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Abstract Reverse engineering of high-throughput omics

data to infer underlying biological networks is one of the

challenges in systems biology. However, applications in

the field of metabolomics are rather limited. We have

focused on a systematic analysis of metabolic network

inference from in silico metabolome data based on statis-

tical similarity measures. Three different data types based

on biological/environmental variability around steady state

were analyzed to compare the relative information content

of the data types for inferring the network. Comparing the

inference power of different similarity scores indicated the

clear superiority of conditioning or pruning based scores as

they have the ability to eliminate indirect interactions. We

also show that a mathematical measure based on the Fisher

information matrix gives clues on the information quality

of different data types to better represent the underlying

metabolic network topology. Results on several datasets of

increasing complexity consistently show that metabolic

variations observed at steady state, the simplest experi-

mental analysis, are already informative to reveal the

connectivity of the underlying metabolic network with a low

false-positive rate when proper similarity-score approaches

are employed. For experimental situations this implies that a

single organism under slightly varying conditions may

already generate more than enough information to rightly

infer networks. Detailed examination of the strengths of

interactions of the underlying metabolic networks demon-

strates that the edges that cannot be captured by similarity

scores mainly belong to metabolites connected with weak

interaction strength.

Keywords Network inference � Interaction strength �
Metabolome modeling � Indirect interactions �
Biological/environmental variability � Similarity scores

1 Introduction

The cell’s phenotype emerges from the coordinated behav-

iour of a web of interactions among its genes, proteins and

metabolites. This implies a close relationship between the

structure of interaction networks and functionality (Futschik

et al. 2007; Stelling et al. 2002; Vazquez et al. 2003).

Therefore, one of the challenges in systems biology is to

infer cellular networks from data collected through high-

throughput techniques. The so-called ‘omics’ data hold

information on the network from which they are derived. A

proper analysis of such data, therefore, can reveal the

structural properties of the network in question, enabling

discovery of direct interactions among the measured tran-

scripts, proteins or metabolites. In this regard, network

inference is a step towards elucidating functional properties

in cellular systems since the network structure is the
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backbone behind normal as well as abnormal phenotypic

states such as disease, malfunctioning, and overproduction.

Network inference approaches are highly popular in

transcriptomics to infer genetic regulatory networks (Ban-

sal et al. 2007; Soranzo et al. 2007). In this study, we focus

on a relatively untouched area with the overall goal of

inferring metabolic networks from metabolome data. The

reverse engineering approach employed is a top–down

approach to network reconstruction. In the widely used

bottom–up approach the metabolic network topology is

compiled from the literature and is later used as a scaffold

in analyzing omics data (Gonzalez et al. 2008; Notebaart

et al. 2006; Price et al. 2004; Rahnenführer et al. 2004),

leading to the construction of genome-scale metabolic

models. Such bottom–up models are mainly limited to

stoichiometric interactions between metabolites, ignoring

the interactions due to regulatory mechanisms such as

inhibition or activation. Additionally, stoichiometric

interactions in such models are not complete as revealed by

the presence of a considerable percentage of totally inac-

tive ‘dead-end’ metabolites (Förster et al. 2003). These

facts are the main reason why the reconstructed bottom–up

models lead to some erroneous predictions of phenotypic

states (Forster et al. 2003). The top–down approach, on the

other hand, does not have these limitations provided that

the collected data capture the variation in all pathways.

Two major issues in the top–down approach are the type

of experiment or perturbation to be performed and the type

of network inference method to be used. Biological data

collected in different ways (steady-state or dynamic exper-

iments, under genetic or environmental perturbations) differ

in the information content they carry about the underlying

network (Soranzo et al. 2007). Some researchers focus on

methods that require complicated experimental design such

as perturbation of each node in the system separately

(Sontag et al. 2004; de la Fuente et al. 2002). On the con-

trary, we concentrate on analyzing the information content

of observational metabolome data based on emerging bio-

logical or environmental variations around steady state

without any sophisticated targeted design. Thereby, we aim

to answer the question whether natural variation observed

around steady state, which is the simplest experimental

analysis, is informative enough to reveal the connectivity of

the underlying metabolic network. Various reverse engi-

neering methods of omics data exist in the literature (Bansal

et al. 2007; Markowetz and Spang 2007). We choose sta-

tistical similarity measures as a network inference tool since

they are widely employed (Margolin et al. 2006; Nemenman

et al. 2007; Soranzo et al. 2007; Werhli et al. 2006; de la

Fuente et al. 2004), and they best suit analysis of steady-state

data. Moreover, a detailed application of similarity measures

on metabolome data is missing in the literature unlike the

popular usage in transcriptome data-based genetic network

inference attempts (Markowetz and Spang 2007; Soranzo

et al. 2007). The amount of applications for metabolomics so

far has been limited (Nemenman et al. 2007), with no

detailed comparative investigation of non-linear measures

or conditioning and pruning approaches which eliminate

indirect interactions.

