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Abstract
Background: Advances in microbiome science are being driven in large part due to our ability to study and infer microbial
ecology from genomes reconstructed from mixed microbial communities using metagenomics and single-cell genomics. Such
omics-based techniques allow us to read genomic blueprints of microorganisms, decipher their functional capacities and
activities, and reconstruct their roles in biogeochemical processes. Currently available tools for analyses of genomic data can
annotate and depict metabolic functions to some extent, however, no standardized approaches are currently available for the
comprehensive characterization of metabolic predictions, metabolite exchanges, microbial interactions, and microbial
contributions to biogeochemical cycling.

Results: We present METABOLIC (METabolic And BiogeOchemistry anaLyses In miCrobes), a scalable software to advance
microbial ecology and biogeochemistry studies using genomes at the resolution of individual organisms and/or microbial
communities. The genome-scale work�ow includes annotation of microbial genomes, motif validation of biochemically
validated conserved protein residues, metabolic pathway analyses, and calculation of contributions to individual
biogeochemical transformations and cycles. The community-scale work�ow supplements genome-scale analyses with
determination of genome abundance in the microbiome, potential microbial metabolic handoffs and metabolite exchange,
reconstruction of functional networks, and determination of microbial contributions to biogeochemical cycles. METABOLIC
can take input genomes from isolates, metagenome-assembled genomes, or single-cell genomes. Results are presented in the
form of tables for metabolism and a variety of visualizations including biogeochemical cycling potential, representation of
sequential metabolic transformations, community-scale microbial functional networks using a newly de�ned metric ‘MW-
score’ (metabolic weight score), and metabolic Sankey diagrams. METABOLIC takes ~3 hours with 40 CPU threads to process
~100 genomes and corresponding metagenomic reads within which the most compute-demanding part of hmmsearch takes
~45 mins, while it takes ~5 hours to complete hmmsearch for ~3600 genomes. Tests of accuracy, robustness, and
consistency suggest METABOLIC provides better performance compared to other software and online servers. To highlight the
utility and versatility of METABOLIC, we demonstrate its capabilities on diverse metagenomic datasets from the marine
subsurface, terrestrial subsurface, meadow soil, deep sea, freshwater lakes, wastewater, and the human gut.

Conclusion: METABOLIC enables the consistent and reproducible study of microbial community ecology and biogeochemistry
using a foundation of genome-informed microbial metabolism, and will advance the integration of uncultivated organisms
into metabolic and biogeochemical models. METABOLIC is written in Perl and R and is freely available at
https://github.com/AnantharamanLab/METABOLIC under GPLv3.

Introduction
Metagenomics and single-cell genomics have transformed the �eld of microbial ecology by revealing a rich diversity of
microorganisms from diverse settings, including terrestrial [1–3] and marine environments [4, 5] and the human body [6].
These approaches can provide an unbiased and insightful view into microorganisms mediating and contributing to
biogeochemical activities at a number of scales ranging from individual organisms to communities [7–9]. Recent studies have
also enabled the recovery of hundreds to thousands of genomes from a single sample or environment [8, 10, 11]. However,
analyses of ever-increasing datasets remain a challenge. For example, there is a lack of scalable and reproducible
bioinformatic approaches for characterizing metabolism and biogeochemistry, as well as standardizing their analyses and
representation for large datasets.

Microbially-mediated biogeochemical processes serve as important driving forces for the transformation and cycling of
elements, energy, and matter among the lithosphere, atmosphere, hydrosphere, and biosphere [12]. Microbial communities in
natural environmental settings exist in the form of complex and highly connected networks that share and compete for
metabolites [13–15]. The interdependent and cross-linked metabolic and biogeochemical interactions within a community can
provide a relatively high level of plasticity and �exibility [16]. For instance, multiple metabolic steps within a speci�c pathway
are often separately distributed in a number of microorganisms and they are interdependent on utilizing the substrates from
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the previous step [2, 17, 18]. This scenario, referred to as ‘metabolic handoffs’, is based on sequential metabolic
transformations, and provides the bene�t of high resilience of metabolic activities which make both the community and
function stable in the face of perturbations [17, 18]. It is therefore highly valuable to obtain the information of microbial
metabolic function from the perspective of individual genomes as well as the entire microbial community.

Currently, there are many quantitative software and platforms for reconstructing species and community-level metabolic
networks [19–23]. They are largely based on building microbial metabolic models containing reactions for substrate
utilization and product generation [19, 24]. Based on individual microbial models, metabolic phenotypes for the whole
community can be further predicted [24]. These approaches allow providing mechanistic bases for predicting and thus
operating community metabolisms based on the given environmental conditions and predicted microbial phenotypes [25].
Thus they are more focused on illustrating the operating principles of community metabolisms and the underlying metabolic
networks of connected reactions to achieve better outcomes for metabolite production [21, 23], industrial applications [19],
drug discovery [19], etc.

Yet, seldom have approaches been developed to study the functional role of microorganisms in the context of
biogeochemistry and community-level functional networks. Such tools are based on the principles of facilitating the
understanding of microbially-mediated biogeochemical activities. The tools ask for identifying and providing metabolic
predictions on the functional details, transformations of nutrients and energy, and functional connections for microorganisms
within the community [26]. The resulting genome-informed microbial metabolisms are important for understanding the
microbial roles within a whole community in mediating the biogeochemical processes. Currently, such quantitative
approaches to interpret functional details, reconstruct metabolic relationships, and visualize microbial functional networks are
still limited [27, 28].

Prediction of microbial metabolism relies on the annotation of protein function for microorganisms using a number of
established databases, e.g., KEGG [29], MetaCyc [30], Pfam [31], TIGRfam [32], SEED/RAST [33], and eggNOG [34]. However,
these results are often highly detailed, and therefore can be overwhelming to users. Obtaining a functional pro�le and
identifying metabolic pathways in a microbial genome can involve manual inspection of thousands of genes [35]. Organizing,
interpreting, and visualizing such datasets remains a challenge and is often untenable especially with datasets larger than one
microbial genome. There is a critical need for approaches and tools to identify and validate the presence of metabolic
pathways, biogeochemical function, and connections in microbial communities in a user-friendly manner. Such tools
addressing this gap would also allow standardization of methods and easier integration of genome-informed metabolism into
biogeochemical models, which currently rely primarily on physicochemical data and treat microorganisms as black boxes [36].
A recent statistical study indicates that incorporating microbial community structure in biogeochemical modeling could
signi�cantly increase model accuracy of processes that are mediated by narrow phylogenetic guilds via functional gene data,
and processes that are mediated by facultative microorganisms via community diversity metrics [37]. This highlights the
importance of integrating microbial community and genomic information into the prediction and modeling of biogeochemical
processes.

Here we present the software METABOLIC (METabolic And BiogeOchemistry anaLyses In miCrobes), a toolkit to pro�le
metabolic and biogeochemical traits, and functional networks in microbial communities based on microbial genomes.
METABOLIC integrates annotation of proteins using KEGG [29], TIGRfam [32], Pfam [31], custom hidden Markov model (HMM)
databases [2], dbCAN2 [38], and MEROPS [39], incorporates a protein motif validation step to accurately identify proteins
based on prior biochemical validation, and determines presence or absence of metabolic pathways based on KEGG modules.
METABOLIC also produces user-friendly outputs in the form of tables and �gures including a summary of microbial functional
pro�les, biogeochemically-relevant pathways, functional networks at the scale of individual genomes and community levels,
and microbial contribution to the biogeochemical processes.

