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Metabolic modelling in a dynamic
evolutionary framework predicts adaptive
diversification of bacteria in a long-term
evolution experiment
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Abstract

Background: Predicting adaptive trajectories is a major goal of evolutionary biology and useful for practical applications.
Systems biology has enabled the development of genome-scale metabolic models. However, analysing these models via
flux balance analysis (FBA) cannot predict many evolutionary outcomes including adaptive diversification, whereby an
ancestral lineage diverges to fill multiple niches. Here we combine in silico evolution with FBA and apply this modelling
framework, evoFBA, to a long-term evolution experiment with Escherichia coli.

Results: Simulations predicted the adaptive diversification that occurred in one experimental population and generated
hypotheses about the mechanisms that promoted coexistence of the diverged lineages. We experimentally tested and,
on balance, verified these mechanisms, showing that diversification involved niche construction and character
displacement through differential nutrient uptake and altered metabolic regulation.

Conclusion: The evoFBA framework represents a promising new way to model biochemical evolution, one that
can generate testable predictions about evolutionary and ecosystem-level outcomes.
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Background

The ability to predict evolution would be valuable not only

for understanding such processes as adaptation and speci-

ation [1–3], but also for engineering robust industrial

strains, anticipating ecosystem responses to climate change,

and combatting antibiotic resistance [4–7]. Models that

capture the relationship between genotypes and environ-

ments, the structure and state of regulatory and metabolic

networks, and the resulting phenotypes are likely to be im-

portant for developing these predictive abilities [1, 3, 8].

Ultimately, models of the relationship between genotype

and phenotype will need to be combined with models of

evolutionary and ecological dynamics in integrated frame-

works that can predict the trajectory of evolution [5, 9].

The dynamics of evolutionary change reflect multiple

processes and varying selective pressures that are influ-

enced by many ecological, physical, and cellular constraints

that may conflict with one another. Understanding

whether and how these dynamics lead to the splitting

and divergence of lineages is of central interest, as these

processes represent the initial steps towards speciation.

To this end, several theoretical studies have shown that

cellular tradeoffs can promote lineage divergence [10–16].

The importance of such tradeoffs can be readily under-

stood in the context of metabolism and growth. For

example, if there were no tradeoffs, then one would pre-

dict that cells should maximize their expression of trans-

porters and their surface area to achieve the highest
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possible rate of substrate uptake [17]. However, such

cellular investments would impinge on other cellular pro-

cesses owing to competing requirements for membrane

and cytosol space [18, 19], ribosomes [15, 16], and redox

carriers [20, 21]. Thus, cells may appear suboptimal for

individual physiological parameters, but this might be

merely a consequence of being optimal for the combined

set of parameters and associated cellular tradeoffs.

Historically, the interplay between cellular tradeoffs

and evolutionary and ecological dynamics has been ana-

lyzed using game theory and differential equation-based

models that consider small or idealized metabolic sys-

tems [10, 11, 14, 22]. These studies have highlighted that

tradeoffs in cellular metabolism can lead to incomplete

degradation of a resource, resulting in the evolution of

cross-feeding interactions [10, 11]. This phenomenon

has been seen in several evolution experiments under

both batch and chemostat conditions [23–27]. To in-

crease predictive power in microbial ecology and evolu-

tion, it is now desirable to develop models that can take

into account cellular metabolism at a larger scale and

across different organisms. Stoichiometric models offer a

promising approach because, in principle, they can capture

all enzyme-mediated metabolic reactions of an organism in

an unbiased and non-supervised way using genomic

information [8].

Flux Balance Analysis (FBA) has been developed to de-

termine the optimal metabolic state of an organism,

given knowledge of its biochemical network, biomass

composition, and uptake flux rates [28]. This approach

is based on the assumptions that evolution has opti-

mized metabolism and that metabolic fluxes can be pre-

dicted by setting the growth rate for a given rate of

substrate uptake (such that the ratio of the two rates

represents a yield) as an optimization criterion that can

be solved by linear programming [28–30]. Early applica-

tions of FBA ignored the essential role of tradeoffs in the

computation of metabolic fluxes [28, 31, 32], but more

recent applications have incorporated tradeoffs as con-

straints on total fluxes [18, 19, 33, 34] and thereby

achieved better prediction of experimentally observed

metabolic states, such as preferential substrate utilization

[19] and acetate overflow [18]. Experimentally measured

reaction thermodynamics and gene expression levels have

also been used to constrain optimal metabolic states that

reflect tradeoffs [35–37], and there have been efforts to

combine FBA with ecological interactions between mul-

tiple species in microbial communities [38–45]. These

approaches use species-specific models in a shared en-

vironment to maximize a predefined, community-level

objective [39, 41, 43, 44] or apply FBA within a dynamic

framework [46]. The latter approach enables prediction of

ecological interactions such as competition and cross-

feeding between different species making up the model

community, given defined substrate uptake constraints for

each model species [40, 42, 45]. However, none of these

approaches can currently be used to predict the interplay

between ecological and evolutionary dynamics.