A good starting point for metabolic network inference is

the use of in silico generated metabolome data from kinetic

metabolic models available in literature (Mendes et al.

2003). This approach facilitates to draw conclusions on the

quality of data and perturbation needed for metabolic net-

work inference of real systems as well as enabling quick

testing of inference quality. Kinetic models of three example

systems (threonine synthesis pathway of E. coli consisting of

4 metabolites, S. cerevisiae glycolysis pathway with 13

metabolites, and E. coli central metabolism pathway with 18

metabolites) were used in this study for in silico data gen-

eration. We test the effect of the following parameters on

network inference: (a) different types of (natural) variabil-

ity, (b) different types of similarity measures and (c)

elimination of indirect interactions through conditioning

and/or pruning.

2 Materials and methods

The general computational approach followed is depicted

in Fig. 1.

2.1 In silico data generation

Kinetic details of models describing the studied systems

were taken from JWS Online (Olivier and Snoep 2004). The

systems were solved either using MATLAB’s built-in

ordinary differential equation (ODE) solver ode15s for the

enzymatic variability data or using the Milstein method of

the stochastic differential equation (SDE) Toolbox (Picchini

2007) for the intrinsic variability and the environmental

variability data (see next subsection for details of the data

types). A thousand steady-state data points were collected

from independent runs for each variability type analyzed.

Initial values of concentrations were kept the same among

different independent runs since they were found to have no

effect on steady-state concentrations. For stochastic simu-

lations, a real steady state is not possible due to fluctuating

profiles, and data was collected after a few seconds of sim-

ulations starting from different near-steady-state concen-

trations to assure that the fluctuations were stabilized.

2.2 Biological/environmental variability

Metabolomics experiments conducted under identical

conditions with the same genetic background do not
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necessarily lead to identical results (Fiehn et al. 2000;

Martins et al. 2004). This has been attributed to natural

variability inherent to living organisms originating from

systems properties, leading to consistent correlation pat-

terns among metabolites (Steuer 2006). In this study, we

focus on three common factors causing this variability. Our

goal is to compare the relative information content of each

of these factors in revealing true systemic interactions.

2.2.1 Enzymatic variability

This type of variability is induced due to slight variation of

enzyme concentrations, [E], or reaction rate constants, k,

between replicate experiments. Each rate expression in the

kinetic models has a parameter, mmax, which comprises both

of these effects (mmax = k�[E]). A random variation of

approximately ±10% was introduced to the mmax parameter

of each rate expression in the models to mimic biological

variability and to generate replicate metabolome data

(Fig. 1) (Camacho et al. 2005; Martins et al. 2004). This

was done by multiplying each mmax value with a random

number, n, from a Normal distribution with unit mean and

0.05 standard deviation. The mathematical expression of

the corresponding ODE set is:

dCi

dt
¼
X

ri with ri ¼ ni � vmax;i � F Cið Þ
ni� N 1; 0:05ð Þ

where Ci corresponds to the concentration of metabolite i

and t is time. The variation can be much higher for

mammalian systems (Margolin et al. 2006) because there is

considerable difference between individuals in terms of

gene copy numbers and single-nucleotide-polymorphism

(SNP) occurrences, affecting enzyme concentrations [E]

and efficiency (k).

1. DATA COLLECTION

A. Enzymatic 
Variation

2. SIMILARITY SCORE CALCULATION

2a. Relevance Networks

Pearson Correlation (PC)
(linear)

Mutual Information (MI)
(non-linear)

2b. Conditioned Networks

A

B

D

C

EF

Partial Pearson Correlation 
(PPC1 or PPCn) (linear)

Conditional Mutual Information 
(CMI1) (non-linear)

2c. Pruned Networks

•Pruned PC
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•Pruned PPC1,n

•Pruned CMI1

B. Intrinsic Variation
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Fig. 1 The approach followed for metabolic network inference.