Methods
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HMM databases used by METABOLIC
To generate a broad range of metabolic gene HMM pro�les, we integrated three sets of HMM-based databases, which are
KOfam [40] (July 2019 release, containing HMM pro�les for KEGG/KO with prede�ned score thresholds), TIGRfam [32]
(Release 15.0), Pfam [31] (Release 32.0), and custom metabolic HMM pro�les [2]. In order to achieve a better HMM search
result excluding non-speci�c hits, we have tested and manually curated cutoffs for those HMM databases listed above into
the resulting HMMs: KOfam database - KOfam suggested values; TIGRfam/Pfam/Custom databases - manually curated by
adjusting noise cutoffs (NC) or trusted cutoffs (TC) to avoid potential false positive hits. For the KOfam suggested cutoffs, we
considered both the score type (full length or domain) and the score value to assign whether an individual protein hit is
signi�cant or not. HMM databases were used as the reference for hmmsearch [41] to �nd protein hits of input genomes.
Prodigal [42] was used to annotate genomic sequences (the method used to �nd ORFs by Prodigal can be set by METABOLIC
as “meta” or “single”), or a user can provide self-annotated proteins (with extensions of “.faa”) to facilitate incorporation into
existing pipelines. Methods on the manual curation of these HMM databases are described in the next section.

Curation of cutoff scores for metabolic HMMs
Two curation methods for adjusting NC or TC of TIGRfam/Pfam/Custom databases were used for a speci�c HMM pro�le.
First, we parsed and downloaded representative protein sequences according to either the corresponding KEGG identi�er or
UniProt identi�er [43]. We then randomly subsampled a small portion of the sequences (10% of the whole collection if this was
more than 10 sequences, or at least 10 sequences) as the query to search against the representative protein collections [41].
Subsequently, we obtained a collection of hmmsearch scores by pairwise sequence comparisons. We plotted scores against
hmmsearch hits and selected the mean value of the sharpest decreasing interval as the adjusted cutoff (approximately the F1
score). Second, we downloaded a collection of proteins that belong to a speci�c HMM pro�le and pre-checked the quality and
phylogeny of these proteins by reconstructing and manually inspecting phylogenetic trees. We applied pre-checked protein
sequences as the query search against a set of training metagenomes (data not shown). We then obtained a collection of
hmmsearch scores of resulting hits from the training metagenomes. By using a similar method as described above, the cutoff
was selected as the mean value of the sharpest decreasing interval.

The following example demonstrates how the method above was used to curate the cutoffs for hydrogenase enzymes. We
then expanded this method to all genes using a similar method. We downloaded the individual protein collections for each
hydrogenase functional group from the HydDB [44], which included [FeFe] Group A-C series, [Fe] Group, and [NiFe] Group 1-4
series. The individual hydrogenase functional groups were further categorized based on the catalyzing directions, which
included H2-evolution, H2-uptake, H2-sensing, electron-bifurcation, and bidirection. To de�ne the NC cutoff (‘--cut_nc’ in
hmmsearch) for individual hydrogenase groups, we used the protein sequences from each hydrogenase group as the query to
hmmsearch against the overall hydrogenase collections. By plotting the resulting hmmsearch hit scores against individual
hmmsearch hits, we selected the mean value of the sharpest decreasing interval as the cutoff value.

Motif validation
To automatically validate protein hits and avoid false positives, we introduced a motif validation step by comparing protein
motifs against a manually curated set of highly conserved residues in important proteins. This manually curated set of highly
conserved residues is derived from either reported works or protein alignments from this study. We chose 20 proteins
associated with important metabolisms (with a focus on important biogeochemical cycling steps) that are prone to be
misannotated into proteins within the same protein family. Details of these proteins are provided in Additional �le 8: Dataset
S1. For example, DsrC (sul�te reductase subunit C) and TusE (tRNA 2-thiouridine synthesizing protein E) are similar proteins
that are commonly misannotated. Both of them are assigned to the family KO:K11179 in the KEGG database. To avoid
assigning TusE as a sul�te reductase, we identi�ed a speci�c motif for DsrC but not TusE (GPXKXXCXXXGXPXPXXCX”, where
“X” stands for any amino acid) [45]. We used these speci�c motifs to �lter out proteins that have high sequence similarity but
functionally divergent homologs.

Annotation of carbohydrate-active enzymes and peptidases
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For carbohydrate-active enzymes (CAZymes), dbCAN2 [38] was used to annotate proteins with default settings. The hmmscan
parser and HMM database (2019-09-05 release) were downloaded from the dbCAN2 online repository
(http://bcb.unl.edu/dbCAN2/download/) [38]. The non-redundant library of protein sequences which contains all the
peptidase/inhibitor units from the peptidase (inhibitor) database MEROPS [39] (known as the ‘MEROPS pepunit’ database)
was used as the reference database to search against putative peptidases and inhibitors using DIAMOND. The settings used
for the DIAMOND BLASTP search were “-k 1 -e 1e-10 --query-cover 80 --id 50” [46]. We used the ‘MEROPS pepunit’ database
due to the fact that it only includes the functional unit of peptidases/inhibitors [39] which can effectively avoid potential non-
speci�c hits.

Implementation of METABOLIC-G and METABOLIC-C
To target speci�c applications in processing omics datasets, we have implemented two versions of METABOLIC: METABOLIC-
G (genome version) and METABOLIC-C (community version). METABOLIC-G intakes only genome �les and provides analyses
for individual genome sequences (including three kinds of genomes, e.g., single-cell genomes, isolate genomes, and
metagenome-assembled genomes). The analyzing procedures of METABOLIC-G for all these three kinds of genomes are the
same.

METABOLIC-C includes an option for users to include metagenomic reads for mapping to metagenome-assembled genomes
(MAGs). Using Bowtie 2 (version ≥ v2.3.4.1) [47], metagenomic BAM �les were generated by mapping all input metagenomic
reads to gene collections from input genomes. Subsequently, SAMtools (version ≥ v0.1.19) [48], BAMtools (version ≥ v2.4.0)
[49], and CoverM (https://github.com/wwood/CoverM) were used to convert BAM �les to sorted BAM �les and to calculate the
gene coverage. To calculate the relative abundance of a speci�c biogeochemical cycling step, all the coverage of genes that
are responsible for this step were summed up and normalized by overall gene coverage. Reads from single-cell and isolate
genomes can also be mapped in an identical manner to metagenomes. The gene coverage result generated by metagenomic
read mapping was further used in downstream processing steps to conduct community-scale interaction and network
analyses.

Classifying microbial genomes into taxonomic groups
To study community-scale interactions and networks of each microbial group within the whole community, we classi�ed
microbial genomes into individual taxonomic groups. GTDB-Tk v0.1.3 [50] was used to assign taxonomy of input genomes
with default settings. GTDB-Tk can provide automated and objective taxonomic classi�cation based on the rank-normalized
Genome Taxonomy Database (GTDB) taxonomy within which the taxonomy ranks were established by a sophisticated
criterion counting the relative evolutionary divergence (RED) and average nucleotide identity (ANI) [50, 51]. Subsequently,
genomes were clustered into microbial groups at the phylum level, except for Proteobacteria which were replaced by its
subordinate classes due to its wide coverage. Taxonomic assignment information for each genome was used in the
downstream community analyses.

