
with the yeast Saccharomyces cerevisiae as a model system. The
homepage will present cell models of Saccharomyces cerevisiae besides
other information.

http://www.gnu.org/software/glpk/glpk.html; The GNU Linear
Programming Kit (GLPK) is a software package for solving large-scale
linear programming (LP) and mixed integer programming (MIP)
problems. The GLPK library is written in ANSI C and is part of the
GNU project.

http://www.yeastgenome.org/; SGDTM is a scientific database of
molecular biology and genetics of the yeast Saccharomyces cerevisiae,
which is commonly known as baker’s or budding yeast.
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