Here, we begin to overcome these limitations by inte-

grating a FBA model of multi-phenotype systems with

both cellular constraints and evolutionary dynamics. We

define an overall constraint on uptake rates to enforce

tradeoffs while simulating multiple model organisms

living in the same environment without the need to

specify each organism’s uptake preferences a priori (for

details on how evolution and mutations are simulated

see Methods section). By limiting total uptake in the

model, and including O2 “uptake” in that total, we seek

to represent cellular limitations that can arise from many

diverse processes, including redox cycling [20, 47], respira-

tory chain [18], enzyme expression [16, 48], and substrate

uptake [17]. Although O2 uptake per se might not be

limiting, limitations in the electron transport chain can

effectively limit O2 respiration. Accounting for all the dif-

ferent possible limitations arising from cellular processes

in a mechanistic manner is beyond the scope of stoichio-

metric models; however, limiting total uptake provides a

general constraint that allows us to implement the trade-

offs observed in different studies in a simple, consistent,

albeit approximate manner [16–18, 20, 47].

This approach allows integration of evolutionary dy-

namics by mutations that change substrate uptake rates

along with the optimization of each model organism in

the context of other model organisms that are present

and coevolving in the same environment. The combined

framework, which we call evoFBA, thus aims to provide

a more realistic way to model the interplay between

ecological and evolutionary dynamics with global con-

straints arising from cellular tradeoffs. To the best of

our knowledge, this is the first FBA modeling approach

that captures the continuous adaptation of organisms to

the interplay between ecological and evolutionary dynamics

in systems with multiple strains or species.

To examine the ability of evoFBA to capture ecological

and evolutionary dynamics, we used it to simulate the

evolution of Escherichia coli populations in a defined

glucose-limited environment with daily transfers. We

then experimentally analyzed the predictions of evoFBA

in the context of the long-term evolution experiment

(LTEE) with E. coli, in which 12 populations started

from a common ancestor have been propagated in a

glucose-limited medium for more than 60,000 genera-

tions [2, 49]. We found that the evoFBA simulations

predicted the emergence of cross-feeding model organisms

as a stable end-point, which in fact has occurred in at least

one of the LTEE populations [26, 50]. Moreover, we saw

that key metabolic features of the model organisms were in

qualitative agreement with the physiological properties we
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measured for the two biological lineages that emerged and

subsequently coexisted for more than 50,000 generations.

Results
Microbial communities and their underlying metabolic

interactions reflect the ecological and evolutionary histories

of the component species [51]. To capture these interac-

tions, we combine stoichiometric metabolic models with

ecological and evolutionary dynamics in the multi-layered

evoFBA framework (see Methods). To test the utility of

this framework, we apply it to the LTEE in which E. coli

populations evolve in a defined glucose-limited environ-

ment [2, 52].

To model the LTEE, we ran evoFBA simulations starting

with a metabolic model of E. coli that accounts for 14

carbon sources including glucose and byproducts that can

be scavenged from the environment to produce biomass

and fuel associated core metabolic reactions. In each

evoFBA simulation, we allowed the metabolic model to

change by random mutations under global constraints

that must be obeyed. Thus, each simulation produced

mutant model organisms exhibiting different uptake rates,

metabolic flux patterns, and resulting growth rates.

evoFBA predicts evolution of cross-feeding between

lineages with different metabolic flux distributions

Starting from a population of identical model organisms

under conditions similar to the LTEE, a typical evoFBA

simulation produced through random mutations more

than 90,000 genetically distinct model organisms over 550

simulated daily transfer cycles (Fig. 1). The evolutionary

dynamics across replicate simulations were highly repro-

ducible in their key features, in particular the diversifica-

tion of the population into two coexisting lineages (Fig. 2).

Thus, throughout the paper, we will focus on results from

a typical representative simulation that resulted in 97,912

different model genotypes, of which 3943 survived at least

one transfer event (Fig. 1a) and 12 reached a population

Fig. 1 Evolutionary dynamics in silico. a Numbers of surviving cells (i.e., post dilution) after each simulated cycle on a logarithmic scale. Each curve
shows one of the 3943 model organism genotypes that survived at least one cycle (see text). b Relationships among ancestral and mutant model
genotypes for those that reached a population of at least 105 cells at any point during the simulation (see Methods). Model ID indicates the identifier
assigned to each model genotype, with 1 being the ancestor. Line thickness is proportional to the log10-transformed number per 10-ml volume at the
start of each cycle. Coloured bars show relative uptake rates for glucose (blue), acetate (red), and oxygen (green)

Großkopf et al. BMC Evolutionary Biology  (2016) 16:163 Page 3 of 15



Fig. 2 (See legend on next page.)
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size of at least 105 cells at some point (Fig. 1b). These sim-

ulations revealed specific changes in oxygen, glucose, and

acetate uptake by the model organisms (Fig. 1b). Glucose

uptake and incomplete oxidation resulted in acetate secre-

tion by the ancestral model organism, which would then

switch to acetate uptake and oxidation after the glucose

was exhausted. Thus, the ancestral model displayed a dia-

uxic shift (Fig. 3a), as observed in E. coli [21]. As the in

silico evolution proceeded, new model organisms arose

that had increased glucose uptake and acetate production.

The resulting increase in acetate concentration generated

an ecological niche that was colonized by other model

organisms with increased acetate uptake but reduced

glucose uptake. After ~300 simulated daily transfer cycles

(~2000 generations), the simulated evolution came to a

halt, with no mutant model organisms able to replace the

dominant ones. Thus, the in silico dynamics produced two

distinct lineages that specialized on glucose and acetate,

respectively. The glucose-specialist model organisms

lost the ability to consume acetate, whereas the acetate-

specialist model organisms retained the ability to con-

sume glucose but at a lower rate, and the timing of

their diauxic shift was changed (Fig. 3a). As a conse-

quence, the simulation led to a stable cross-feeding

relationship between two lineages of model organisms.