Three datasets with different variability properties are collected in

silico. Each dataset is processed to calculate similarity scores with

linear and nonlinear methods (relevance networks). The alternative

scores which remove indirect interactions are also applied (condi-

tioned networks). All these networks are fed into pruning algorithm

which checks data processing inequality (DPI). See Sect. 2 for details
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2.2.2 Intrinsic variability

Within an experiment, intracellular metabolites can exhibit

true fluctuations over time (Kresnowati et al. 2006; Wu

et al. 2005) (Fig. 1), which are not due to technical or

experimental errors but because of fluctuations within

cellular processes, also due to complex regulation patterns

(Steuer et al. 2003). Such fluctuating profiles can be nat-

ural, or can also be induced on purpose by introducing

small fluctuations to temperature, pH or dissolved oxygen

concentration of, e.g., a biotechnological system. A math-

ematical way of mimicking such ‘noisy’ profiles using

kinetic models is to add a stochastic term to each ODE of

the system. Thereby, the system is converted into an SDE

set. Stochastic modeling is also a common way of intro-

ducing variability for model-based genetic network

inference studies (Wang et al. 2006; Yeung et al. 2002).

Mathematically expressed;

dCi

dt
¼
X

ri þ f � gi with ri ¼ vmax;i � F Cið Þ:

The stochastic term, gi, is a random number from unit

Normal distribution, and f is a system-specific weight. The

weight, f, was chosen as 0.001, 0.1, and 0.01 for the

4-metabolite, 13-metabolite and 18-metabolite systems,

respectively, to induce variation in metabolite levels similar

in range to the metabolite levels of enzymatic variability

case.

2.2.3 Environmental variability

Fluctuations can also be due to small changes in the

extracellular substrate/nutrient concentrations, and these

changes are transmitted and propagated within the cell,

causing variations in the levels of internal metabolites

(Steuer et al. 2003). This approach results in fluctuations

with noticeably smaller amplitude relative to the intrinsic

variability for intermediate metabolites (Fig. 1). We have

generated the third in silico metabolome dataset by adding

a stochastic term only to the ODE of the initial metabolite

in the considered system. In other words, this SDE repre-

sents the effect of the propagated substrate variations

within the cell that is transmitted to the considered system:

dCi

dt
¼
X

ri þ f � gi with ri ¼ vmax;i � F Cið Þ and

f ¼ 0 for i 6¼ system substrate:

2.3 Similarity measures

2.3.1 Relevance networks

Pearson correlation (PC) was used as a linear statistical

similarity measure. Spearman correlation practically gave

the same results (results not shown). Entropy-based mutual

information (MI) was used as a nonlinear similarity

measure:

MI X; Yð Þ ¼ H Xð Þ þ H Yð Þ � H X; Yð Þ ð1Þ

with H being the entropy calculated based on the b-spline

interpolation algorithm of (Daub et al. 2004), implemented

in MATLAB. Spline parameters that were used are 3 for

spline order, and 10 for the number of bins; see (Daub et al.

2004) for explanations.

2.3.2 Conditioned networks

Conditioning is an approach enabling identification of

indirect interactions in similarity networks. Elimination of

such interactions can lead to a more refined network (see

also de la Fuente et al. 2004). As a linear conditional

similarity measure, two different scores were used. First

order partial correlation is based on an exact formulation:

R X; Y jZð Þ ¼ R X;Yð Þ � R X; Zð Þ � R Y; Zð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2 X;Zð Þ � 1� R2 Y ; Zð Þð Þ

p ð2Þ

with R denoting zero-th order Pearson correlation. This

score is calculated for every single Z outside the (X, Y) pair.

The minimum of such scores is the first order partial cor-

relation between (X, Y), and denoted as PPC1. The

graphical Gaussian modeling (GGM) framework has also

been employed as a linear conditioning approach, which

applies conditioning on all remaining metabolites simul-

taneously (PPCn). It is straightforward to calculate partial

Pearson correlation scores through the GGM approach by

simple inversion and normalization: the inverse of the zero-

th order Pearson correlation matrix is taken, and the

resulting matrix is normalized to have diagonals-1 (Schäfer

and Strimmer 2005).

