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Abstract: Recent in vitro experiments have demonstrated the ability of the pathogen Clostridium

difficile and commensal gut bacteria to form biofilms on surfaces, and biofilm development in
vivo is likely. Various studies have reported that 3%–15% of healthy adults are asymptomatically
colonized with C. difficile, with commensal species providing resistance against C. difficile pathogenic
colonization. C. difficile infection (CDI) is observed at a higher rate in immunocompromised
patients previously treated with broad spectrum antibiotics that disrupt the commensal microbiota
and reduce competition for available nutrients, resulting in imbalance among commensal species
and dysbiosis conducive to C. difficile propagation. To investigate the metabolic interactions of
C. difficile with commensal species from the three dominant phyla in the human gut, we developed a
multispecies biofilm model by combining genome-scale metabolic reconstructions of C. difficile,
Bacteroides thetaiotaomicron from the phylum Bacteroidetes, Faecalibacterium prausnitzii from the
phylum Firmicutes, and Escherichia coli from the phylum Proteobacteria. The biofilm model was used
to identify gut nutrient conditions that resulted in C. difficile-associated dysbiosis characterized by
large increases in C. difficile and E. coli abundances and large decreases in F. prausnitzii abundance.
We tuned the model to produce species abundances and short-chain fatty acid levels consistent
with available data for healthy individuals. The model predicted that experimentally-observed
host-microbiota perturbations resulting in decreased carbohydrate/increased amino acid levels
and/or increased primary bile acid levels would induce large increases in C. difficile abundance
and decreases in F. prausnitzii abundance. By adding the experimentally-observed perturbation
of increased host nitrate secretion, the model also was able to predict increased E. coli abundance
associated with C. difficile dysbiosis. In addition to rationalizing known connections between nutrient
levels and disease progression, the model generated hypotheses for future testing and has the
capability to support the development of new treatment strategies for C. difficile gut infections.

Keywords: gut microbiota dysbiosis; Clostridium difficile infection; bacterial biofilms; metabolic modeling

1. Introduction

The gut microbiota comprise a complex ecological system that maintains a critical symbiotic
relationship with the human host [1,2]. The microbiota provide essential nutrients such as short-chain
fatty acids (SCFAs; acetate, butyrate, and propionate), support colonization resistance to pathogens,
participate in the degradation of toxic compounds, and regulate the immune responses [3–7].
Bacteroidetes and Firmicutes are the two dominant phyla in the healthy gut, comprising approximately
90% of the community. Other important but less abundant phyla are Proteobacteria, Actinobacteria,
Euryarchaeota and Verrucomicrobia, as well as Eukaryota such as fungi [8,9]. The gut microbiota
composition can be altered by numerous factors including diet, antibiotic treatment, stress, and
lifestyle [10,11]. Dietary components including carbohydrates, protein, fat, and host secretions
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such as primary bile acids and nitrate play a particularly important role in shaping microbiota
abundances [12–17]. Unhealthy alterations of the gut microbiota are termed as dysbiosis and represent
imbalances in species abundances associated with diseases such as inflammatory bowel diseases,
Crohn’s disease, obesity, and diabetes [18–20].

The anaerobic bacterium Clostridium difficile is an opportunistic human pathogen responsible
for infections in the colon of the human gastrointestinal tract [21]. Various studies have reported
that 3%–15% of healthy adults are asymptomatically colonized with C. difficile [22–28]. Commensal
species in healthy gut usually provide resistance against C. difficile pathogenic colonization. C. difficile

infection (CDI) is most common in patients previously treated with broad spectrum antibiotics that
disrupt the healthy gut microbiota and reduce competition for available nutrients [29], resulting in
dysbiosis conducive to C. difficile propagation [30–33]. CDI symptoms can range from mild diarrhea
to severe and life-threatening colitis [21,34]. C. difficile virulence is attributable to the secretion of the
high molecular weight toxins A and B that promote epithelial tissue damage and rapid fluid loss.
Some C. difficile strains have developed resistance to common antibiotics while also exhibiting more
severe pathogenicity [35]. CDI has become particularly common in hospital settings due to the ability
of C. difficile to form spores that adhere to surfaces and resist common disinfectant protocols. Studies
estimate that almost 500,000 CDI cases occur within the U.S. annually [36], resulting in 29,000 deaths
and over $4.8 billion in associated costs in acute care facilities alone [37].

Numerous experimental studies have demonstrated that C. difficile [38–41] can form biofilms
in vitro. The other commensal bacteria [42,43] can form biofilms in vivo, which are well known to
exhibit phenotypes distinct from planktonic cultures. For example, bacteria in biofilms can tolerate
antimicrobial concentrations 10,000-times higher than the same bacteria grown planktonically, making
the development of effective treatment strategies a major challenge [44,45]. This difficulty is partially
attributable to the spatially-varying biofilm environment, which has profound effects on biofilm
development and function [46–48]. Mechanistic understanding of the relationships between biofilm
spatial variations, species–species interactions, and host–species interactions remains inadequate to
systematically analyze and rationally treat CDI [49]. To address these challenges, we added C. difficile to
our previous multispecies biofilm model [50,51] consisting of three representative species from the phyla
Bacteroidetes (Bacteroides thetaiotaomicron), Firmicutes (Faecalibacterium prausnitzii), and Proteobacteria
(Escherichia coli). Model simulations were performed to connect host-induced nutrient changes in the
gut environment with observed alternations of species abundances and SCFA levels [52–54] to unravel
the metabolic determinants of CDI.