We then examined the metabolic fluxes for the two

model organisms when growing on glucose and acetate

(Fig. 4). On glucose, both the glucose and acetate

specialists displayed similar behaviours, using the TCA

cycle only partially and the glyoxylate shunt not at all

(Fig. 4a and c). After switching to acetate consumption

(which the glucose specialists could not do), the acetate

specialists showed very different fluxes, with reverse

glycolysis and full use of the TCA cycle including the

glyoxylate shunt (Fig. 4b and d). We emphasize that the

emergence of cross-feeding model organisms and their

(See figure on previous page.)
Fig. 2 Replicate runs of evoFBA. a One of five replicate simulations using the same parameter set as described in the main text and shown in Fig. 1.
All simulations led to qualitatively similar outcomes. b Running evoFBA simulations with a smaller maximum mutation step size (+/ −1 mmol/gDW/h),
see Methods eq. 5), led to the same diversification into glucose specialist and glucose-acetate co-utilizing model organisms, although the time required
to achieve the diversification was substantially longer. Model ID, line thickness and coloured bars are the same as in Fig. 1

Fig. 3 Simulated and experimental dynamics of population density and substrate concentrations. a Simulated dynamics over a 24-h transfer cycle
for the evolved acetate specialist (left, ID: 44490), ancestral (middle, ID: 1), and evolved glucose specialist (right, ID: 12364) model organisms. Model
IDs are the same as in Fig. 1b. b Experimental data for the 6.5KS1 (left), ancestral (middle), and 6.5KL4 (right) clones from the LTEE. Biological experiments
were performed at a 10-fold higher concentration of glucose than the simulations to increase cell density and thereby improve the accuracy of the
measurements of cell growth and concentrations of residual glucose and secreted acetate. Biological data are means of three replicate cultures and
error bars show standard deviations
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associated fluxes in the evoFBA simulation represents an

idealized evolutionary stable state given the assumptions

of the evoFBA framework.

Adaptive diversification in one LTEE population, matching

evoFBA predictions

Two distinct lineages had emerged in one of the LTEE

populations, called Ara-2, by 6500 generations, and they

have coexisted ever since [26, 50]. The lineages are

called S (small) and L (large) after their colony sizes on

agar plates. The maintenance of this polymorphism de-

pends on a cross-feeding interaction in which the L type

is a better competitor for the exogenously supplied glu-

cose and the S type is better at using one or more

secreted byproducts [26], although the precise ecological

and metabolic mechanisms are still unknown. Therefore,

we used predictions from the evoFBA simulations to

generate hypotheses about these mechanisms.

We hypothesized that, first, L specializes on glucose

and secretes acetate and, second, S specializes by im-

proved acetate consumption. We tested this hypothesis

by analyzing two evolved clones sampled at generation

6500 from the S and L lineages, named 6.5KS1 and

6.5KL4, respectively. HPLC analyses confirmed the pres-

ence of acetate in a 24-h supernatant of 6.5KL4 that was

grown in the same medium as the LTEE (see Methods).

Acetate was not detected after growing 6.5KS1 in that

supernatant (Additional file 1: Figure S1). We then

Fig. 4 Metabolite turnover fluxes in glycolysis and TCA cycle. Fluxes in the glucose specialist (a, b) and the acetate specialist (c, d) genotypes
(model IDs 12364 and 44490, respectively) during growth on glucose (a, c) and acetate (b, d). The following metabolites and reactions are shown: ac,
acetate; actp, acetyl-phosphate; akg, alpha-keto-glutarate; cit, citrate; f6p, fructose-6-phosphate; fum, fumarate; glx, glyoxylate; g6p, glucose-6-phosphate;
icit, isocitrate; mal, malate; oaa, oxaloacetate; pep, phospho-enol-pyruvate; succ, succinate; succoa, succinyl-coenzyme a. PGI, ACN, ACE, and ACK are the
reactions catalyzed by glucose-phosphate isomerase, aconitate hydratase, malate synthase, and acetate kinase, respectively (shown in blue). Thickness of
the arrow indicates the flux over the given reaction; the reference arrow at the bottom right shows a flux of 10 mmol/gDW/h
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measured the acetate and glucose concentrations over

time in cultures of the ancestor, 6.5KS1, and 6.5KL4

clones in DM250-glucose medium (Fig. 3b). Both the L

and S clones consumed glucose faster than the ancestor,

consistent with previous assays [53]. Moreover, in agree-

ment with the evoFBA results, 6.5KL4 secreted acetate,

with its concentration remaining high for many hours in

the monoculture, and 6.5KS1 drew down its own acetate

secretion much faster than both 6.5KL4 and the ancestor.

After exhausting the glucose by 6 h, 6.5KS1 showed

diauxic growth and consumed acetate until it was depleted

after 9 h, whereas 6.5KL4 had barely, if at all, begun to

consume acetate at that time even as it had exhausted the

glucose by 5 h (Fig. 3b). These results support the hy-

pothesis that the stable coexistence of S and L depends

on acetate cross-feeding, with acetate production by

both the L and S lineages and more efficient acetate scaven-

ging by the S lineage, which exhibits a faster metabolic

switch from glucose to acetate (Additional file 2: Figure S2).