First order conditional mutual information (CMI1) was

used as a nonlinear conditional similarity measure. For a

metabolite pair (X, Y) a set of CMI scores is calculated by

conditioning with respect to each of the remaining

metabolites (Z) one by one using the following expression:

CMI X; Y jZð Þ ¼ H X; Zð Þ þ H Y ; Zð Þ � H Zð Þ þ H X; Y; Zð Þ
ð3Þ

The minimum of those scores is considered as the CMI1

score of that pair. Higher order nonlinear conditioning was

not used due to high computational time requirements.

2.3.3 Pruned networks

Pruning is an alternative approach to remove indirect

interactions. The algorithm accepts a network graph as an

input where all interactions with significant similarity

scores are represented as an edge. Data processing
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inequality (DPI) is the method employed to prune this

network, and is applied after all edges with insignificant

scores (see below) are removed from the network. It is

based on the comparison of pairwise similarity scores

among every fully connected three metabolites (Margolin

et al. 2006). The edge with the lowest score in the checked

triplets is assumed to be indirect and removed since there is

a higher-score two-edge path connecting the two metabo-

lites. A tolerance parameter of 0.10 was used in DPI-

pruning calculations to prevent too stringent pruning

(Margolin et al. 2006). Mathematically expressing; for a

triplet of metabolites X, Y, Z, if the edge between X and Z

obeys the following inequality, then it is removed from the

network:

abs SXZð Þ� min abs SXYð Þ; abs SYZð Þð Þ � 1� sð Þ ð4Þ

with S indicating similarity score, and s the tolerance

parameter. DPI approaches with higher order alternative

path checks are also available (Chen 1998; Patil and Ku-

lkarni 2007) under the name of pathfinder network scaling

approach. Pathfinder network scaling is used widely in

information visualization, citation pattern analysis and

knowledge acquisition (White 2003; de Moya-Anegon

et al. 2007). In addition to triplet checks, we have also

applied rectangular inequality checks for comparison. We

have applied the pruning approach to all networks con-

structed based on unconditioned and conditioned scores

(PC, MI, PPC1, PPCn and CMI1). The ARACNE approach

(Margolin et al. 2006) corresponds to the case where Eq. 4

is based on the MI score.

2.4 Significance measure of similarity scores

A distribution-free test, the permutation test, was applied to

the collected in silico data to assign a P-value to each

possible edge by shuffling the data 5,000 times. A P-value

cut-off of 0.01 was used to select edges with significant

similarity scores. These selected edges are combined to

give the connectivity pattern of the inferred network, which

then can be compared with the actual metabolic network

derived from the in silico model. The formation of actual

metabolic interaction network is based on the ODE bal-

ances around metabolites, which shows if the level of one

metabolite is influenced by the level of others (calculation

of Jacobean matrix of the system gives the same infor-

mation quantitatively, see Sect. 2.5). In this way, not only

the intuitive substrate-product interactions are counted, but

also the influences between substrates of the reactions are

covered. This corresponds to substrate-graph representation

of metabolic networks in graph theoretical analyses

(Wagner and Fell 2001).

Receiving-Operator Characteristic (ROC) curves were

used as a global measure of network inference quality for

larger systems, by plotting true-positive rates (TPR) and

false-positive rates (FPR) against each other. The geo-

metric mean of specificity and sensitivity is another

measure which can be used to evaluate the quality of

classifications at a given P-value threshold (e.g. P = 0.01)

(Kubat et al. 1998). ROC curves enable a global compar-

ison whereas the geometric mean score allows the

comparison of method performance based on a single

score. It is calculated as:

g-score ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sensitivity� specificity

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPR� 1� FPRð Þ

p
: ð5Þ

The score changes between 0 and 1, with 1 corresponding

to perfect inference, and 0 to worst inference.

2.5 Effect of strength of interactions on network

inference

As an independent tool to validate the results of the meta-

bolic network inference, we use the interaction strength.

The strength of interactions in a cellular network is not the

same for all edges in the network. A practical way of

quantifying the interaction strength between metabolite

pairs in in silico kinetic systems is via the calculation of

Jacobian matrix corresponding to the right-hand-side of the

ODE system. The (i, j)th entry of the Jacobian matrix cor-

responds to the magnitude of change in the time behavior of

metabolite i in response to an infinitesimal change in the

level of metabolite j. Mathematically speaking;

Jij ¼
o dCi

dt

� �

oCj
ð6Þ

with C representing concentration.