2. Results

2.1. Discovery of Putative Byproduct Cross-Feeding Relationships

Our previous modeling study [50] without C. difficile generated three byproduct cross-feeding
relationships that were predicted to be necessary and sufficient for the coexistence of the three species:
B. thetaiotaomicron consumption of ethanol secreted by E. coli and F. prausnitzii consumption of acetate
and succinate secreted by B. thetaiotaomicron and E. coli. Preliminary flux balance analysis (FBA)
with the C. difficile reconstruction showed that acetate, butyrate, and propionate were the major
byproducts, and succinate and formate could be uptaken as carbon sources in the presence of glucose.
With this knowledge, the four-species biofilm model was analyzed to discover additional cross-feeding
relationships that support C. difficile coexistence with the three commensal species. Each species
was allowed to consume glucose, the eight amino acids, and any available byproduct (acetate, CO2,
ethanol, formate, lactate, and succinate), assuming no differences in uptake kinetics across species
and byproducts (see Materials and Methods). Simulations with a biofilm thickness of 40 microns
and bulk concentrations of 8 mmol/L glucose and 0.5 mmol/L each amino acid at the biofilm-stool
interface corresponding to the healthy case (Table 1) were run for 300 h to ensure a steady-state
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solution consistent with obtaining a mature biofilm. A particular cross-feeding relationship was
deemed significant if at least one uptake or secretion flux exceeded 1 mmol/gDW·h.

Table 1. Nutrient concentrations used for healthy and three dysbiosis simulation cases in mmol/L.

Nutrient Healthy
High Amino Acids,
Low Glucose

High Primary
Bile Acids

High Nitrate

Glucose 8.0 4.0 8.0 4.0
Cysteine 0.5 1.0 0.5 1.0
Isoleucine 0.5 1.0 0.5 1.0
Leucine 0.5 1.0 0.5 1.0
Methionine 0.5 1.0 0.5 1.0
Proline 0.5 1.0 0.5 1.0
Serine 0.5 1.0 0.5 1.0
Tryptophan 0.5 1.0 0.5 1.0
Valine 0.5 1.0 0.5 1.0
Nitrate 0 0 0 0.4
Taurocholate 0 0 1.5 1.5

The biofilm model predicted significant cross-feeding of acetate, ethanol, formate, and succinate
between the four species (Figure 1A). Lactate and CO2 cross-feeding were insignificant. Importantly
for this study, C. difficile was predicted to: (1) consume formate secreted by F. prausnitzii and E. coli;
(2) compete with F. prausnitzii for succinate secreted by B. thetaiotaomicron; and (3) synthesize acetate
for consumption by F. prausnitzii (Figure 1B). Experimentally, C. difficile has been shown to uptake
succinate and produce butyrate [55] and to produce acetate by consuming formate directly or indirectly
by uptaking CO2 and H2 [56]. Consequently, we hypothesized that formate and succinate cross-feeding
could play a role in C. difficile propagation in vivo.

To test community stability and robustness in the absence of C. difficile, the same simulation was
performed with the initial C. difficile biomass concentration set to zero. The resulting three-species
community remained stable with B. thetaiotaomicron:F. prausnitzii:E. coli abundances of 66%:27%:7%,
consistent with a healthy gut community (Supplementary Materials Figure S1). These predictions were
aligned with our previous study [50].

2.2. Characterization of Healthy Gut Microbiota

With the putative cross-feeding relationships (Figure 1B) included, the multispecies biofilm
model was simulated for a biofilm thickness of 40 microns and the healthy nutrient levels (Table 1).
The model was tuned such that the mature biofilm obtained after 300 h of simulation produced
B. thetaiotaomicron:F. prausnitzii:E. coli:C. difficile abundances of 71%:21%:7%:1% when averaged across
the biofilm (see Materials and Methods). These abundances were consistent with data from in vivo
studies [57,58].

We analyzed species biomass concentrations (Figure 2A) and local growth rates (Figure 2B) with
respect to location in the biofilm with nutrients supplied at the biofilm–stool interface (z = 0). C. difficile

was predicted to have the highest growth rates in the nutrient-rich bottom half of the biofilm, but the
lowest growth rates in the nutrient-lean top half. The local growth rates of the three commensal
bacteria were comparable across the biofilm, with B. thetaiotaomicron having the highest growth rates
in the bottom half and F. prausnitzii having a slight advantage in the top half. Due to its growth
advantage in the nutrient-rich bottom half and slow cellular diffusion, B. thetaiotaomicron produced
much higher biomass concentrations across the entire biofilm. F. prausnitzii and E. coli established
lower biomass concentrations, while C. difficile was present at small concentrations due to its very
small growth rate in the nutrient-lean top half. The spatial distributions of supplied nutrients, species
biomass, and secreted byproducts were similar to those reported in our previous studies [50,51] and
are omitted here. This simulation suggests that the commensal bacteria can sublimate C. difficile
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propagation through nutrient competition and may help explain how healthy individuals can be
asymptomatically colonized.