Physiology and fluxes in S and L clones agree

qualitatively with evoFBA

The evoFBA simulation reaches an evolutionary equilib-

rium, whereas the interaction between the S and L lineages

remained highly dynamic over thousands of generations

[26]. Therefore, we examined the metabolic divergence of

the S and L lineages over the course of the LTEE. We

first measured the ability of clones from earlier and

later generations to grow in minimal media containing

glucose or acetate. S clones from later generations typi-

cally grew faster and with a shorter lag phase on acetate

and more slowly on glucose than S clones from earlier

generations, while the opposite trends were observed in

the L lineage (Additional file 3: Figure S3) (in line with

previous observations [53]). Compared to the ancestor,

S clones improved their growth on acetate over evolu-

tionary time, while L clones initially improved some-

what but were variable, with the 50,000-generation L

clone showing weak growth similar to the ancestor

(Fig. 5). On glucose, the opposite trend was observed

with L clones consistently improving compared to the

ancestor, while S clones improved initially but declined

in later generations (Fig. 5). These patterns of growth

relative to the ancestor are consistent with previous as-

says using the LTEE clones [53, 54]. These evolutionary

trajectories of growth on acetate and glucose indicate

character displacement and suggest tradeoffs that pre-

vent the simultaneous optimization of growth on both

carbon sources. The trajectories are qualitatively consist-

ent with the evoFBA simulations, although the evoFBA

predicts complete specialization on glucose without any

acetate consumption. This evoFBA prediction represents

a potential evolutionarily stable end point, which might

eventually occur in the S and L lineages after more

generations.

We then tested the flux patterns predicted by evoFBA

(Fig. 4) by measuring, in several LTEE clones, the pro-

moter activities of genes encoding four key metabolic

enzymes, using transcriptional fusions with the gfp re-

porter gene (see Methods). Both S and L clones showed

moderately increased promoter activity for pgi relative

to the ancestor (Fig. 6). Both S and L clones exhibited

larger increases in the promoter activities of acnB and

aceB relative to the ancestor, with the S clones showing

much greater increases than the L clones, consistent

with the possibility of greater flux through the TCA

cycle and glyoxylate shunt in the S acetate specialists.

There were no obvious changes in the promoter activi-

ties of ackA in either the S or L lineages. Of course,

there may be discrepancies between promoter activities

and actual enzyme activities [55, 56]. Nonetheless,

these patterns agree reasonably well with the flux pre-

dictions from the evoFBA simulations, especially as

they relate to the higher activities in the S lineage of

the genes that specifically promote growth on acetate.

As noted above, we reiterate that the evoFBA simula-

tions predict an eventual complete loss of the acetate-

specific activities in the L lineage, whereas thus far they

are merely expressed at a lower level in the L lineage

than in the S lineage.

Discussion

We developed a modeling framework, called evoFBA,

which combines metabolic models that are amenable to

FBA with an evolutionary algorithm to simulate the

interplay of evolutionary and ecological dynamics in

systems with multiple strains or species. We applied

evoFBA to the LTEE with E. coli and predicted the emer-

gence of two stably coexisting lineages with distinct

metabolic flux distributions that promote a cross-feeding

interaction. These predictions fit with the polymorphism

seen in the Ara–2 population, where two lineages emerged

early in the LTEE that have now coexisted for tens of

thousands of generations [26, 50]. The evoFBA simula-

tions enabled us to hypothesize specific ecological and

physiological mechanisms that generate and sustain this

polymorphism, and we then tested these hypotheses using

the bacteria from that LTEE population. On balance, we

found that the ecological, physiological, and metabolic

properties of these coexisting lineages agree reasonably

well with the predictions of the evoFBA.

Only one of the 12 LTEE populations evolved a per-

sistent polymorphism that has been studied in such

detail [26, 50]. However, other LTEE populations show

evidence of negative frequency-dependent fitness, deep

phylogenetic divergence, or both, which are consistent

with adaptive diversification [57–60]. These results
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Fig. 5 Changes in growth rates of S and L on glucose and acetate over evolutionary time. Growth of S and L clones sampled at multiple generations
of the LTEE was followed in DM250-acetate (a) and DM250-glucose (b) media. Clone names are shown above the horizontal red and blue bars, which
denote S and L clones, respectively. The ancestor (Anc) and a 2000-generation clone (2 K4) isolated prior to the divergence of the S and L lineages are
also included. Growth rates (1/h) are shown according to the colour scale for 1-h sliding windows over 24-h and 7-h periods in the acetate and glucose
media, respectively. Empty cells indicate missing values based on filtering negative rates or unreliable values (see Methods)

Fig. 6 Transcription levels of four genes encoding metabolic enzymes in the ancestor and evolved clones. Promoter activities measured as
(dGFP/dt)/OD450nm for genes involved in glucose and acetate metabolism during the first 8 h of growth in DM250-glucose. The clones are, from
left to right: 50KS1, 6.5KS1, ancestor (Anc), 6.5KL4 and 50KL1. The genes are, from top to bottom: pgi encoding glucose phosphate isomerase,
acnB encoding aconitate hydratase, aceB encoding malate synthase A, and ackA encoding acetate kinase. Activity values are means based on
three-fold replication of each assay
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suggest that other populations may have evolved cross-