Analyses and visualization of metabolic outputs, biogeochemical
cycles, MW-scores, functional networks, and metabolic Sankey
diagrams
To visualize the outputted metabolic results, the R script “draw_biogeochemical_cycles.R” was used to draw the corresponding
metabolic pathways for individual genomes. We integrated HMM pro�les that are related to biogeochemical activities and
assigned HMM pro�les to 31 distinct biogeochemical cycling steps (See details in “METABOLIC_template_and_database”
folder on the GitHub page). The script can generate �gures showing biogeochemical cycles for individual genomes and the
summarized biogeochemical cycle for the whole community. By using the results of metabolic pro�ling generated from
hmmsearch and gene coverage from the mapping of metagenomic reads, we can depict metabolic capacities of both
individual genomes and all genomes within a community as a whole. The community-level diagrams, including sequential
transformation diagrams, functional network diagrams, and metabolic Sankey diagrams, were generated using both
metabolic pro�ling and gene coverage results. The diagrams are made by the scripts “draw_sequential_reaction_diagram.R”,
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“draw_metabolic_Sankey_diagram.R”, and “draw_functional_network_diagram.R”, respectively (For details, refer to GitHub wiki
pages).

MW-score (metabolic weight score) is a metric re�ecting the functional capacity and abundance of a microbial community in
co-sharing functional networks. It was calculated at the community-scale level based on results of metabolic pro�ling and
gene coverage from metagenomic read mapping as described above. We divided metabolic/biogeochemical cycling steps (31
in total) into a �ner level – function (51 functions in total) – for better resolution on re�ecting functional networks. By using
similar methods for determining metabolic interactions (as described above), we selected functions that are shared among
genomes. MW-score for each function was calculated by summing up all the coverage values of each function (calculated by
summing up all coverage values of genomes that contain this function) and subsequently normalizing it by the overall
function coverage. For each function, the contribution percentage of each microbial phylum (the default taxonomic level
setting) was also calculated accordingly. One can also change the taxonomic level setting to the resolution of “class”, “order”,
“family”, or “genus” to calculate the corresponding contribution percentage of each microbial group. Two equations are
provided as follows to calculate each function’s MW-score (1) and the percentage of contribution of each microbial group to
the MW-score (2):

MWfi = ∑gng=g1Cgn · Sfi∑gn , fng=g1 , f = f1Cgn · Sfn
1

Cpercfipj = ∑glg=gkCgn · Sfi∑gn , fng=g1 , f = f1Cgn · Sfn
/ ∑gng=g1Cgn · Sfi∑gn , fng=g1 , f = f1Cgn · Sfn

× 100%
2
within whichgk…gl ∈ pj
In equation (1), MW refers to MW-score. fi refers to the studied function (f) which ranks in the (i) position amongst all
functions. g1 and gn indicate the �rst and the last genome amongst all genomes. f1 and fn indicate the �rst and the last
function amongst all functions. Cg means the coverage of a genome and Sf means the presence (denoted as 1) or absence
(denoted as 0) state of a function within that genome. In equation (2), Cprec refers to the contribution percentage of a
microbial group to the MW-score. pj means the studied group (p) which ranks in the (j) position amongst all groups. gk and gl

indicate the genomes which rank in the (k) position and the (l) position amongst all genomes; the additional note gk…gl ∈ pj
indicates all the genomes between these two belong to the studied group pj.

Example of METABOLIC analysis
An example of community-scale analyses including element biogeochemical cycling and sequential reaction analyses,
functional network and metabolic Sankey visualization, and MW-score calculation were conducted using a metagenomic
dataset of microbial community inhabiting deep-sea hydrothermal vent environment of Guaymas Basin in the Paci�c Ocean
[52]. It contains 98 MAGs and 1 set of metagenomic reads (genomes were available at NCBI BioProject PRJNA522654 and
metagenomic reads were deposited to NCBI SRA with accession as SRR3577362).

A metagenomic-based study of the microbial community from an aquifer adjacent to Colorado River, located near Ri�e, has
provided an accurate reconstruction of the metabolism and ecological roles of the microbial majority [2]. From underground
water and sediments of the terrestrial subsurface at Ri�e, 2545 reconstructed MAGs were obtained (genomes are under NCBI
BioProject PRJNA288027). They were used as the in silico dataset to test METABOLIC’s performance. First, all the microbial
genomes were dereplicated by dRep v2.0.5 [53] to pick the representative genomes for downstream analysis using the setting

( )
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of ‘-comp 85’. Then, METABOLIC-G was applied to pro�le the functional traits of these representative genomes using default
settings. Finally, the metabolic pro�le chart was depicted by assigning functional traits to GTDB taxonomy-clustered genome
groups.

Test on software performance for different environments
To benchmark and test the performance of METABOLIC in different environments, eight datasets of metagenomes and
metagenomic reads from marine, terrestrial, and human environments were used. These included marine subsurface
sediments [54] (Deep biosphere beneath Hydrate Ridge offshore Oregon), freshwater lake [55] (Lake Tanganyika, eastern
Africa), colorectal cancer (CRC) patient gut [56], healthy human gut [56], deep-sea hydrothermal vent [52] (Guaymas Basin,
Gulf of California), terrestrial subsurface sediments and water [2] (Ri�e, CO, USA), meadow soils [57] (Angelo Coastal Range
Reserve, CA, USA), and advanced water treatment facility [58] (Groundwater Replenishment System, Orange County, CA, USA).
Default settings were used for running METABOLIC-C.

Comparison of community-scale metabolism
To compare the metabolic pro�le of two environments at the community scale, MW-score was used as the benchmarker. Two
sets of environment pairs were compared, including the pair of marine subsurface sediments [54] and terrestrial subsurface
sediments [2] and the pair of freshwater lake [55] and deep-sea hydrothermal vent [52]. To demonstrate differences between
these environments in speci�c biogeochemical processes, we focused on the biogeochemical cycling of sulfur. The sulfur
biogeochemical cycling diagrams were depicted with the annotation of the number and the coverage of genomes that contain
each biogeochemical cycling step.

Metabolism in human microbiomes
To inspect the metabolism of microorganisms in the human microbiome (associated with skin, oral mucosa, conjunctiva,
gastrointestinal tracts, etc.), a subset of KOfam HMMs (139 HMM pro�les) were used as markers to depict the human
microbiome metabolism (parsed by HuMiChip targeted functional gene families [59]). They included 10 function categories as
follows: amino acid metabolism, carbohydrate metabolism, energy metabolism, glycan biosynthesis and metabolism, lipid
metabolism, metabolism of cofactors and vitamins, metabolism of other amino acids, metabolism of terpenoids and
polyketides, nucleotide metabolism, and translation. The CRC and healthy human gut (healthy control) sample datasets were
used as the input (Accession IDs: BioProject PRJEB7774 Sample 31874 and Sample 532796). Heatmap of presence/absence
of these functions were depicted by R package “pheatmap” [60] with 189 horizontal entries (there are duplications of HMM
pro�les among function categories; for detailed human microbiome metabolism markers, refer to Additional �le 9: Dataset
S2).

Representation of microbial cell metabolism
To provide a schematic representation of the metabolism of microbial cells, two microbial genomes were used as examples,
Hadesarchaea archaeon 1244-C3-H4-B1 and Nitrospirae bacteria M_DeepCast_50m_m2_151. METABOLIC-G results of these
two genomes, including functional traits and KEGG modules, were used to draw the cell metabolism diagrams.