Figure 1. Predicted cross-feeding of byproducts between the four species. (A) Species exchange rates
specified in mmol/gDW/h. Secretion rates are positive, and uptake rates are negative. (B) Byproduct
cross-feeding patterns identified from the species uptake and secretion fluxes in (A).

The biofilm model also was tuned for healthy nutrient levels to produce acetate:propionate:
butyrate fractions of 60%:20%:20% when averaged across the biofilm to be consistent with in vivo
studies [5,59] (see Materials and Methods). The model predicted the total SCFA concentration to be
32.5 mmol/L (Figure 2C), which was in reasonable agreement with an in vivo study with a control
diet that yielded 41.1 mmol/L of total SCFAs [60]. One possible explanation for the lower SCFA levels
predicted by our model is the simplified diet (glucose, eight amino acids) compared to the control diet
used experimentally.
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Ethanol was present at a very low level (Figure 2D) due to limited synthesis by the small E. coli

population and high consumption by the large B. thetaiotaomicron population. Of the two organic
acids (OAs) produced, formate was predicted to be present at a high level because synthesis by
F. prausnitzii and E. coli substantially exceeded consumption by C. difficile. Succinate was present
at a moderate level since it was consumed by both C. difficile and F. prausnitzii. These predictions
suggest that plentiful formate and succinate could be available to promote C. difficile propagation
under in vivo perturbations.
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Figure 2. Predicted multispecies biofilm behavior in the absence of host-microbiota perturbations.
(A) Species biomass concentrations across the thickness of the biofilm with nutrients supplied and
biomass removed at z = 0 microns. (B) Local species growth rates across the thickness of the
biofilm. (C) Acetate, butyrate, propionate, and total SCFA concentrations averaged across the biofilm.
(D) Ethanol, succinate, formate, and total OA levels averaged across the biofilm.

2.3. Glucose and Amino Acid Perturbations

Various in vivo studies have shown that glucose concentration decreases and amino acid
concentrations increase in the gut during C. difficile and other types of dysbiosis [12,61–64].
To investigate the effects of altered nutrient levels associated with host-microbiota perturbations,
we performed simulations for a 40-micron biofilm with elevated amino acid and reduced glucose
bulk concentrations (Table 1) under the assumption that C. difficile expansion is driven by these
experimentally-observed nutrient changes. While in vivo nutrient levels are impacted by diet, host
metabolism, and microbiota, this assumption was deemed reasonable given the simplified nature of
our model. Given the uncertainty associated with the bulk nutrient concentrations, we performed
a sensitivity analysis to explore their effects with respect to the species abundances (Figure S2).
This analysis was consistent with the model predictions reported below as long as the glucose to
amino acid ratio was sufficiently large. Compared to the healthy case, the local C. difficile growth
rate decreased in the bottom half of the biofilm, but increased in the top half (Figure 3A). Similar
trends were predicted for the three commensal species, which we attributed to reduced glucose, but
increased amino acid penetration into the biofilm. C. difficile is known to grow efficiently on amino
acids due to its ability to use amino acid pairs such as leucine and proline to generate ATP via Stickland
metabolism [65–67].
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Figure 3. Predicted multispecies biofilm dysbiosis resulting from host–microbiota perturbations in
glucose and amino acid concentrations. (A) Change in species growth rates across the biofilm plotted as
the difference between the growth rates for the healthy and dysbiosis cases. (B) Biomass concentrations
(bar graphs) and species abundances (pie chart) averaged across the biofilm for healthy and dysbiosis
case. (C) Acetate, butyrate, propionate, and total SCFA concentrations averaged across the biofilm.
(D) Succinate, formate, and total OA concentrations averaged across the biofilm.

As a result of its enhanced growth in the top half of the biofilm compared to the commensal species,
C. difficile increased its average biomass concentration ten-fold and species abundance from 1%–22%
compared to the healthy case (Figure 3A). The biomass concentration of each commensal species dropped
due to reduced glucose availability. A substantial effect was predicted for F. prausnitzii with its species
abundance decreasing from 21%–12%, partially due to increased competition for succinate with C. difficile.
These predictions are in agreement with in vivo studies [29,68–70], with the exception that dysbiosis
during CDI should be accompanied by an increase in E. coli abundance [13,15,71–73]. The model predicted
reduced total biomass production due to reduced growth of the three commensal species.

Dysbiosis was predicted to result in increased acetate, decreased butyrate and propionate,
and lower total SCFA levels compared to the healthy case (Figure 3C). We attributed reduced total
SCFA synthesis to lower glucose availability and increased acetate and decreased butyrate levels to a
change in the balance of acetate-producing C. difficile and acetate-to-butyrate converting F. prausnitzii.
Experimental studies have shown that dysbiosis is associated with reduced butyrate concentrations
in the gut [69,74]. The model predicted large changes in organic acid levels, with succinate, formate,
and total OA concentrations dropping due to reduced glucose fermentation. These predictions suggest
that the combination of decreased carbohydrate and increased amino acid levels could play a role in
C. difficile-associated dysbiosis.