feeding interactions similar to the one studied here,

even if they were not always so persistent [59]. One

possible explanation for why persistent polymorphisms

did not evolve in the other populations is that the

establishment of the S lineage appears to have involved

epistatic interactions between multiple mutations [50],

which may have limited its evolutionary accessibility

[58]. This possibility reflects one of the limitations of

evoFBA, which cannot capture all of the intricacies of

biological evolution but instead predicts optimal end

states that emerge given the simplifying assumptions of

this approach. For example, mutations in evoFBA

affect the rates of resource uptake, but not the rates of

internal reactions in the model. This limitation reflects

the computational burden of simulating a multitude of

mutant genotypes, the number of which would increase

greatly if all reaction rates were subject to mutation. This

limitation could be relieved by the development of more

efficient algorithms (allowing mutations to affect all reac-

tions in the model), but the final evolved model organisms

might not differ functionally from those based on the

current approach because changes in uptake rates can

already affect downstream flux distributions. Another

limitation of the evoFBA approach at this time is the

assumption that constraints on the uptake fluxes can be

changed only by mutation, while the optimization of

fluxes within those constraints is immediate through FBA

[32]. In other words, metabolic fluxes change within

physiological limits without delay, whereas changing the

limits themselves requires mutations. These assumptions

are reasonable starting points for incorporating evolu-

tionary dynamics into an FBA framework, but physio-

logical delays in metabolic adjustments are also sometimes

important [61, 62]. Expanding the evoFBA framework to

include the dynamics of physiological transitions could

start by integrating previous work on incorporating gene

regulation into FBA [63, 64].

Adaptive diversification is expected, and has occurred,

in other evolution experiments besides the LTEE, such

as when two exogenous carbon sources are provided

[27, 65] and in high-glucose chemostats, where substan-

tial acetate is produced [21, 23, 25]. However, the adaptive

diversification observed in the LTEE was unexpected

owing to the presence of a single carbon source, glucose,

which was supplied at a low concentration [52]. Using the

evoFBA framework, we predicted that acetate secretion

was the primary metabolic driver leading to the emer-

gence of the polymorphism, and that prediction was

supported by our experiments. The long duration of the

LTEE—including several thousand generations to establish

the S and L polymorphism [26] and its persistence for

tens of thousands of generations [60]—may have facili-

tated adaptive divergence under these more restrictive

ecological conditions, in comparison with other studies of

much shorter duration where glucose, acetate, or both were

supplied exogenously at high concentrations [23, 25, 45]. In

fact, low levels of acetate, as observed in our study, have

previously been reported to favor generalists as opposed

to divergence into coexisting specialists [10]. Nonetheless,

the L lineage evolved higher glucose uptake rates, which

led to acetate overflow and the construction of a new

niche that benefited the S lineage, as occurred in the

evoFBA simulations. Thus, niche construction by the

bacteria led to the emergence of this polymorphism, in

contrast to experiments where both carbon sources were

added to the medium [45]. Despite the differences

between the LTEE and previous evolution experiments

[45, 65], similar metabolic processes emerged.

Conclusion

The combination of evoFBA and experimental evolution

provides a useful approach that can give insights into

general mechanisms involved in the emergence of

bacterial diversity and community construction. This

approach may stimulate the development of even more

detailed and integrated studies aimed at predicting the

outcomes of evolution experiments and dynamics in

multi-species systems including synthetic microbial

communities [51].

Methods

Evolutionary flux balance analysis (evoFBA)

In each evoFBA simulation, stoichiometric metabolic

models were used to simulate clonal populations with

distinct genotypes. Each genotype was represented by a

metabolic model, which was simulated in a dynamical

FBA formalism [46] to evaluate its growth and metabolic

flux rates over time. At each time step of the dynamic

FBA, the metabolic model was optimized using linear

optimization and a pseudo-reaction representing bio-

mass as the objective function [66]. This optimization

thus maximized growth rate given the constraints on

uptake rates, i.e. it optimized biomass yield per substrate

[67]. Instead of defining specific uptake rates for a

particular set of media components (as in standard FBA

studies), we assumed a global constraint for all carbon

and oxygen uptake reactions in each model organism.

By limiting total uptake in the model (including O2

“uptake”), we represent cellular limitations that can arise

from many different factors, including redox cycling

[20, 47], respiratory chain [18], enzyme expression [16, 48],

and substrate uptake [17]. Similar implementations of

global constraints in FBA models have been employed

previously to study diauxic shift and substrate preference in

E. coli [18, 19, 37]. The global uptake constraint imple-

mented here favored a minimization of fluxes given the
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maximization of the FBA objective in order to achieve the

most efficient use of cellular resources for growth [34].

New model organisms were generated by random mu-

tation from existing ones. Mutations altered specific

bounds on individual uptake rates, while maintaining an

overall total flux constraint of carbon and oxygen into

the model organism. Thus, mutations change how the

overall uptake flux is distributed across different substrates,

and they allow a second level of optimization to occur over

evolutionary time in addition to the optimization that

occurs by FBA over the physiological time scale. Focusing

evolution on a subset of reactions made computation of

the ecological and evolutionary dynamics feasible; even so,

the simulations presented here took over 20 days on a

dedicated high-performance computer to simulate over

90,000 different model organism genotypes and their

associated population and metabolite dynamics. A more

complete simulation might encompass genome-scale

models with evolution of all reactions in the model and

with global constraints on total protein biomass [19]

and membrane space [18]. The current implementation

of evoFBA was unable to perform such simulations in a

reasonable timeframe and with appropriate numbers of

replicate simulations; efforts to run evoFBA with muta-

tions allowed for all reactions caused a slowdown of

over 10-fold relative to the current implementation.