To calculate the Jacobian strength of an interaction, (a)

we have calculated the Jacobian matrix of the system at

steady state based on Eq. 6 and (b) we have assigned the

absolute maximum of upper- and lower-diagonal entries as

the Jacobian strength of each metabolite pair since the two

entries may differ depending on the reversibility of

interactions.

3 Results and discussion

3.1 Threonine synthesis pathway in E. coli

For illustrative purposes we start with a small example of

four metabolites: the threonine synthesis pathway in E. coli

(Chassagnole et al. 2001a, b). The system is a linear

pathway with four metabolites and five reactions (Fig. 2a).

The pathway has three true edges (E12, E23, E34) whereas

the number of all possible edges is six (including false

edges of E13, E14, E24). The three approaches to induce
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variability at steady state were applied to this system, and

all related similarity measures were calculated as men-

tioned in the Sect. 2, enabling a thorough investigation of

similarity network approaches. Resulting network config-

urations corresponding to each similarity analysis are given

in Fig. 2 for each variability approach.

Similarity score calculations are based on a dataset of

1,000 generated data points. A hundred such datasets were

generated to test the reproducibility of the resulting net-

works. The solid lines in Fig. 2 correspond to perfectly

reproducible edges whereas the presence of dotted or

dashed edges indicates variability in the inference results

among the 100 independent datasets (see legend to Fig. 2

for details). Figure 2 reveals that conditioning reduces the

number of false positives: PPC1 and CMI1 perform

noticeably better compared to the non-conditioned coun-

terparts that give networks with more connectivity. The

performance of GGM based PPCn is also comparable.

Additionally, DPI pruning is very effective, especially with

the intrinsic and environmental variability approaches

(Fig. 2c, d), leading to the full inference of the original

network by all used similarity measures without leaving

any ambiguous edges behind. This shows the refining

power of pruning on the inferred network. It is more

obvious for environmental variations where the non-pruned

results are relatively less promising, especially for the

linear measure tests. Even conditioned approaches lead to a

set of false-positive edges for this type of data. Application

of DPI pruning (gray lines), on the other hand, successfully

infers the original network for all types of similarity

measures (Fig. 2d).

In terms of linear vs. nonlinear measures, no clear dif-

ference was observed for the two systems between PC and

MI, or PPC1 and CMI1, regardless of the variability

approach. This implies that relationships between metab-

olites around steady state are mainly linear for the analyzed

conditions, in parallel with previous findings for tran-

scriptome data (Steuer et al. 2002).

The three data types used in this study can be grouped in

two classes. Enzymatic variability data is based on varia-

tions of enzymatic properties across different experiments

leading to slight differences in individual reaction rates,

and that, in turn, causes variability in metabolite levels.

Intrinsic and environmental variability, on the other hand,

1. ASPP1. ASPP THRTHRASPASP 2. ASA2. ASA 3. HS3. HS 4. HSP4. HSP

PC ASAASA

PPCn ASPPASPP ASAASA HSHS HSPHSP

MI ASPP ASAASA HSPHSPHSHS

CMI1 ASPP ASAASA HSPHSP

PC ASPPASPP ASAASA HSHS HSPHSP

MI ASPPASPP ASAASA HSHS HSPHSP

PPCn ASPPASPP ASAASA HSHS HSPHSP

CMI1 ASPPASPP ASAASA HSHS HSPHSP

PC

MI

PPCn ASPPASPP ASAASA HSHS HSPHSP

CMI1

ASPPASPP ASAASA HSHS HSPHSP

ASPPASPP ASAASA HSHS HSPHSP

ASPPASPP ASAASA HSHS HSPHSP

ASPPASPP HSHS HSPHSP

A

B C DEnzymatic Variability Intrinsic Variability Environmental Variability

PPC1 ASPPASPP ASAASA HSHS HSPHSP
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R
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Fig. 2 Inference of threonine synthesis pathway in E. coli by

different similarity approaches. (a) The real pathway, (b) network

inference by enzymatic variability, (c) network inference by intrinsic

variability (d) network inference by environmental variability. Black
lines are edges for non-pruned networks whereas gray lines show

edges for pruned networks. Dashed and dotted lines imply ambiguity

regarding the corresponding edges (i.e. edge is absent or present

depending on different realizations). Dashed lines mean presence

of the edge in at least 90% of 100 realizations, and thin dotted
lines mean presence of the edge in only at most 10% of the cases.