2.4. Primary Bile Acid Perturbations

Primary bile acids such as taurocholate are secreted by the liver and transported into the intestines
where anaerobic bacteria degrade them into secondary bile acids [75–77]. Broad spectrum antibiotics
are known to reduce gut microbiota diversity [30–33,78], including the possible loss of bacterial species
from families Lachnospiraceae and Ruminococcaceae responsible for the conversion of primary bile acids.
Various in vitro [77,79,80] and in vivo [16,81] studies have shown that C. difficile spores can use primary
bile acids for germination. Sodium taurocholate is the typical reagent used to grow C. difficile in
vitro [82,83]. We investigated the impact of such perturbations with the multispecies biofilm model
by adding taurocholate as a representative primary bile acid (Table 1). While primary bile acids are
known to promote C. difficile transition from spores to a vegetative state [79,84], we assumed that
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C. difficile was already vegetative and investigated the effect of taurocholate on C. difficile growth.
Preliminary FBA calculations with the C. difficile metabolic reconstruction showed that taurocholate
uptake increased the growth rate, while taurocholate uptake was not possible with the three commensal
species reconstructions.

Compared to the healthy case, the introduction of taurocholate was predicted to increase the
local C. difficile growth rate across the biofilm (Figure 4A). B. thetaiotaomicron and E. coli growth were
largely unaffected, while the F. prausnitzii growth rate decreased due to increased competition for
succinate from C. difficile. As a result, the C. difficile abundance increased from 1%–18%, while the
F. prausnitzii abundance decreased by 38% (Figure 4B). The B. thetaiotaomicron and E. coli abundances
exhibited relatively small decreases, although experimental studies showed that E. coli abundance
should increase during dysbiosis [71,73]. The total biomass concentration was predicted to remain
almost constant, showing that taurocholate was responsible for changing the species distribution of
the biomass.

Figure 4. Predicted multispecies biofilm dysbiosis resulting from host-microbiota perturbations in
the concentration of the primary bile acid taurocholate. (A) Change in species growth rates across
the biofilm plotted as the difference between the growth rates for the healthy and dysbiosis case.
(B) Biomass concentrations (bar graphs) and species abundances (pie charts) averaged across the biofilm
for the healthy and dysbiosis case. (C) Acetate, butyrate, propionate, and total SCFA concentrations
averaged across the biofilm. (D) Succinate, formate, and total OA concentrations averaged across
the biofilm.

The predicted trends for SCFA and OA levels were similar to those observed for the combined
glucose/amino acid perturbation. Acetate and total SCFA concentrations increased compared to
the healthy case due to increased acetate synthesis by C. difficile and decreased acetate consumption
by F. prausnitzii (Figure 4C). The formate concentration decreased because of the same mechanism,
while we attributed the reduced succinate concentration to increased succinate consumption by
C. difficile (Figure 4D). Butyrate (produced by F. prausnitzii and C. difficile) and propionate (produced by
B. thetaiotaomicron and C. difficile) concentrations remained almost constant as C. difficile compensated
for reduced SCFA synthesis by the two commensal species. We also simulated a host-microbiota
perturbation with decreased glucose/increased amino acids and increased taurocholate to examine the
combined effects of these nutrient changes. Compared to either perturbation alone, the model predicted
a further increase in C. difficile abundance and a decrease in F. prausnitzii abundance (Figure S3). Overall,
these results support the hypothesis that increased primary bile acid levels could contribute to C. difficile

propagation in vivo.
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2.5. Host-Derived Nitrate Perturbations

The human host is known to secrete nitrate in response to inflammation in the gut [17]. Preliminary
FBA calculations showed that nitrate uptake increased the E. coli growth rate, while the other three
community members were unable to use nitrate as an electron acceptor. Therefore, we hypothesized
that host-derived nitrate would increase E. coli abundance during simulated C. difficile-associated
dysbiosis and yield better agreement with experimental studies [71,73]. To quantify the effects of
nitrate availability, biofilm simulations were performed with and without nitrate for a dysbiosis case
with reduced glucose, increased amino acids, and available taurocholate (Table 1).

As hypothesized, the main impact of host-derived nitrate was to substantially increase E. coli

abundance from 4% without nitrate to 20% with nitrate (Figure 5A). The F. prausnitzii abundance
decreased from 7% to 2%, while the abundances of B. thetaiotaomicron and C. difficile decreased modestly
to accommodate the increased E. coli. The species abundances predicted with nitrate are in good
agreement with experimental studies for C. difficile-associated dysbiosis showing large increases in
C. difficile and E. coli, large decreases in F. prausnitzii, and modest changes in B. thetaiotaomicron [85–87].

Figure 5. Predicted multispecies biofilm dysbiosis with and without host-derived nitrate. (A) Biomass
concentrations (bar graphs) and species abundances (pie charts) averaged across the biofilm for the
healthy and dysbiosis case. (B) Acetate, butyrate, propionate, and total SCFA concentrations (mmol/L)
averaged across the biofilm. (C) Succinate, formate, and total OA concentrations averaged across
the biofilm.

Nitrate availability was predicted to increase the acetate and total SCFA concentrations
substantially due to large changes in E. coli and F. prausnitzii abundances (Figure 5B). Decreased
succinate consumption by F. prausnitzii and increased formate synthesis by E. coli results in increased
levels of individual and total OAs (Figure 5C). These predictions implicate a role for host-derived
nitrate in C. difficile-associated dysbiosis.