Metatranscriptome analysis by METABOLIC
METABOLIC-C can take metatranscriptomic reads as input into transcript coverage calculation and integrate the result into
downstream community analyses. METABOLIC-C uses a similar method to that of gene coverage calculation, including
mapping transcriptomic reads to the gene collection from input genomes, converting BAM �les to sorted BAM �les, and
calculating the transcript coverage. The raw transcript coverage was further normalized by the gene length and
metatranscriptomic read number in Reads Per Kilobase of transcript, per Million mapped reads (RPKM). Hydrothermal vent
and background seawater transcriptomic reads from Guaymas Basin (NCBI SRA accessions: SRR452448 and SRR453184)
were used to test the outcome of metatranscriptome analysis.

Results
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Given the ever-increasing number of microbial genomes from microbiome studies, we developed METABOLIC to enable the
metabolic pathway analysis and the visualization of biogeochemical cycles and community-scale functional networks.
METABOLIC has an improved methodology to get fast, accurate, and robust annotation results, and it integrates a variety of
visualization functions for better interpreting the community-level functional interactions and microbial contributions. While
METABOLIC relies on microbial genomes and metagenomic reads for underpinning its analyses for community-level
functional interactions, it can easily integrate transcriptomic datasets to provide an activity-based measure of community
networks. The scalable capacity, wide utility, and compatibility for analyzing datasets from various environments make it a
well-tailored tool for metabolic pro�ling of large sets of genomes. In the following sections, the microbial community
consisting of 98 MAGs from a deep-sea hydrothermal vent was used as the input dataset if not mentioned otherwise.

Work�ow to determine the presence of metabolic pathways
METABOLIC is written in Perl and R and is expected to run on Unix, Linux, or macOS. The prerequisites are described on
METABOLIC’s GitHub wiki pages (https://github.com/AnantharamanLab/METABOLIC/wiki). The input folder requires
microbial genome sequences in FASTA format and an optional set of genomic/metagenomic reads which were used to
reconstruct those genomes (Figure 1). The annotated proteins from input genomic sequences are queried against HMM
databases (KEGG KOfam, Pfam, TIGRfam, and custom HMMs) using hmmsearch implemented within HMMER [41] which
applies methods to detect remote homologs as sensitively and e�ciently as possible. After the hmmsearch step, METABOLIC
subsequently validates the primary outputs by a motif-checking step for a subset of protein families; only those protein hits
which successfully pass this step are regarded as positive hits.

METABOLIC relies on matches to the above databases to infer the presence of speci�c metabolic pathways in microbial
genomes. Individual KEGG annotations are inferred in the context of KEGG modules for a better interpretation of metabolic
pathways. A KEGG module is comprised of multiple steps with each step representing a distinct metabolic function. We
parsed the KEGG module database [61] to link the existing relationship of KO identi�ers to KEGG module identi�ers to project
our KEGG annotation result into the interactive network which was constructed by individual building blocks – modules – for
better representation of metabolic blueprints of input genomes. In most cases, we used KOfam HMM pro�les for KEGG
module assignments. For a speci�c set of important metabolic marker proteins and commonly misannotated proteins, we
also applied the TIGRfam/Pfam/custom HMM pro�les and motif-validation steps. The software has customizable settings for
increasing or decreasing the priority of speci�c databases, primarily meant to increase annotation con�dence by preferentially
using custom HMM databases over KEGG KOfam when both targeting the same set of proteins.

Since individual genomes from metagenomes and single-cell genomes can often have incomplete metabolic pathways due to
their low completeness compared to isolate genomes, we provide an option to determine the completeness of a metabolic
pathway (or a module here). A user-de�ned cutoff is used to set the threshold of completeness for a given module to be
assigned as present (the default cutoff is the presence of 75% of metabolic steps/genes within a given module), which is then
used to produce a KEGG module presence/absence table. All modules exceeding the cutoff value are determined to be
present. Meanwhile, the presence/absence information for each module step is also summarized in an overall output table to
facilitate further detailed investigations.

Outputs consist of six different results that are reported in an Excel spreadsheet (Additional �le 1: Figure S1). These contain
details of protein hits (Additional �le 1: Figure S1A) which include both presence/absence and protein names,
presence/absence of functional traits (Additional �le 1: Figure S1B), presence/absence of KEGG modules (Additional �le 1:
Figure S1C), presence/absence of KEGG module steps (Additional �le 1: Figure S1D), carbohydrate-active enzyme (CAZyme)
hits (Additional �le 1: Figure S1E) and peptidase/inhibitor hits (Additional �le 1: Figure S1F). For each HMM pro�le, the protein
hits from all input genomes can be used to construct phylogenetic trees or further be combined with reference protein
collections for detailed evolutionary analyses.

Quantitative visualization of biogeochemical cycles and sequential
reactions
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After METABOLIC generates protein and pathway annotation results, the software further identi�es and highlights speci�c
pathways of importance in microbiomes associated with energy metabolism and biogeochemistry. To visualize pathways of
biogeochemical importance, it generates schematic pro�les for nitrogen, carbon, sulfur, and other elemental cycles for each
genome. The set of genomes used as input is considered the “community”, and each genome within is considered an
“organism”. A summary schematic diagram at the community level integrates results from all individual genomes within a
given dataset (Figure 2) and includes computed abundances for each step in a biogeochemical cycle if the
genomic/metagenomic read datasets are provided. The genome number labeled in the �gure indicates the number/quantity of
genomes that contain the speci�c gene components of a biogeochemical cycling step (Figure 2) [2]. In other words, it
represents the number of organisms within a given community inferred to be able to perform a given metabolic or
biogeochemical transformation. The abundance percentage indicates the relative abundance of microbial genomes that
contain the speci�c gene components of a biogeochemical cycling step among all microbial genomes in a given community
(Figure 2) [2].

Microorganisms in nature often do not encode pathways for the complete transformation of compounds. For example,
microorganisms possess partial pathways for denitri�cation that can release intermediate compounds like nitrite, nitric oxide,
and nitrous oxide in lieu of nitrogen gas which is produced by complete denitri�cation [62]. A greater energy yield could be
achieved if one microorganism conducts all steps associated with a pathway (such as denitri�cation) [2] since it could fully
use all available energy from the reaction. However, in reality, few organisms in microbial communities carry out multiple steps
in complex pathways; organisms commonly rely on other members of microbial communities to conduct sequential reactions
in pathways [2, 63, 64]. Thus, to study this metabolic scenario in microbial communities, METABOLIC summarizes and
enables visualization of the genome number and coverage (relative abundance) of microorganisms that are putatively
involved in the sequential transformation of both important inorganic and organic compounds (Figure 3). This provides a
quantitative calculation of microbial interactions and connections using shared metabolites associated with inorganic and
organic transformations. Additionally, it shows the intuitive pattern of quantity and abundance of microorganisms that are
able to conduct partial or all steps for a given pathway, which potentially re�ects the degree of resilience of a microbial
community.