For the evoFBA simulations, we implemented the in

silico equivalent of the LTEE with E. coli. The simula-

tions started with a population comprised of a single

model genotype that represented the central metabolism

of E. coli [68]. This model included 95 reactions, 75

metabolites, and 20 exchange reactions. The uptake of

nutrients from the medium (i.e., the flux over the ex-

change reactions) was simulated by a Michaelis-Menten

function for each substrate, vj, as follows:

vj ¼
vmax;j⋅ Sj

� �

Km þ Sj
� �

ð1Þ

where vmax,j is the maximum uptake rate of the jth sub-

strate in millimoles per g dry weight per h (mmol/gDW/h),

[Sj] is the concentration of the jth substrate in mmol/l, and

Km is the half-saturation constant of the transporter in

mmol/l. For simplicity, we arbitrarily set the initial Km

values for all uptake reactions to 0.01 mmol/l. The vmax,j

values were allowed to evolve by mutation (see next section

below). The value of vj was then used as the uptake bound

for the exchange reaction of each substrate when running

FBA. For each simulated day, we evaluated each model

using dynamic FBA [46] over the course of 24 h with 1-

min steps; the simulation used a 10-ml batch reactor, as in

the LTEE. At each time step, we set the vj values for each

model using Eq. 1, used FBA to determine growth rate, and

updated the biomass as follows:

BMtþ1;i ¼ BMt;i 1þ
μi

ln 2ð Þ⋅60

� �

ð2Þ

where BMt,i is the biomass in gDW of the clone rep-

resented by the ith model genotype at time t, and μi

is the growth rate of that model computed by FBA

[29]. After updating the biomass of all model genotypes,

the resulting concentration of each substrate was reset as

follows:

S½ �j;tþ1 ¼ S½ �j;t−
X

i

BMi;t⋅vj;i

60⋅V
ð3Þ

where [S]j,t is the substrate concentration of the jth sub-

strate at time t (mmol/l), BMi is the biomass of the ith

model clone at time t (gDW/l), vj,i is the uptake rate of

the jth substrate by the ith model genotype as computed

by FBA (mmol/gDW/h), and V is the culture volume (l).

To mimic the LTEE, we started each day’s culture with

glucose at 0.1389 mmol/l. The culture was started with

one model genotype (i.e., the core E. coli model [68])

having a vmax for glucose and acetate of 10 mmol/gDW/h

each, and for oxygen of 20 mmol/gDW/h, i.e. the total up-

take constraint was set at 40 mmol/gDW/h based on pre-

vious values for the combined uptake of carbon and

oxygen [67]. The individual uptake rates for 14 carbon

sources represented in the E. coli core model (acetate,

acetaldehyde, α-ketoglutarate, ethanol, formate, fructose,

fumarate, glucose, glutamine, glutamate, lactate, malate,

pyruvate, succinate) and oxygen were subject to mutation

in evoFBA. The exchange rates for phosphate, ammonia,

water, protons, and carbon dioxide had no limits,

reflecting the fact that carbon is the growth-limiting

factor in the LTEE.

Representing mutations in evoFBA

The point mutation rate of E. coli in the LTEE (excluding

populations that evolved mutator phenotypes [60]) has

been estimated to ~10−10 per base pair per generation,

which equals ~4 × 10−4 per genome per generation [69].

Directly mapping mutations from bacteria to evoFBA

model organisms is not possible. The mutable “genome”

in the model organism has only 15 targets, as opposed to

thousands of genes and millions of base pairs in an E. coli

genome. Owing to these differences and computational

limitations, we introduced mutations at the rate of 10−6

per model cell per generation in evoFBA. During the

simulations, mutations were introduced into the popu-

lation of each model genotype at each time step (i.e.,

simulated minute) according to the number of cells
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produced in that step and those expected to contain a

mutation (Nm(i)) as follows:

Nm ið Þ ¼
N i μi

ln 2ð Þ⋅60 ⋅106
ð4Þ

where Ni is the population size of model organism i. Ni

was calculated from the biomass of model clone i di-

vided by the mass of one cell in gDW; we used a mass

of 600 fg/cell, which was reported previously for exponen-

tially growing E. coli cells [70]. When Nm(i) was between 0

and 1, Nm(i) was used as a probability to determine whether

or not a mutant was introduced; when Nm(i) was ≥1, a

single mutant was always introduced.

As noted, each genotype in evoFBA corresponds to a

different stoichiometric model with associated vmax

values. When a mutation occurred, one of the uptake re-

actions was chosen at random and the maximum rate

for that reaction was changed as follows:

vmax;m;new ¼ vmax;m;old þ a ð5Þ

where vmax,m,new and vmax,m,old are the new and old rates

for the mutated reaction m, and a is a random number

from the uniform distribution over the interval ( −10,10).

Each individual uptake rate was further constrained to lie

between 0 and 40, such that the total uptake rate of

40 mmol/gDW/h was not violated. After any mutation, all

other uptake reactions were updated as follows:

vmax;j; new ¼
vmax; j;old

X

k
vmax;k;old

40 − vmax;m;new

� �

ð6Þ

where k includes all uptake reactions except the mutated

one. This adjustment ensures a constant total uptake

flux across the membrane of 40 mmol/gDW/h. This mu-

tation scheme generates strong tradeoffs between uptake

reactions. The large effects of the mutations on reaction

rates were chosen for computational speed of the evolu-

tionary simulations; additional simulations with smaller

maximum mutation steps produced qualitatively similar

results (Fig. 2).

Simulating serial transfer and selection

To simulate the LTEE’s daily transfer cycles [2], we used

dynamical FBA to compute growth over 24 h; selection

is a direct consequence of the differential growth of the

model genotypes. After 24 h, a dilution was performed

by randomly drawing 1 % of the model organisms, which

constituted the initial population for the next simulated

day. The next day’s medium included 99 % of the initial

medium and 1 % of the spent medium from the end of

the previous day. The simulated growth and dilution ran

for a total of 550 cycles. Results from replicate simula-

tions (Fig. 2) are qualitatively similar to those in Fig. 1.