We investigated the robustness of the four-species community during dysbiosis with available
nitrate by removing selected cross-feeding relationships and varying the biofilm thickness from the
nominal value of 40 microns. When C. difficile uptake of formate or succinate was eliminated, the
C. difficile abundance dropped substantially (Figure S4), further suggesting that these cross-feeding
relationships could be important for C. difficile propagation in vivo. Consistent with our previous
study [50], cross-feeding of ethanol was important for B. thetaiotaomicron growth, and cross-feeding
of both acetate and succinate was necessary for F. prausnitzii co-existence. For biofilm thicknesses of
30–60 microns, the species abundances were predicted to vary substantially with the most important
trend being that thinner biofilms enhanced C. difficile growth (Figures S5 and S6). The growth rate
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profiles for 60 microns (Figure S7) suggested that C. difficile spores might be formed in the upper half
of the biofilm where C. difficile was unable to sustain vegetative growth. Since such spores could
be activated by favorable nutrient conditions, the incorporation of C. difficile spore formation and
activation could be an interesting direction for future research. Overall, our results could help explain
the role of broad spectrum antibiotics during CDI, as antibiotics could be expected to reduce the
diversity and density of commensal bacteria that protect the gut from C. difficile expansion.

To gain insights into the internal pathway fluxes associated with the healthy and dysbiosis states,
we determined for each species the eight internal fluxes that varied the most between the healthy
(Figure 2) and C. difficile dysbiosis (Figure 5) states and identified the internal pathways associated with
each of these fluxes. Using simulation data from the stool-biofilm interface at 300 h, the most variable
fluxes were determined by computing for each individual flux the difference between the healthy and
dysbiosis values and scaling the result by the healthy value (Figure S8). Pathways associated with
amino acid metabolism were upregulated in B. thetaiotaomicron and C. difficile, demonstrating the ability
of these two species to take advantage of increased amino acid availability. Similarly, the internal flux
through the cysteine metabolism pathway was predicted to increase in E. coli. Most internal pathway
fluxes in F. prausnitzii were predicted to decrease, suggesting that the dysbiosis environment was
unfavorable for its growth, resulting in decreased abundance.

3. Discussion

The gut microbiota serve a broad array of important functions for the human host, including
providing colonization resistance to opportunistic pathogens. Unhealthy changes in the microbiota
composition, commonly termed dysbiosis, have been correlated to a wide variety of gut and metabolic
diseases including inflammatory bowel disease, Crohn’s disease, obesity, diabetes, and chronic gut
infections. The opportunistic gut pathogen Clostridium difficile has been estimated to asymptomatically
colonize 3%–15% of healthy adults [28]. A common cause of symptomatic C. difficile infection (CDI) is
the use of broad spectrum antibiotics, which induce dysbiosis by reducing the diversity and density
of gut commensal bacteria that provide resistance to C. difficile expansion [30–33,78]. Improved
understanding of the complex interactions between commensal species, C. difficile, the gut environment,
and the human host are needed to treat CDI more rationally.

To help unravel the metabolic determinants of C. difficile-associated dysbiosis, we developed a
multispecies biofilm model by combining genome-scale metabolic reconstruction of C. difficile [88]
and commensal species representing the three dominant phyla in the gut: Bacteroides thetaiotaomicron

(Bacteroidetes) [89], Faecalibacterium prausnitzii (Firmicutes) [90], and Escherichia coli (Proteobacteria) [91].
The chosen species are well-studied representatives of the most dominant phyla in the human
gut microbiome, and curated metabolic reconstructions of these species were available. While
our four-species model represented a substantial reduction in complexity compared to the actual
gut microbiota, the number of species and extracellular metabolites included were limited by
computational considerations. Community models with substantially more species and cross-fed
metabolites can be formulated and solved by neglecting spatial and temporal variations, as shown in
our recent study of the gut microbiota [92]. However, these assumptions are not appropriate for biofilm
simulations. Furthermore, our four-species model could be useful for designing in vitro systems for
experimentally testing model predictions.

While specific spatial organization of gut microbes is currently unknown, the structure likely
includes biofilm growth associated with host mucosa and epithelial tissue [93]. The literature provides
significant evidence to support the hypothesis that some gut microbes develop spatially-structured
multispecies biofilms [40,43]. We sought to understand how the commensal species could sublimate
C. difficile expansion and under what gut conditions colonization resistance could become compromised.
The biofilm model was tuned to represent a healthy state with species abundances and concentrations
of short-chain fatty acids (SCFAs; acetate, butyrate, propionate) consistent with experimental studies
for healthy individuals [5,57,59]. Because our model lacked an explicit description of the human
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host, we mimicked host-microbiota perturbations associated with CDI by varying nutrient levels
guided by experimental observations. More specifically, dysbiosis states were modeled through
changes in the concentrations of available glucose, amino acids [12,61–64], primary bile acids [16,77,81],
and nitrate [17].

Our model predicted that cross-feeding of secreted byproducts plays an important role in
C. difficile sublimation and expansion. C. difficile consumed formate synthesized by F. prausnitzii

and E. coli and succinate synthesized by B. thetaiotaomicron and F. prausnitzii. The existence of both
cross-feeding relationships is supported by the experimental literature [55,56]. In silico removal
of either cross-feeding relationship was predicted to provide C. difficile colonization resistance,
demonstrating the complexity and importance of cross-feeding networks even in this simplified
four-species community. These predictions could be tested experimentally through the development of
an in vitro model system of the four species. More importantly, these results suggest that therapeutic
strategies that target species–species interactions could be promising alternatives to conventional
antibiotics that target C. difficile directly.