Calculation and visualization of functional networks, metabolic weight scores (MW-scores), and microbial contribution to
metabolic reactions

Given the microbial pathway abundance information generated by METABOLIC, we identi�ed co-existing metabolisms in
microbial genomes as a measure of connections between different metabolic functions and biogeochemical steps. In the
context of biogeochemistry, this approach allows the evaluation of relatedness among biogeochemical steps and the
connection contribution by microorganisms. This is enabled at the resolution of individual microbial groups based on the
phylogenetic classi�cation (Figure 4) assigned by GTDB-Tk [50]. As an example, we have demonstrated this approach on a
microbial community inhabiting deep-sea hydrothermal vents. We divided the microbial community of deep-sea hydrothermal
vents into 18 phylum-level groups (except for Proteobacteria which were divided into their subordinate classes). The
functional network diagrams were depicted at the resolution of both individual phyla and the entire community level
(Additional �le 10: Dataset S3). Figure 4 demonstrates metabolic connections that were represented with individual
metabolic/biogeochemical cycling steps depicted as nodes, and the connections between two given nodes depicted as edges.
The size of a given node is proportional to the gene coverage associated with the metabolic/biogeochemical cycling step. The
thickness of a given edge was depicted based on the average of gene coverage values of two biogeochemical cycling steps
(the connected nodes). More edges connecting two nodes represent more connections between these two steps. The color of
the edge corresponds to the taxonomic group. At the whole community level, more abundant microbial groups were more
represented in the diagram (Figure 4). Overall, METABOLIC provides a comprehensive approach to construct and visualize
functional networks associated with important pathways of energy metabolism and biogeochemical cycles in microbial
communities and ecosystems.
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To address the lack of quantitative and reproducible measures to represent potential metabolic interactions in microbial
communities, we developed a new metric that we termed MW-score (metabolic weight scores) (Equations 1 and 2). MW-scores
quantitatively measure “function weights” within a microbial community as re�ected by the metabolic pro�le and gene
coverage. As metabolic potential for the whole community was pro�led into individual functions that either mediated speci�c
pathways or transformed certain substrates into products, a function weight that re�ects the abundance fraction for each
function can be used to represent the overall metabolic potential of the community. MW-scores resolved the functional
capacity and abundance in the co-sharing functional networks as studied and visualized in the above section. More frequently
shared functions and their higher abundances lead to higher MW-scores, which quantitatively re�ects the function weights in
functional networks (Figure 5). MW-score re�ects the same functional networking pattern as the above description on the
edges (networking lines) connecting the nodes (metabolic steps) that – more edges connecting two nodes indicates two steps
are more co-shared, thicker edges indicate higher gene abundance for the metabolic steps. The MW-scores can integratively
represent these two networking patterns and serve as metrics to measure these function weights. At the same time, we also
calculated each microbial group’s (phylum in this case) contribution to the MW-score of a speci�c function within the
community (Figure 5). A higher microbial group contribution percentage value indicates that one function is more represented
by the microbial group (for both gene presence and abundance) in the functional networks. MW-scores provide a quantitative
measure of comparing function weights and microbial group contributions within functional networks.

To understand the contributions of microbial groups associated with speci�c metabolic and biogeochemical transformations,
we developed an approach to visualize the connections among speci�c taxonomic groups, metabolic reactions, and entire
biogeochemical cycles such as carbon, nitrogen, and sulfur cycles. Our approach involves the use of Sankey diagrams (also
called ‘Alluvial’ plots) to represent the fractions of metabolic functions that are contributed by various microbial groups in a
given community (Figure 6). It allows visualization of metabolic reactions as the link between microbial contributors clustered
as taxonomic groups and biogeochemical cycles at a community level (Figure 6 and Additional �le 10: Dataset S3). The
function fraction was calculated by accumulating the genome coverage values of genomes from a speci�c microbial group
that possesses a given functional trait. The width of curved lines from a speci�c microbial group to a given functional trait
indicates their corresponding proportional contribution to a speci�c metabolism (Figure 6). Alternatively, the
genomic/metagenomic datasets which are used in constructing the above two diagrams: functional network diagram (Figure
4) and metabolic Sankey diagram (Figure 6), can be replaced by transcriptomic/metatranscriptomic datasets, and
correspondingly, the gene coverage values will be replaced by gene expression values, and therefore, diagrams will represent
the transcriptional activity patterns of functional network and microbial contribution to metabolic reactions (Additional �le 2,
3, 4, and 5: Figure S2, S3, S4, and S5).

To demonstrate this part of the work�ow in reality, the microbial community consisting of 98 MAGs from a deep-sea
hydrothermal vent was used as a test dataset. After running the bioinformatic analyses described above, resulting tables and
diagrams were compiled and visualized accordingly (Figure 4, 5, 6 and Additional �le 10: Dataset S3). Results for functional
networks and MW-scores of the deep-sea hydrothermal vent environment indicate that the microbial community depends on
mixotrophy and sulfur oxidation for energy conservation and involves arsenate reduction potentially responsible for
detoxi�cation/arsenate resistance [65]. MW-scores indicate that amino acid utilization, complex carbon degradation, acetate
oxidation, and fermentation are the major heterotrophic metabolisms for this environment; CO2-�xation and sulfur oxidation
also occupy a considerable functional fraction, which indicates heterotrophy and autotrophy both contribute to energy
conservation (Figure 5). As represented by both MW-scores and metabolic Sankey diagram, Gammaproteobacteria are the
most numerically abundant group in the community and they occupy signi�cant functional fractions amongst both
heterotrophic and autotrophic metabolisms (MW-score contribution ranging from 59-100%) (Figure 5, 6), which is consistent
with previous �ndings in the Guaymas Basin hydrothermal environment [52, 66]. Meanwhile, MW-scores also explicitly re�ect
the involvement of other minor electron donors in energy conservation which are mainly contributed by Gammaproteobacteria,
such as hydrogen and methane (Figure 5). This is also consistent with previous �ndings [52, 66] and indicates the accuracy
and sensitivity of MW-scores to re�ect metabolic potentials.

METABOLIC performance demonstration
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To test METABOLIC’s performance on speed, we applied the software (METABOLIC-C mode) to analyze the metagenomic
dataset which includes 98 MAGs from a deep-sea hydrothermal vent, and two sets of metagenomic reads (that are subsets of
original reads with 10 million reads for each pair comprising ~10% of the total reads). The total running time was ~3 hours
using 40 CPU threads in a Linux version 4.15.0-48-generic server (Ubuntu v5.4.0). The most compute-demanding step is
hmmsearch, which took ~45 mins. When tested on another dataset comprising ~3600 microbial genomes (data not shown),
METABOLIC could complete hmmsearch in ~5 hours by using 40 CPU threads, indicating its scalable capability on analyzing
thousands of genomes.

In order to test the accuracy of the results predicted by METABOLIC, we picked 15 bacterial and archaeal genomes from
Chloro�exi, Thaumarchaeota, and Crenarchaeota which are reported to have 3 hydroxypropionate cycle (3HP) and/or 3-
hydroxypropionate/4-hydroxybutyrate cycle (3HP/4HB) for carbon �xation. METABOLIC predicted results in line with
annotations from the KEGG genome database which can be visualized in KEGG Mapper (Table 1). Our predictions are also in
accord with biochemical evidence of the existence of corresponding carbon �xation pathways in each microbial group: 1) 3
out of 5 Chloro�exi genomes are predicted by both METABOLIC and KEGG to possess the 3HP pathway and none of all these
Chloro�exi genomes are predicted to possess the 3HP/4HB pathway. This is consistent with current reports based on
biochemical and molecular experiments that only organisms from the phylum Chloro�exi are known to possess the 3HP
pathway [67] (Table 1). 2) All 5 Thaumarchaeota genomes and 2 out of 5 Crenarchaeota genomes are predicted by both
METABOLIC and KEGG to possess the 3HP/4HB pathway and none of these Thaumarchaeota and Crenarchaeota genomes
are predicted to possess the 3HP pathway. This is consistent with current reports that only the 3HP/4HB pathway could be
detected in Crenarchaeota and Thaumarchaeota [68, 69] (Table 1). We have also applied METABOLIC on a large well-studied
dataset comprising 2545 metagenome-assembled genomes from terrestrial subsurface sediments and groundwater [2]. The
annotation results of METABOLIC are consistent with previously described reports (Additional �le 6, 10: Figure S6, Dataset
S3). These results suggest that METABOLIC can provide accurate annotations and perform well as a functional predictor for
microbial genomes and communities.
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Table 1
The carbon �xation metabolic traits of 15 tested bacterial and archaeal genomes predicted by both METABOLIC and KEGG