The population dynamics arising from these simulations

are expected to give rise eventually to one dominant

clone in each stably coexisting lineage. However, similar

model organisms may occur within a simulation as a re-

sult of independent mutations before any one of them

has reached its population maximum (e.g., model geno-

types 13437, 12364 and 12719 in Fig. 1). However, if the

model organisms differ even slightly in their uptake rates,

then one genotype should eventually prevail through com-

petitive exclusion, unless the model organisms occupy

distinct ecological niches (Fig. 1).

Computation

Simulations were performed using MATLAB (Math

Works, Natick, Massachusetts) and dynamic FBA calcu-

lations using the COBRA toolbox [71]. The MATLAB

scripts used to run evoFBA and analyze the data are

freely available at [72].

LTEE and bacterial strains

The LTEE consists of 12 populations founded from the

same ancestral strain of E. coli, REL606 [73], that have

been propagated since 1988 by daily 1:100 dilutions in

Davis minimal medium [52] supplemented with glucose

at 25 mg/l (DM25). Here, we focused on one population,

called Ara–2, in which two lineages, S and L, diverged

before 6500 generations and have co-existed ever since

[26, 50, 60]. We studied the ancestor and one clone

sampled from each lineage at 6500, 11,000, 18,000,

20,000, 30,000, 40,000 and 50,000 generations. Each

evolved clone is named by its generation followed by S

or L according to its lineage and an arbitrary numeral

for a given clone. For example, 6.5KS1 is a clone from

the S lineage that was sampled at 6500 generations.

Media and culture conditions

Bacteria were grown in the same medium as used in the

LTEE [52], except that the carbon source was glucose at

250 mg/l (DM250-glucose), glucose at 1000 mg/l

(DM1000-glucose), or acetate at 250 mg/l (DM250-acetate).

These higher concentrations were used to increase cell

density and thereby improve the accuracy of measurements

of cell growth (e.g., Fig. 5) and concentrations of residual

resources and secreted metabolites (e.g., Additional file 1:

Figure S1). After overnight growth in DM1000-glucose,

strains were inoculated by a 10,000-fold dilution into

DM250-glucose, where they grew for 24 h at 37 °C with

shaking at 120 rpm as an acclimation step. For each

strain, three replicate acclimation cultures were then

inoculated as duplicates, each at a 1:100 dilution, into

DM250-glucose or DM250-acetate and incubated in

96-well microtiter plates at 37 °C for 24 h. Growth was

monitored using an Infinite M200 microplate reader

(Tecan, Lyon, France) by measuring the OD450nm every
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10 min. Growth rates were computed from filtered OD

data as dln(OD450)/dt over a sliding window of 1 h,

using MATLAB. We report the mean of the three repli-

cates. Filtering was performed by removing negative

growth rates and mean growth rates that were more

than 0.2 units above or below the immediately adjacent

data points (outliers).

Measuring glucose and acetate concentrations

The ancestor, 6.5KS1, and 6.5KL4 clones were grown in

DM250-glucose as described. Samples were taken at

time 0 and every h for 9 h. After centrifugation to re-

move cells, we measured glucose and acetate concentra-

tions in the supernatant using the Glucose Assay Kit

(Merck Millipore, Lyon, France) and Acetic Acid Assay Kit

(Megazyme, Pontcharra-sur-Turdine, France), respectively,

following the manufacturers’ recommendations.

Analysis of flux patterns in individual model organisms

We simulated the growth of the evoFBA model organisms

with IDs 44490 and 12364 (Fig. 1) to obtain the flux values

for their biochemical reactions. Each model organism was

simulated using dynamical FBA in medium containing

0.1389 mM glucose, the same concentration as in the

LTEE. Each simulation ran for ten 24-h periods with daily

1:100 dilutions; the last day was used to record the flux

values, in order to remove any effect of the initial condi-

tions. The flux patterns for growth on glucose were taken

10 min after the onset of growth (Fig. 4a and c), and for

growth on acetate at 388 min because glucose was

exhausted while acetate was still present at a substantial

level (Fig. 4b and d). From the flux patterns, we identified

several reactions of interest that showed differences

between the two evolved model organisms (highlighted

in blue in Fig. 4).

Identification of metabolites in filtrates of spent cultures

of 6.5KL4

We analyzed by HPLC and GC-MS the metabolic by-

products secreted by clone 6.5KL4 using filtrates from

24-h spent cultures of that clone in DM25- and DM250-

glucose, both before and after growth of clone 6.5KS1.

For HPLC, 1 ml of filtrate was acidified with 5 μl 1 M

H2SO4, incubated at room temperature for 5 min, and

passed through a 0.45-μm regenerated cellulose syringe

filter (PHENEX RC Membrane, Phenomenex, Le Pecq,

France). Samples were then analyzed on an Agilent 1260

Infinity HPLC system equipped with a Rezex ROA-Organic

Acid (8 %) 300 × 7.8-mm column (Phenomenex) and a

diode array detector. The analytical conditions were as fol-

lows: mobile phase, 5 mM H2SO4; flow rate, 0.6 ml/min;

column temperature, 35 °C; injection volume, 50 μl;

wavelength scan range, 190–400 nm; detection wave-

length, 210 nm; and run time, 35 min. Concentrations

of acetate and fumarate in the L-clone filtrates were de-

termined from linear standard curves over the ranges

of 0–10 mM and 0–100 μM, respectively, and with

lower detection limits of 0.1 mM and 0.3 μM, respectively.