Host–microbiota perturbations modeled as increases in glucose and decreases in amino acid
concentrations reproduced several features of C. difficile-associated dysbiosis including substantially
reduced F. prausnitzii and increased C. difficile abundances and an imbalance in SCFA synthesis
characterized by increased acetate and reduced butyrate levels [94]. The predicted decrease in
anti-inflammatory butyrate would be expected to exasperate dysbiosis and accelerate disease
progression [69,74]. Similar results were obtained when glucose and amino acid changes were replaced
by increases in the primary bile acid taurocholate, which was predicted to be used as an electron
acceptor by C. difficile in vivo to provide a growth advantage in the absence of commensal bacteria that
degrade primary bile acids to secondary bile acids [61,95,96]. Taurocholate availability was predicted
to have less effect on butyrate and propionate synthesis, but the SCFA imbalance remained due to high
acetate synthesis. Our model predicted that dysbiosis could be induced with moderate changes in
nutrient concentrations, a prediction that could be tested in vitro and suggesting the possible promise
of therapeutic strategies that aim to alter the gut nutritional environment.

Despite their many consistencies with experimental studies [12,97,98], our simulations with
glucose, amino acids, and taurocholate changes were unable to reproduce the large increase in
E. coli abundance observed during CDI [71,73]. The addition of host-derived nitrate [17,99] to the
other nutrient changes rectified this inconsistency and reproduced the key microbiota signatures of
C. difficile-associated dysbiosis during CDI: large increases in C. difficile and E. coli abundances, large
decreases in health-promoting F. prausnitzii abundance, and moderate changes in B. thetaiotaomicron

abundance. The model generated high acetate levels associated with dysbiosis states, a prediction that
could be tested through in vitro experiments. We believe further development of our multispecies
biofilm model could yield a general computational platform for in silico investigation of CDI, other
gut infections, and chronic inflammation disorders such as inflammatory bowel and Crohn’s diseases.
Some possibilities include the modeling of C. difficile spore formation/germination, the inclusion of
more commensal gut species (e.g., [100]) including those from other phyla [101–103], the addition of
a broader array of gut nutrients including fibers, oligosaccharides, and fats resulting from realistic
diets [12–15,104], and modeling of the human host through incorporation of available metabolic
reconstructions such as Recon 2 or Recon 3D [105–107]. A possible drawback of our modeling approach
is the lack of species-specific parameters for nutrient uptake kinetics and metabolite-dependent mass
transfer coefficients.

4. Materials and Methods

4.1. Biofilm Model Formulation and Solution

The multispecies biofilm model was constructed by combining genome-scale metabolic
reconstructions of C. difficile (Strain 630∆erm) [88] and three commensal gut species: B. thetaiotaomicron [89],



Processes 2019, 7, 97 11 of 20

F. prausnitzii (Strain A2-165) [90], and E. coli (Strain K-12 MG1655) [91]. The biofilm was considered to
be attached to the colon lining defined as the top of the biofilm (Figure 6A). A minimal defined media
(MDM) containing glucose, cysteine, isoleucine, leucine, methionine, proline, serine, tryptophan, and
valine along with essential vitamins and minerals was used for all simulations. The amino acids cysteine,
isoleucine, leucine, proline, serine, and tryptophan are essential for in vivo C. difficile growth [66,67], while
the amino acids methionine, tryptophan, and serine are essential for in vivo F. prausnitzii growth [108].
To simulate various host-microbiota perturbations, the primary bile acid taurocholate and/or the electron
acceptor nitrate were added to the media. The diffusion of nutrients, byproducts, and species biomass
was assumed to occur only in the axial direction z. Therefore, each variable was considered to be changing
with respect to space z and time t over a fixed biofilm thickness L.

Figure 6. Schematic representation of the in silico gut community. (A) The model assumed biofilm
attachment to the intestinal wall and described diffusion of glucose, amino acids, short-chain fatty acids,
organic acids, ethanol, CO2, and species biomass in and/or out of the biofilm along the axial direction z.
(B) Host-microbiota perturbations were modeled through changes in the bulk concentrations of glucose,
amino acids, primary bile acids, and nitrate at the biofilm–stool interface to predict species abundances
in healthy and C. difficile-infected guts.

The nutrients were supplied at the top of the biofilm (Figure 6A). SCFAs, ethanol, organic acids,
and CO2 produced by the four species were allowed to diffuse and be removed from both ends of
the biofilm. Biomass was assumed to move slowly through the biofilm by diffusion and be removed
from the biofilm–stool interface according to a continuous erosion mechanism, as described in our
previous publications [50,51,109]. This assumption provided a reasonable mechanism to ensure
that biomass generation would be balanced by biomass loss such that a steady-state solution could
be obtained. The multispecies biofilm model was tuned with nominal glucose and amino acid
concentrations to reproduce species abundances and SCFA levels consistent with experimental studies
on healthy individuals [57,58]. This tuned model was referred to as the “healthy case”. Host-microbiota
perturbations were simulated by altering glucose/amino acid concentrations and/or by introducing
primary bile acids and nitrate as nutrients to predict the resulting species abundances (Figure 6B).
These models were collectively referred to as the “dysbiosis case.” In vivo concentrations of glucose
and AA in the guts of healthy and C. difficile-infected patients are not commonly available. We have
specified the glucose and AA concentrations for the healthy case based on limited experimental
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data [12,61–64] and have reduced the glucose concentration and increased AA concentrations for the
dysbiosis case consistent with experimental observation [33,110]. We performed a sensitivity analysis
of these concentrations to show that a similar behavior (i.e., healthy state) as that reported for the
nominal values occurred if the glucose to AA ratio was sufficiently large (Figure S2). By contrast, a
CDI dysbiosis-like state was obtained when the glucose to AA ratio was sufficiently small.