Normal dotted lines correspond to cases in between. ASP aspartate,

ASPP aspartyl-P, ASA aspartic semialdehyde, HS homoserine, HSP
O-phospho-homoserine, THR threonine
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cover net effect of several types of dynamic fluctuations on

metabolite levels. It was shown for Vmax-dependent enzy-

matic variability (Camacho et al. 2005) that two

neighbouring metabolites in the network may have little or

no similarity when the enzymes that regulate them vary in

different directions causing a low correlation. That said, it

may not be possible to have a perfect network inference

based on enzymatic variability as it is dependent on

enzyme mechanisms behind metabolic conversions. In

other words, enzyme mechanisms play an important role in

metabolic network inference. This was partly observed

when conditioning or pruning is applied to the edge E23 in

Fig. 2b, leading to ambiguous edges for neighbouring

metabolites. The other two data types (Fig. 2c, d), on the

other hand, did not have this limitation. This suggests that a

different data type makes it possible to break the barriers

due to enzyme mechanisms and to infer the edges con-

necting metabolites whose co-response are controlled by

multiple enzymes in different directions.

Comparison of the three variability approaches indicate

that, for this small example, intrinsic variability leads to the

best results, with identification of the original network not

only by conditioning but also by pruning regardless of the

similarity method employed.

3.2 Application to larger networks: glycolytic pathway

in S. cerevisiae and central metabolism in E. coli

The next examples are of larger networks. The first one is

the glycolysis pathway of S. cerevisiae which consists of

13 metabolites and 18 reactions (Teusink et al. 2000). The

13 metabolites correspond to 78 possible interactions,

whereas the number of real edges in the network is 21.

Additionally, the 18-metabolite and 30-reaction network of

E. coli central carbon metabolism was considered (Chas-

sagnole et al. 2002), which has 153 possible pairwise

interactions, of which 39 are genuine.

Receiving-Operator Characteristic curves were created

for both microorganisms for an overall comparison of

different employed approaches (Fig. 3). The curves are

based on average true-positive and false-positive counts of

10 independent datasets. The diagonal line in ROC curves

corresponds to cases where true-positive rate (TPR) and

false-positive rate (FPR) are equal to each other, and

known as random scenario. The more distant an ROC curve

to the random scenario line in the upper diagonal area, the

better the performance of the corresponding similarity

score. In summary, the ROC curves reveal that (a) envi-

ronmental variability has the worst performance, (b) PPCn
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cerevisiae (1st row) and E. coli (2nd row) systems. The Black dots
on the curves correspond to true positive rate and false positive rate

for significance threshold of P B 0.01. The dotted diagonal line
corresponds to random scenario
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is clearly superior to other approaches in either of the

remaining two variability approaches since its ROC curve

is most distant to the random scenario line, (c) uncondi-

tioned scores, PC and MI, have ROC curves relatively

closest to random scenario line, in accordance with their

low performance.

Figure 4a and b give a more focused view of the dif-

ferent variability methods based on the g-score (Eq. 5) at a

P-value cut-off of 0.01. The detailed corresponding tables

are given in Supplementary File. A superiority of intrinsic

variability over others was observed (Supplementary File,

Fig. 4), consistent with the results of the previous section.

Pruning of the conditioned scores generally worsened the

prediction or does not have any noticeable effect. The real

power of pruning was observed when applied to non-con-

ditioned scores, PC and MI. Additionally, the PPCn score

without pruning was always better than any of the pruned

networks (including the ARACNE approach; the pruning-
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Fig. 4 Geometric mean score

of sensitivity and specificity for

a S. cerevisiae and b E. coli
systems. The g-scores are for

P = 0.01 threshold for

similarity measures. The x-axis

of figures correspond to the

pruned and non-pruned versions

of three variability approaches

with VV: enzymatic variability,

IV: intrinsic variation, EV:

environmental variation; and

block names with DPI
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similarity score for the same

type of variability was

connected to each other by

dotted lines to show the effect of

pruning. Higher g-scores

correspond to better inference

Metabolic network discovery 325

123



applied MI) for enzymatic and intrinsic variability data.