genome database

  METABOLIC result KEGG genome
pathway

Carbon �xation Carbon �xation

Accession ID Organism KEGG
Organism
Code

Group 3HP
cycle

3HP/4HB
cycle

3HP
cycle

3HP/4HB
cycle

GCA_000011905.1 Dehalococcoides
mccartyi 195

det Chloro�exi Absent Absent Absent Absent

GCA_000017805.1 Rosei�exus
castenholzii DSM
13941

rca Chloro�exi Present Absent Present Absent

GCA_000018865.1 Chloro�exus
aurantiacus J-10-
�

cau Chloro�exi Present Absent Present Absent

GCA_000021685.1 Thermomicrobium
roseum DSM
5159

tro Chloro�exi Absent Absent Absent Absent

GCA_000021945.1 Chloro�exus
aggregans DSM
9485

cag Chloro�exi Present Absent Present Absent

GCA_000299395.1 Nitrosopumilus
sediminis AR2

nir Thaumarchaeota Absent Present Absent Present

GCA_000698785.1 Nitrososphaera
viennensis EN76

nvn Thaumarchaeota Absent Present Absent Present

GCA_000875775.1 Nitrosopumilus
piranensis D3C

nid Thaumarchaeota Absent Present Absent Present

GCA_000812185.1 Nitrosopelagicus
brevis CN25

nbv Thaumarchaeota Absent Present Absent Present

GCA_900696045.1 Nitrosocosmicus
franklandus
NFRAN1

nfn Thaumarchaeota Absent Present Absent Present

GCA_000015145.1 Hyperthermus
butylicus DSM
5456

hbu Crenarchaeota Absent Absent Absent Absent

GCA_000017945.1 Caldisphaera
lagunensis DSM
15908

clg Crenarchaeota Absent Present Absent Present

GCA_000148385.1 Vulcanisaeta
distributa DSM
14429

vdi Crenarchaeota Absent Absent Absent Absent

GCA_000193375.1 Thermoproteus
uzoniensis 768-20

tuz Crenarchaeota Absent Present Absent Present

GCA_003431325.1 Acidilobus sp. 7A acia Crenarchaeota Absent Absent Absent Absent

Currently, several software packages and online servers are available for genome annotation and metabolic pro�ling.
Comparing to other software/online servers including GhostKOALA [70], BlastKOALA [70], KAAS [71], RAST/SEED [33], and
eggNOG-mapper [72], METABOLIC is unique in its ability to integrate multi-omic information towards elucidating and
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visualizing community-level functional connections and the contribution of microorganisms to biogeochemical cycles (Figure
7A). Additionally, in order to compare the prediction performance of METABOLIC to others, we conducted parallel in silico
experiments (Figure 7B). We used two representative bacterial genomes as the test datasets. We randomly picked 100 protein
sequences from individual genomes and submitted them to annotation by these six software/online servers. Predicted protein
annotations by individual software and online servers were compared to their original annotations that were provided by the
NCBI database (Additional �le 11, 12: Dataset S4, S5). According to statistical methods of evaluating binary classi�cation [73],
the following parameters were used to make the comparison: 1) recall (also referred to as the sensitivity) as the true positive
rate, 2) precision (also referred to as the positive predictive value) which indicates the reproducibility and repeatability of a
measurement system, 3) accuracy which indicates the closeness of measurements to their true values, and 4) F1 value which
is the harmonic mean of precision and recall, and re�ects both these two parameters. Among the tested software/online
servers, the performance parameters of METABOLIC consistently placed it as the top 3 and top 2 software for recall and F1

and the top 1 and top 2 software for precision and accuracy. These results demonstrate that METABOLIC (Figure 7B) provides
robust performance and consistent metabolic prediction that facilitate accurate and reliable applicability for downstream data
visualization and community-level analyses.

To demonstrate the application and performance of METABOLIC in different samples, we tested eight distinct environments
(marine subsurface, terrestrial subsurface, deep-sea hydrothermal vent, freshwater lake, gut microbiome from patients with
colorectal cancer, gut microbiome from healthy control, meadow soil, wastewater treatment facility). Overall, we found
METABOLIC to perform well across all the environments to pro�le microbial genomes with functional traits and
biogeochemical cycles (Additional �le 10: Dataset S3). Among these tested environments, we also performed community-
scale metabolic comparisons based on the MW-score (Figure 8). MW-score fraction at the community scale re�ects the overall
metabolic pro�le distribution pattern. Speci�cally, we compared samples from terrestrial and marine subsurface and samples
from hydrothermal vent and freshwater lake. We observed that terrestrial subsurface contains more abundant metabolic
functions related to nitrogen cycling compared to the marine subsurface (Figure 8A), consistent with the previous
characterization of these two environments [2, 74]. Deep-sea hydrothermal vent samples had a considerably high
concentration of methane and hydrogen [52] as compared to Lake Tanganyika (freshwater lake). Consistent with this
phenomenon, the deep-sea hydrothermal vent microbial community has more abundant metabolic functions associated with
methanotrophy and hydrogen oxidation (Figure 8B). In order to focus on a speci�c biogeochemical cycle, we applied
METABOLIC to compare sulfur-related metabolisms at the community scale for these two environment pairs (Additional �le 7:
Figure S7). Terrestrial subsurface contains genomes covering more sulfur cycling steps compared to marine subsurface (7
steps vs 3 steps) (Additional �le 7: Figure S7A). Freshwater lake contains genomes involving almost all the sulfur cycling
steps except for sulfur reduction, while deep-sea hydrothermal vent contains less sulfur cycling steps (8 steps vs 6 steps)
(Additional �le 7: Figure S7B). Nevertheless, deep-sea hydrothermal vent has a higher fraction of genomes (59/98) and a
higher relative abundance (73%) of these genomes involving sulfur oxidation compared to the freshwater lake (Additional �le
7: Figure S7B). This indicates that the deep-sea hydrothermal vent microbial community has a more biased sulfur metabolism
towards sulfur oxidation, which is consistent with previous metabolic characterization on the dependency of elemental sulfur
in this environment [52, 75–77]. Collectively, by characterizing community-scale metabolism, METABOLIC can facilitate the
comparison of overall functional pro�les as well as for a particular elemental cycle.