Uptake rates of nutrients and byproducts were assumed to follow Michaelis–Menten kinetics.
Due to lack of available data, maximum uptake rates and Michaelis–Menten constants were assumed
to be independent of species and metabolite. Calculated uptake rates were imposed as lower bounds of
the exchange fluxes in the species metabolic reconstructions. The calculated growth rate, uptake fluxes,
and secretion fluxes from each reconstruction served as inputs to reaction-diffusion-type equations for
the biomass concentration of each species and the molar concentration of each nutrient and byproduct.
This formulation yielded a set of 23 partial differential equations (PDEs) in the time and the axial
direction z with embedded linear programs (LPs) for species metabolism (see Appendix S1). Following
our previous methodology [50,51], lexicographic optimization with growth rate maximization as
the primary objective was used to avoid alternative optima that would render the biofilm model
non-smooth. This approach yielded a total of 71 LPs.

The biofilm model equations were solved by spatially discretizing the PDEs into a large set
of ordinary differential equations (ODEs) [111,112]. We used 25 spatial node points to achieve a
suitable compromise between solution accuracy and computational efficiency, which produced a
discretized model with 575 ODEs and 1775 LPs that was solved with the MATLAB code DFBAlab [113].
We used Gurobi 6.5.2 for the LP solution, the stiff MATLAB solver ode15s for ODE integration,
and DFBAlab running in MATLAB 9.0 (R2016a). Although not explored here, our biofilm modeling
method can be extended to more species and extracellular metabolites. For N spatial discretization
points, the addition of each new extracellular metabolite would generate N additional ODEs. For m

total extracellular metabolites, the addition of each new species would generates N additional ODEs
and m + 1 LPs. Because the LP solution scales more favorably than the ODE solution, we anticipated
that models with approximately 1000 ODEs and 7500 LPs would remain computationally viable on a
typical desktop computer. These equation numbers translate into approximately 10 species and 30
extracellular metabolites.

4.2. Biofilm Model Parameterization and Tuning

Nominal parameter values used in the multispecies biofilm model are shown in Table 2.
The parameters were obtained from the experimental literature to the extent possible and from
our previous modeling studies [50,51] as necessary. The bulk glucose and amino acid concentrations
at the biofilm–stool interface were specified to reflect healthy gut conditions. Due to the lack of
species-specific uptake data, we used published kinetic parameters reported for E. coli [114]. Due to
the lack of data, all eight byproducts were assumed to have the same uptake parameters as glucose.
For simplicity, all eight amino acids were assumed to have the same uptake parameters obtained as
the average of amino acid-dependent values reported for E. coli [114].

With all other parameter values fixed, the biofilm model was qualitatively tuned to achieve
biomass and SCFA fractions within experimental ranges for a healthy patient. The species abundances
were tuned by adjusting the non-growth-associated ATP maintenance (ATPM) values of the four
metabolic reconstructions following our previous studies [50,51]. Our justification for tuning these
values was the simple nature of the biofilm model, which neglected other phyla (e.g., Actinobacteria),
other nutrients (e.g., oligosaccharides, fats), other species interactions (e.g., Actinobacteria cross-feeding
of SCFAs and organic acids), as well as host metabolism present in the actual gut environment.
These ATPM values listed in Table 2 produced B. thetaiotaomicron:F. prausnitzii:E. coli:C. difficile

abundances of 71%:21%:7%:1%, which were deemed reasonable based on published data [57,58].
We found that the coexistence of the four species was achieved over a range of ATPM values
(not shown here).
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Table 2. Nominal parameter values for the multispecies biofilm model.

Symbol Parameter Value Units Source

L Biofilm thickness 40 µm [115]
Xb Biomass bulk concentrations 0 g/L [50]
Pb Byproduct bulk concentrations 0 mmol/L [50]

Di Diffusion coefficient
DX Biomass 2 × 10−10 cm2/s [50]
DN Glucose 2.01 × 10−6 cm2/s [116]

Cysteine 2.45 × 10−6 cm2/s [116]
Isoleucine 2.19 × 10−6 cm2/s [116]
Leucine 2.19 × 10−6 cm2/s [116]

Methionine 2.21 × 10−6 cm2/s [116]
Proline 2.51 × 10−6 cm2/s [116]
Serine 2.64 × 10−6 cm2/s [116]

Tryptophan 1.89 × 10−6 cm2/s [116]
Valine 2.49 × 10−6 cm2/s [116]

DP Acetate 3.03 × 10−6 cm2/s [116]
Butyrate 1.74 × 10−6 cm2/s [116]

CO2 1.15 × 10−5 cm2/s [116]
Ethanol 3.97 × 10−6 cm2/s [116]
Formate 4.23 × 10−6 cm2/s [116]
Lactate 3.1 × 10−6 cm2/s [116]