The ARACNE approach usually had a lower performance

over the other DPI-pruned similarity scores, with pruned

PPCn having a better inference, implying that mutual

information is not always the best similarity measure to use

for metabolic network inference. The use of rectangular

inequality for pruning (see Sect. 2) did not lead to any

significant change compared to triangular inequality

(results not shown). A general observation valid for both

metabolic systems and for all three variability approaches

is that PC and MI measures result in highly connected

networks, associated with a very high number of false

positives although they are slightly better to predict posi-

tive edges.

In practice, the ROC curves are not available because

the true network is unknown. Hence, one has to select a

P-value and usually a value of 0.01 is chosen. The con-

sequence of this selection is shown with the black dots on

the ROC’s of Fig. 3. The choice of the cut-off point for the

P-value can lead to unfavorable results, e.g., in the case of

the CMI of E. coli of the enzymatic variability: a better

compromise between false-positive rate and true-positive

rate would have been obtained at another P-value (i.e. at

another point on the ROC curve). Unfortunately, the

position of the ‘P-value point’ on the ROC curve is not

known for practical cases. This serves as a remark of

warning for practitioners: the P-value is just an arbitrary

choice and a different choice of P-value leads to different

results, a more- or less-connected graph with more or less

false positives and false negatives, and thereby the choice

of P-value can lead to a suboptimal recovery of the

underlying network.

The importance of quantitative measures for the infor-

mation quality of experimental data to be used in network

inference was pointed out (Camacho et al. 2007). The

Fisher Information Matrix has been in use for this purpose

to judge the quality of experiments (Kresnowati et al.

2005). The multiplication of a data matrix with its trans-

pose is called the Fisher Information Matrix and the

condition number (called modified E-optimality) of this

matrix is one of the most widely used criteria for infor-

mation content of data (Balsa-Canto et al. 2007). In this

measure, lower scores correspond to better data types. We

calculated the condition number of the Fisher Information

Matrices corresponding to each of the three data types for

both systems. Data were standardized before the calcula-

tion of modified E-optimality score. The condition numbers

of data from environmental variability are on the order of

109 and 1012 for S. cerevisiae and E. coli systems,

respectively, while that of enzymatic and intrinsic vari-

ability data are at least 106 fold lower. This fact points to

the low quality of the environmental variability data, in

parallel with the observations in Fig. 4a and b. To further

strengthen these results, environmental variability data

with 50 times higher weight for the stochastic term was

generated for E. coli; resulting in a dataset with much

higher variation. The corresponding condition number of

the Fisher Information Matrix was, albeit lower than ori-

ginal, still 104 fold higher than the other data matrices,

suggesting that environmental variability does not result in

informative data for the inference of intracellular networks.

Figure 5 compares the complementary power of the two

best variability approaches for the best performing simi-

larity score, PPCn, in terms of true-positive counts. The

figure indicates that some edges were inferred only by one

of the two methods. The union of edges correctly inferred

by both variability methods corresponded to a true-positive

rate of 0.89 (0.68 and 0.77 for individual approaches) and

0.72 (0.66 and 0.61 for individual approaches) for S. ce-

revisiae and E. coli models respectively for PPCn score,

leading to a more complete picture of underlying metabolic

network. The corresponding false-positive rates were 0.28

and 0.21 for both microbial systems.

Figure 6 demonstrates the effect of the number of

datapoints on the quality of network inference for the

best-performing score, PPCn for intrinsic variability data

of S. cerevisiae. The plot shows that 500 datapoints are

sufficient to obtain the same inference quality, and there

is a sharp decrease in the quality if the dataset includes

less than 200 points. An important remaining question is

at what sample sizes this type of network inference

breaks down, but this is also largely related to the

amount of natural variation included in the dataset. This

should be part of further study on metabolic network

inference using similarity measures. However, the

requirement of a high number of replicate measurements

is already a known disadvantage of similarity-based

network inference approaches (Camacho et al. 2007;

Soranzo et al. 2007).