Succinate, lactate, formate, propionate, and butyrate can

also be separated under these analytical conditions with

detection limits similar to acetate, but they were not

detected in any samples.

GC-MS analysis of volatile compounds was performed

using an Agilent GC HP6890 gas chromatograph equipped

with a Varian CP-WAX 58 column (length, 25 m; internal

diameter, 0.25 mm; film thickness, 0.20 μm), and coupled

to an MSD5973 mass sensitive detector. The sample

(600 μl) was cooled on ice, acidified with 50 μl 4 M HCl,

and extracted with 0.375 g NaCl and 650 μl ice-cold ether.

After vortexing three times for 10 s each, with 30 s

cooling intervals, the sample was centrifuged for 5 min

at 10,000 rpm and placed on ice for 5 min. The upper

organic layer (2.5 μl) was then injected manually into

the GC using an ice-cold syringe (injection in split

mode, split ratio = 10). The column was held at 40 °C

for 1 min, ramped to 200 °C at a rate of 5 °C/min, and

held for a further 3 min, giving a total run time of

36 min. The solvent delay for the MSD was 1.4 min

and the mass scan range was set to 35–300 atomic mass

units. The presence of acetate (retention time 12.2 min) in

the L filtrate after growth in both DM25- and DM250-

glucose was confirmed by this method. The estimated

concentration from the DM250-glucose filtrate was

510 μM, which is close to the 480 μM detected by HPLC

(Additional file 1: Figure S1). The concentration of acetate

in the L filtrate from DM25-glucose was about one-tenth

that detected in DM250-glucose. Ethanol (retention time

2.1 min) was also detected in the filtrates of all three

strains tested (ancestor, 6.5KL4, and 6.5KS1). Other me-

tabolites including isopropanol, butanol, acetoin, acetone,

formic acid, propionic acid, butyric acid, isobutyric acid,

and valeric acid were not detected (with lower detection

limits around 50–100 μM in scan mode).

Analysis of promoter activities in LTEE clones

We measured the activities of the promoters of four

genes—pgi, acnB, aceB, and ackA—that encode enzymes

associated with reactions of interest (Table 1) given the

results of evoFBA (Fig. 4). We used the corresponding

Table 1 Genes used in the analysis of promoter activities

Name Gene ID Gene Protein FBA model term

Glucose-phosphate
isomerase

948535 pgi PGI PGI

Aconitate hydratase 944864 acnB ACN ACONTb

Malate synthase A 948512 aceB ACE MALS

Acetate kinase 946775 ackA ACK ACKr
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reporter plasmids from the E. coli library of gfp tran-

scriptional fusions [74]. Each of the four plasmids, as

well as the empty pUA66 reference plasmid, was intro-

duced into the ancestor, 6.5KS1, 6.5KL4, 50KS1, and

50KL1 clones. Each plasmid-bearing clone was grown in

DM250-glucose supplemented with 25 μg/ml kanamycin.

Both OD450nm and GFP fluorescence were measured every

10 min for 24 h in the microplate reader. Promoter activi-

ties were estimated as the rate of GFP production from

the promoter region [74]. They were computed using

MATLAB as (dGFP/dt)/OD450nm, where GFP is the

fluorescence signal after subtracting the value for the

empty plasmid and division by OD450nm standardizes

the data with respect to cell biomass density. We show

the mean values from three replicate experiments (Fig. 6).

Additional files

Additional file 1: Figure S1. HPLC profiles of filtrate from spent cultures
of 6.5KL4 before and after growth of 6.5KS1. Partial HPLC chromatograms,
scaled in milli Absorbance Units (mAU) at 210 nm, showing elution time
(min) of key metabolites for the filtrate of a 24-h spent culture of clone 6.5KL4
in DM250-glucose (A), and for the same filtrate after 24 h of growth of clone
6.5KS1 at 37 °C (B). The L filtrate contained 2-hydroxyglutarate, acetate, and
fumarate. The S clone consumed the acetate and fumarate, but not the
2-hydroxyglutarate. The acetate peak indicates a concentration of
480 μM, whereas the fumarate peak indicates a concentration of only
0.67 μM; the molar absorption coefficient of fumarate at 210 nm is
more than 300 times greater than that of acetate. (PDF 64 kb)

Additional file 2: Figure S2. Diauxic growth in DM250 medium
containing glucose and acetate at 10:90 ratio. Clone 6.5KS1 (red) exhibits
a diauxic shift from glucose to acetate consumption much earlier than
either the ancestor (green) or clone 6.5KL4 (blue). Curves show the
average of three biological replicates. (PDF 113 kb)

Additional file 3: Figure S3. Growth curves of the ancestor and evolved
clones in DM250-glucose and DM250-acetate media. A Growth curves of
the Anc and pre-divergence clone 2 K4 (both shown in green) on glucose
(left) and acetate (right). B Growth curves of S (red) and L (blue) clones
sampled at seven generations (6.5, 11, 18, 20, 30, 40, and 50 K arranged
chronologically from top to bottom) on glucose (left) and acetate (right).
In each panel, curves show the average (heavy line) of 3–6 replicate assays
(lighter lines) for each clone; curves for individual replicates are not always
visible when they are close to the mean or other replicates. (PDF 186 kb)
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