Propionate 4.03 × 10−6 cm2/s [116]
Succinate 2.82 × 10−6 cm2/s [116]

Nitrate 1.29 × 10−5 cm2/s [116]
Taurocholate 7.29 × 10−7 cm2/s [116]

Mass transfer coefficient
kX Biomass 6 × 10−7 cm/s [50]
kN Glucose 2 × 10−4 cm/s [50]

Amino acid 2 × 10−4 cm/s [50]
kP Byproduct 5 × 10−6 cm/s [50]

Butyrate 8.5 × 10−5 cm/s Tuned
Propionate 1.35 × 10−5 cm/s Tuned

Nitrate 1.5 × 10−5 cm/s Tuned
Taurocholate 2 × 10−3 cm/s Tuned

vmax Maximum uptake rate
Glucose 10 mmol/gDW/h [114]

Amino acid 1 mmol/gDW/h [114]
Byproduct 10 mmol/gDW/h [50]

Km Michaelis–Menten constant
Glucose 0.5 mmol/L [114]

Amino acids 0.1 mmol/L [114]
Byproduct 0.5 mmol/L [50]

ATPM ATP maintenance
B. thetaiotaomicron 4.25 mmol/gDW/h Tuned

F. prausnitzii 3.4 mmol/gDW/h Tuned
E. coli 2.75 mmol/gDW/h Tuned

C. difficile 8.43 mmol/gDW/h Tuned

We adjusted the SCFA mass transfer coefficients controlling metabolite removal from the biofilm
to tune the acetate, butyrate, and propionate concentrations for the healthy case. Starting with
a value of 5 × 10−6 cm/s, the butyrate and propionate values were decreased until approximate
fractions of 60%:20%:20% consistent with published data [5,59] were obtained. We justified the
use of SCFA-dependent values by noting that our model neglected host-microbiota interactions,
which would be expected to strongly affect SCFA levels in vivo. Biofilm simulations were performed
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for four combinations of bulk glucose, amino acid, nitrate, and taurocholate concentrations chosen
to mimic a healthy gut environment and three unhealthy nutrient environments (high amino acids,
high primary bile acids, high nitrate) experimentally correlated with C. difficile-associated dysbiosis
(Table 1). We deemed the actual concentrations used to be less important than the concentration trends
(e.g., decreasing glucose and increasing amino acids in the high amino acids case) since our goal was
to assess qualitatively the effects of nutrient levels on community behavior.

5. Conclusions

Clostridium difficile infection (CDI) is a common problem in hospital settings, with almost 500,000
CDI cases diagnosed within the U.S. annually in acute care facilities alone. CDI involves dysbiosis of
the commensal gut microbiota characterized by a significant reduction of butyrate-producing species,
e.g., Faecalibacterium prausnitzii, and a large increase in Proteobacteria, e.g., Escherichia coli, along with
uncontrolled propagation of C. difficile. Motivated by recent experimental studies demonstrating the
ability of C. difficile and commensal gut bacteria to form biofilms, we developed a multispecies biofilm
model with a minimal representation of the gut microbiota containing C. difficile and one species
each from the three dominant phyla (F. prausnitzii, E. coli, Bacteroides thetaiotaomicron). The model
was used to investigate possible metabolic determinants of CDI mediated through host–microbiota
perturbations, modeled as decreased carbohydrate levels and increased amino acid, primary bile acid,
and nitrate levels compared to the healthy gut. These nutrient perturbations were shown to mimic
microbiota changes characteristic of CDI, namely marked increases in C. difficile and E. coli abundances
and a sharp decrease in F. prausnitzii abundance. C. difficile propagation was strongly dependent on
cross-feeding of formate and succinate secreted by the commensal species, a prediction in agreement
with experimental studies and that provides possible targets for the development of novel therapeutic
strategies. While our model is a simplified representation of a complex disease process, the results
presented emphasized the importance of metabolic interactions between C. difficile and commensal
species in CDI progression.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/7/2/97/s1.
Additional File 1. Model equations and description. Figure S1. Predicted cross-feeding of byproducts with C. difficile
removed from the community. Figure S2. Predicted species abundances at various nutrient concentrations.
Figure S3. Predicted multispecies biofilm dysbiosis resulting from host–microbiota perturbations in the
concentrations of amino acids and the primary bile acid taurocholate. Figure S4. Effect of removing individual
cross-feeding relationships on predicted species abundances. Figure S5. Effect of the biofilm length on predicted
species abundances for the healthy case. Figure S6. Predicted multispecies biofilm behavior under healthy nutrient
conditions for a 30 micron-thick biofilm. Figure S7. Predicted multispecies biofilm behavior under healthy nutrient
conditions for a 60 micron-thick biofilm. Figure S8. Differences between healthy case and bile acid dysbiosis case
internal pathway fluxes.
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Abbreviations

The following abbreviations are used in this manuscript:

ATPM ATP maintenance
BT Bacteroides thetaiotaomicron

CD Clostridium difficile

CDI Clostridium difficile infection
DFBAlab Dynamic flux balance analysis laboratory
EC Escherichia coli

FBA Flux balance analysis
FP Faecalibacterium prausnitzii

IBD Inflammatory bowel diseases
LP Linear program
MDM Minimal defined media
OA Organic acid
ODE Ordinary differential equation
PDE Partial differential equation
SCFA Short chain fatty acid
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