S. cerevisiae

2.5 11.8 4.4

2.3

E. coli

4.3 21.5 2.1

11.1

VV IV VV IV

Fig. 5 True-positive counts of enzymatic variability (VV) and

intrinsic variability (IV) approaches for PPCn score. The results are

given in complementary way for both microbial systems. VV and IV

can capture the same 11.8 and 21.5 edges in S. cerevisiae and E. coli
systems out of 21 and 39, respectively. There is a small number of

edges which can only be inferred by one of the variability approaches
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3.3 Validation of the results

Figure 5 reveals that, especially for E. coli system, there

is a number of interactions which cannot be captured by

neither the enzymatic nor the intrinsic variability-based

data types (false negatives). Therefore, to investigate the

role of weak-strength interactions on the false negatives

encountered in similarity-based inference methods, we

first focus on the E. coli system. We have classified weak

interactions as the ones with interaction strengths lower

than 1. From the 39 interactions in E. coli system, 12 fall

into this category. Further inspection of these weakest 12

interaction strengths (with a range of 8.10-6–0.17) reveals

that 9 and 11 of them have insignificant PPCn P-values,

respectively, for data based on enzymatic and intrinsic

variability. This explains why these interactions cannot be

captured by the PPCn score. Ignoring these interactions

can lead to a true-positive rate of as high as 0.84, com-

pared to current values of around 0.60 (Fig. 3,

Supplementary Table 1). Further calculations of Spear-

man rank correlations between strengths of 39 interactions

and corresponding PPCn scores gives 0.64 (P-value:

1.10-5) and 0.72 (P-value: 2.10-7), respectively, for

enzymatic and intrinsic variability datasets. That is, there

is a significant relationship between these two entities for

both data types. For S. cerevisiae, a very low number of

false negatives was observed, which is in accordance with

the fact that no weak interactions were present in this

system. Summarizing, false negatives in metabolic net-

work discovery are present because of low interaction

strength and not primarily because of the failure of the

network inference methods.

4 Concluding remarks

A systematic analysis of metabolic network inference was

performed based on different types of in silico steady-state

metabolome data. A comprehensive investigation of simi-

larity measures for network inference on metabolomics

data enabled the testing of nonlinear measures as well as

measures eliminating indirect interactions. Linear versus

nonlinear similarity measures were shown not to differ

noticeably implying the lack of non-linear relationships

among metabolites around steady-state conditions, which is

especially true for datasets with relatively small perturba-

tions around steady state. Conditioning and pruning

approaches were found to improve results considerably by

eliminating a high percentage of indirect links. The false

negatives encountered were shown to be related to intrinsic

properties of the network, i.e. weak interactions. Along the

way, we extended the ARACNE approach, which is spe-

cific to the MI scores, to other similarity scores including

conditioned ones and concluded that PPCn has a better

inference capacity than any of the pruned scores.

Comparison of different variability methods reveals that

intrinsic variability is generally more informative. Trans-

lating this result to experimental situations, this implies

that a single organism under slightly varying conditions

may already generate more than enough information to

rightly infer networks, without having to turn to more

genetic diversity or to more complicated experimental

design. However, solely perturbing substrate conditions

will not reveal the underlying network.

Use of Fisher Information Matrix-based testing gave

hints on the quality of different datasets, suggesting a

diagnostic for the quantitative pre-inspection of data. Use

of environmental variability was not promising even when

conditioning was applied. Pruning, however, improved the

results of this variability type considerably, albeit still

being inferior to the two other variability approaches.

A disadvantage with similarity-based approaches pre-

sented here is the requirement of a high number of replicate

measurements. However, no complicated experimental

design is needed, making it more practical to employ this

approach. Additionally, we have shown that pruning and

conditioning approaches have the power to eliminate some

ambiguous edges arising due to non-reproducible datasets.

We have focused on data from steady-state variations

without any designed perturbation since designed pertur-

bations (e.g. knock-out or overexpression of selected

enzymes) correspond to different cellular states with dif-

ferent similarity patterns. Therefore, one should be

cautious to analyze such data as it can lead to misleading

correlations (Camacho et al. 2005).

It is not yet possible to have a perfect inference for

metabolic networks with the presented approach. However,
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Fig. 6 The effect of number of datapoints (x-axis) on the inference

quality of PPCn. The figure is based on intrinsic variability-based data

of S. cerevisiae system. Y-axis shows the geometric-mean of

sensitivity and specificity as introduced in Eq. 5. The scores are

averages of 10 different datasets. The corresponding standard

deviation is also plotted
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the finding that different data types hold different infor-

mation over a network points to the importance of

integrated analysis of different data types. It can be argued

that all three different types of variation analyzed can be

present under normal conditions. Integration of results

from different data types were shown to result in much

higher true-positive rates, pointing to higher information

content of a dataset including the effect of all three vari-

ations. The focus on proper experimental setup for reverse

engineering approaches together with the measures quan-

tifying the information content of omics datasets will be the

future trend in this top–down systems biology approach.
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