METABOLIC enables accurate reconstruction of cell metabolism
To demonstrate applications of reconstructing and depicting cell metabolism based on METABOLIC results, two microbial
genomes were used as an example (Figure 9). As illustrated in Figure 9A, Hadesarchaea archaeon 1244-C3-H4-B1 has no TCA
cycling gene components, which is consistent with previous �ndings in archaea within this class [78].
Gluconeogenesis/glycolysis pathways are also lacking in the genome; since gluconeogenesis is the central carbon
metabolism responsible for generating sugar monomers which will be further biosynthesized to polysaccharides as important
cell structural components [79], the lack of this pathway could be due to genome incompleteness. As an enigmatic archaeal
class newly discovered in the recent decade, Hadesarchaea have distinctive metabolisms that separate them from
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conventional euryarchaeotal groups. They almost lost all TCA cycle gene components for the production of acetyl-CoA; while
they could metabolize amino acids in a heterotrophic lifestyle [78]. It is posited that the Hadesarchaea genome has been
subjected to a streamlining process possibly due to nutrient limitations in their surrounding environments [78]. Due to their
metabolic novelty and limited available genomes at the current time, there are still uncertainties on unknown/hypothetical
genes and pathways and unclassi�ed metabolic potential across the whole class. The previous metabolic characterization on
four Hadesarchaea genomes indicates Hadesarchaea members could anaerobically oxidize CO, and H2 was produced as the
side product [78]. In the Hadesarchaea archaeon 1244-C3-H4-B1 genome, METABOLIC results indicate the loss of all anaerobic
carbon-monoxide dehydrogenase gene components, which suggests the distinctive metabolism of this Hadesarchaea
archaeon from others and highlights the accuracy of METABOLIC in re�ecting functional details.

We also reconstructed the metabolism for Nitrospirae bacteria M_DeepCast_50m_m2_151, a member of the Nitrospirae
phylum reconstructed from Lake Tanganyika [55] (Figure 9B). It contains the full pathway for the TCA cycle and
gluconeogenesis/glycolysis. Furthermore, it also has the full set of oxidative phosphorylation complexes for energy
conservation and functional genes for nitrite oxidation to nitrate. Other nitrogen cycling metabolisms identi�ed in this genome
include ammonium oxidation, urea utilization, and nitrite reduction to nitric oxide. The reverse TCA cycle pathway was
identi�ed for carbon �xation. The metabolic pro�ling result is in accord with the fact that Nitrospirae is a well-known nitrifying
bacterial class capable of nitrite oxidation and living an autotrophic lifestyle [79]. Additionally, their more abundant
distribution in nature compared to other nitrite-oxidizing bacteria such as Nitrobacter indicates their signi�cant contribution to
nitrogen cycling in the environment [79]. This highlights the ability of METABOLIC in re�ecting functional details of more
common and prevalent microorganisms compared to the Hadesarchaea archaeon. Notably as discovered from METABOLIC
analyses, this bacterial genome also contains a wide range of transporter enzymes on the cell membrane, including mineral
and organic ion transporters, sugar and lipid transporters, phosphate and amino acid transporters, heme and urea
transporters, lipopolysaccharide and lipoprotein releasing system, bacterial secretion system, etc., which indicates its
metabolic versatility and potential interactive activities with other organisms and the ambient environment. Collectively,
METABOLIC result of functional pro�ling provides an intuitively-represented summary of a single microbial genome which
enables depicting cell metabolism for better visualizing the functional capacity.

METABOLIC accurately represents metabolism in the human
microbiome
In addition to resolving microbial metabolism and biogeochemistry in environmental microbiomes, METABOLIC also
accurately identi�es metabolic traits associated with human microbiomes. The implications of microbial metabolism on
human health largely remain a black box, much like microbial contributions to biogeochemical cycling. We demonstrate the
utility of METABOLIC in human microbiomes using publicly available data from stool samples collected from patients with
colorectal cancer and healthy individuals. From this study, we selected stool metagenomes from one colorectal cancer (CRC)
and an age and sex-matched healthy control to conduct the comparison. The heatmap indicates the human microbiome
functional pro�les of both samples based on the marker gene presence/absence patterns (Figure 10). As an example of
METABOLIC’s application, we demonstrate that there were 28 markers with variations > 10% in terms of the marker-containing
genome fractions between these two samples (Figure 10, Additional �le 13: Dataset S6). These 28 markers involved all the ten
metabolic categories except for lipid metabolism and translation, suggesting the broad functional differences between these
two samples. Recently, METABOLIC was applied to stool metagenomic samples from 667 individuals who either were healthy
or had adenomas or carcinomas of the colon, to pro�le organic/inorganic sulfate reduction and sul�de production [80]. In
addition to analyzing human microbiome speci�c functional markers, METABOLIC can be used to visualize elemental nutrient
cycling and analyze metabolic interactions in human microbiomes. Overall it enables systematic characterization of the
composition, structure, function, and dynamics of microbial metabolisms in the human microbiome and facilitates omics-
based studies of microbial community on human health [59].

Discussion
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The rapid increase in the availability of sequenced microbial genomes, metagenome-assembled genomes, and single-cell
genomes has signi�cantly bene�ted ecogenomic research on unraveling microbial functional roles and their metabolic
contribution to biogeochemical cycles. Tools that enable to conduct accurate and reproducible functional pro�ling on genomic
blueprints at the scale of both individual microorganisms and the whole microbial community offered signi�cant applications
and advances. They are fundamental to facilitate understanding of community-level functions, activities, interactions, and
functional contributions in the era of multi-omics. An ideal tool for microbial biogeochemical pro�ling needs consideration on
better organizing, interpreting, and visualizing the functional pro�le information; this is especially important for dealing with
thousands of genomes reconstructed from metagenomes and studying the community-scale interactive metabolisms.
Meanwhile, fast, accurate, and robust performance and wide usage of the tool will allow for providing reliability and e�ciency.

Here we developed METABOLIC for pro�ling metabolisms, biogeochemical pathways, and community-scale functional
networks. Instead of solely depending on widely adopted protein annotation databases, in METABOLIC two additional steps
were added in order to accurately predict protein functions and reconstruct metabolic pathways. First, for
TIGRfam/Pfam/Custom HMM pro�le databases, default NC/TC thresholds are often set too low to avoid noisy signals
especially for annotating proteins from large sets of metagenomes wherein similar protein families often co-exist. This
frequently leads to misannotations. To avoid this, we collected hmmsearch scores of previous annotation results and plotted
these scores as a function of all annotations, and manually curated NC/TC by speci�cally picking the sharpest decreasing
interval as the adjusted cutoff. Second, the motif validation step involves comparing potential hits to a set of manually
curated highly conserved amino acid residues. This helps to distinguish two protein families with high sequence identity but
different functions which are often di�cult to separate by HMM pro�le-based annotations. These two steps help to �lter out
non-speci�c and cross-talking hits of important functional proteins for downstream bioinformatic analyses. After obtaining
predicted metabolic pathways, many other software/online servers mostly provide raw annotation results with overwhelming
yet unorganized details on characterizing protein functions. For microbial ecologists it is fundamental to provide organized
and intuitive results to facilitate understanding on the whole landscape of biogeochemical cycling capacities. In METABOLIC,
such a function was developed to enable visualizing the presence/absence state of each step of biogeochemical cycles for
individual genomes and the whole microbial community. Combined with gene abundance information calculated by
metagenomic read mapping, we can identify the relative abundance for each step of biogeochemical cycles. Furthermore,
METABOLIC can also visualize sequential reaction patterns for important organic and inorganic compound transformations.
This visualization function of METABOLIC is practical for representing the “metabolic handoff” scenario of within-community
interactions [2].

Previously, the community networks re�ected by microbial genomes mostly focused on modeling reactions that are linked by
metabolizing substrates and generating products [19, 24, 25]. On the contrary, METABOLIC was developed for a different
purpose to study microbially-mediated biogeochemical processes. In METABOLIC the community-scale functional network
provides an intuitive perspective on the metabolic connectivity among biogeochemical/metabolic steps and microbial
contributions to these functions. MW-score, a metric that was built based on the same notion and methodology, offers
quantitative measurement for these connected functions. Combined together they represent which functions are more
centralized (connected with others) and important (weighted with higher relative abundance) in the co-sharing functional
networks and which groups of microbial players contribute to these functions. Additionally, metabolic Sankey diagrams can
be drawn to further visualize the microbial group contributions to different functions and biogeochemical cycles. As gene
coverages generated by metagenomic read mapping can be replaced by transcript coverages generated by transcriptomic
reads mapping, we broaden the usage in re�ecting active function connections and weights. In practical applications,
functional networks and MW-scores can be made in a standardized, reproducible, and normalized manner, so parallel
comparisons between communities (or samples) are applicable. The visualized network and Sankey diagram can also offer
intuitive representations of functional connections and microbial contribution at both individual function and community-
scale levels by using customized color schemes. There are other read-based metagenomic pro�ling tools, e.g., MetaPhlAn [28]
and MEGAN [81], that can study the taxonomical and functional composition of microbiome at the community-scale level.
While compared to read-based approaches which largely depend on the comprehensiveness of reference databases to capture
microbial organisms, METABOLIC depends on the annotation of MAGs that is free from the limitation of reference databases
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on novel and rare organism characterization. METABOLIC speci�cally provides additional functionalities on annotation
validation, result organization, and visualization which are meaningful to give reliable and easily accessible functional
pro�ling results for microbial ecologists and biogeochemists to have a comprehensive understanding on the whole landscape
of biogeochemical cycling capacities.

Conclusions
Metabolic functional pro�le of microbial genomes at the scale of individual organisms and communities is essential to have a
comprehensive understanding of ecosystem processes, and as a conduit for enabling functional trait-based modeling of
biogeochemistry. We have developed METABOLIC as a metabolic functional pro�ler that goes above and beyond current
frameworks of genome/protein annotation platforms in providing protein annotations and metabolic pathway analyses that
are used for inferring the contribution of microorganisms, metabolism, interactions, activity, and biogeochemistry at the
community-scale. METABOLIC facilitates standardization and integration of genome-informed metabolism into metabolic and
biogeochemical models. We anticipate that METABOLIC will enable easier interpretation of microbial metabolism and
biogeochemistry from metagenomes and genomes and enable microbiome research in diverse �elds.
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Figures

Figure 1

An outline of the work�ow of METABOLIC. Detailed instructions are available at
https://github.com/AnantharamanLab/METABOLIC/wiki. METABOLIC-G work�ow is speci�cally shown in the blue box and
METABOLC-C work�ow is shown in the green square.
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Figure 2

Summary scheme of biogeochemical cycling processes at the community scale. Each arrow represents a single
transformation/step within a cycle. Labels above each arrow are (from top to bottom): step number and reaction, number of
genomes that can conduct these reactions, metagenomic coverage of genomes (represented as a percentage within the
community) that can conduct these reactions. The numbers in brackets next to the nitrogen or sulfur-containing compounds
are chemical states of the nitrogen or sulfur atoms in these compounds.
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Figure 3

Schematic �gure of sequential metabolic transformations. (A) the sequential transformation of inorganic compounds; (B) the
sequential transformation of organic compounds. X-axes describe individual sequential transformations indicated by letters.
The two panels describe the number of genomes and genome coverage (represented as a percentage within the community)
of organisms that are involved in certain sequential metabolic transformations. The deep-sea hydrothermal vent dataset was
used for these analyses.
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Figure 4

Functional network showing connections between different functions in the microbial community. Nodes represent individual
steps in biogeochemical cycles; edges connecting two given nodes represent the functional connections between nodes,
which are enabled by organisms that can conduct both biogeochemical processes/steps. The thickness of the edge was
depicted according to the average gene coverage values of the two connected biogeochemical cycling steps – for example,
thiosulfate oxidation and organic carbon oxidation. The color of the edges was assigned based on the taxonomy of the
represented genome. The deep-sea hydrothermal vent dataset was used for these analyses.
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Figure 5

Description, calculation, and result table of MW-scores. (A) The calculation method for the MW-score within a community
based on a given metagenomic dataset. Each circle stands for a genome within the community, and the adjacent bar stands
for its genome coverage within the community. The coverage values of encoded genes for all functions were summed up as
the denominator, and the coverage value of encoded genes for each function was used as the numerator, and the MW-score
was calculated accordingly for each function. (B) The resulting table of MW-score for the deep-sea hydrothermal vent
metagenomic dataset. MW-score for each function was given in a separated column, and the rest of the table indicates the
contribution percentage to each MW-score of the genomes grouped in each phylum. The MW-score of “N-S-07:Nitrous oxide
reduction” was not exactly 0 but rounded to 0 due to the original number being less than 0.05. Additionally, contribution
percentages were also rounded to only retain one digit after the decimal points; consequently, the sum contribution
percentages for some functions slightly deviate from 100%.
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Figure 6

Metabolic Sankey diagram representing the contributions of microbial genomes to individual metabolic and biogeochemical
processes and entire elemental cycles. Microbial genomes are represented at the phylum-level resolution. The three columns
from left to right represent taxonomic groups scaled by the number of genomes, the contribution to each metabolic function
by microbial groups calculated based on genome coverage, and the contribution to each functional category/biogeochemical
cycle. The colors were assigned based on the taxonomy of the microbial groups. The deep-sea hydrothermal vent dataset was
used for these analyses.
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Figure 7

Comparison of METABOLIC with other software packages and online servers. (A) Comparison of the work�ows and services,
(B) Comparison of performance of protein prediction for two representative genomes, Pseudomonas aeruginosa PAO1, and
Escherichia coli O157H7 str. sakai.
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Figure 8

Community metabolism comparison based on MW-scores. (A) Comparison between terrestrial subsurface (left red bars) and
marine subsurface (right blue bars); (B) Comparison between deep-sea hydrothermal vent (left red bars) and freshwater lake
(right blue bars). MW-scores were calculated as gene coverage fractions for individual metabolic functions. Functions with
MW-scores in both environments as zero were removed from each panel, e.g., N-S-02:Ammonia oxidation, N-S-09:Anammox, S-
S-02:Sulfur reduction, and S-S-06:Sul�te reduction in Panel (A), and C-S-07:Methanogenesis, N-S-01:N2 �xation, N-S-
09:Anammox, S-S-02:Sulfur reduction, and S-S-06:Sul�te reduction in Panel (B). Details for MW-score and each microbial
group contribution refer to Supplementary Dataset S3.
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Figure 9

Cell metabolism diagrams of two microbial genomes. (A) cell metabolism diagram of Hadesarchaea archaeon 1244-C3-H4-B1
(B) cell metabolism diagram of Nitrospirae bacteria M_DeepCast_50m_m2_151. The absent functional pathways/complexes
were labeled with dash lines.
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Figure 10

Presence/Absence map of human microbiome metabolisms of a colorectal cancer (CRC) patient and a healthy control gut
sample. The heatmap has summarized 189 horizontal entries (189 lines) based on 139 key functional gene families that
covered 10 function categories. Purple cells indicate presence and gray cells indicate absence. Detailed KEGG KO identi�er IDs
and protein information for each function category were described in Supplementary Dataset S2.
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