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Abstract

Cancer cells must adapt their metabolism tomeet the energetic
and biosynthetic demands that accompany rapid growth of the
primary tumor and colonization of distinct metastatic sites.
Different stages of the metastatic cascade can also present distinct
metabolic challenges to disseminating cancer cells.However, little
is known regarding how changes in cellular metabolism, both
within the cancer cell and the metastatic microenvironment, alter
the ability of tumor cells to colonize and grow in distinct sec-
ondary sites. This review examines the concept of metabolic
heterogeneity within the primary tumor, and how cancer cells
are metabolically coupled with other cancer cells that comprise

the tumor and cells within the tumor stroma. We examine how
metabolic strategies, which are engaged by cancer cells in the
primary site, change during the metastatic process. Finally, we
discuss the metabolic adaptations that occur as cancer cells
colonize foreign metastatic microenvironments and how cancer
cells influence the metabolism of stromal cells at sites of metas-
tasis. Through a discussion of these topics, it is clear that plasticity
in tumor metabolic programs, which allows cancer cells to adapt
and grow in hostile microenvironments, is emerging as an impor-
tant variable that may change clinical approaches to managing
metastatic disease. Cancer Res; 76(18); 5201–8. �2016 AACR.

Introduction
A growing tumor consists of heterogeneous cancer and stromal

cell populations, both of which contribute significantly to disease
progression. Tumor heterogeneity arises due to unique combina-
tions of genetic and epigenetic alterations within distinct cancer
cell subpopulations. In addition to this genetic heterogeneity,
alterations in tumor metabolism coupled with the ability of
cancer cells to engage different metabolic strategies based on the
environmental context, greatly contributes to tumor heterogene-
ity. Cellular energetics or "oncometabolism" is now considered
one of the defining hallmarks of cancer (1). Metabolic heteroge-
neity arises and is maintained through coupled metabolic inter-
actions that occur between distinct tumor cell populations within
the tumor, as well as between the tumor and the stroma (2).

During tumor growth, cancer cells are faced with heightened
bioenergetic and biosynthetic demands to maintain tumor cell
proliferation. In addition to increased requirements for ATP
generation, tumor cells also need to increase the biosynthesis of
macromolecules (lipids, amino acids), reducing equivalents
(NADH, NADPH, FADH2), and other cofactors for metabolic

reactions (3). Cancer cells must balance energy-producing and
energy-consuming processes to fuel tumor growth, while adapt-
ing their metabolism to the dynamic changes in nutrient and
oxygen availability that occur during tumor progression, includ-
ing the emergence of hypoxic regions within a rapidly growing
tumor. While we now understand many of the metabolic strat-
egies used by cancer cells to fuel primary tumor growth, how
cancer metabolism changes during the metastatic process is less
well known. Emerging data suggest that cancer cells, once they
leave the primary tumor, must engage different metabolic strat-
egies, distinct from theprimary tumor, to successfullymetastasize.
This review examines the metabolic flexibility that occurs during
the metastatic process and how metabolic adaptation is influ-
enced by uniquemicroenvironments to control tumormetastasis.

Metabolic Strategies Engaged during
Tumorigenesis

Although normal cells can use different substrates for energy
production, glucose is a key fuel source. Nontransformed cells
generatemuchof their ATP viamitochondrial-dependent oxidative
phosphorylation (OXPHOS), which allows for maximal produc-
tion of ATP from glucose. When molecular oxygen, which is
required for ATP production during OXPHOS, is limiting, such as
under hypoxia, differentiated cells instead use anaerobic glycolysis
to convert glucose into lactate, yielding a much smaller amount of
ATP from glucose (2 molecules of ATP per molecule of glucose).

Glycolysis
In contrast to untransformed cells, most cancer cells display

high rates of glucose uptake but divert glucose-derived pyruvate
away from themitochondria and toward lactate production, even
under conditions where oxygen is not limiting. This metabolic
strategy, known as "aerobic glycolysis" or the Warburg effect
(4, 5), is one of the most commonly observed examples of
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metabolic reprogramming in cancer cells. Increased glycolysis is
associated with highly proliferative tumors and positively corre-
lates with a poor prognosis in many types of cancer (6). The
metabolic switch to aerobic glycolysis may confer several advan-
tages to proliferating tumor cells including rapid ATP production
from glycolysis and the synthesis of glucose-derived macromo-
lecules necessary for cell division (3, 4).

Targeting glycolytic metabolism may represent an attractive
strategy for the treatment of some cancers (7–9). Inhibiting
glycolysis by 2-deoxy-D-glucose (2-DG) induces a metabolic shift
towardOXPHOS, decreases lactate production, and consequently
inhibits cancer metastasis (10). In fact, several key glycolytic
enzymes and glucose transporters are currently in preclinical or
clinical development, either alone or in combination with other
anticancer drugs. These include inhibitors of GLUT1 (WZB117),
hexokinase II (2-DG, Lonidamine), phosphofructokinase (3PO),
glyceraldehyde 3-phosphate dehydrogenase (3-BP), and lactate
dehydrogenase A (FX11, Oxamate; refs. 8–10).

Oxidative phosphorylation
In addition to the Warburg effect, tumor cells engage other

metabolic pathways to support cell growth. The importance of
OXPHOS in cancer metabolism has been underappreciated
despite evidence that mitochondria contribute to efficient ATP
production in a variety of cancer cell lines (11, 12).On the basis of
the observation that breast cancer cells produce 80% of their ATP
via mitochondrial-dependent metabolism, the concept of "oxi-
dative tumors" has been introduced to describe ATP production
by OXPHOS from glucose, fatty acids, or glutamine oxidation

(13–15). In addition, maintenance of mitochondrial membrane
potential by the electron transport chain is required to support the
proliferation of cancer cells (16). Tumor cells can also adopt
intermediatemetabolic phenotypes. For example, tumor cells can
perform a truncated TCA cycle, exporting the TCA cycle interme-
diate citrate to the cytosol to produce acetyl-coA, to prioritize lipid
and protein synthesis (6, 17).

Targetingmitochondrial-dependentmetabolism is also an area
of intense interest (18). This has been fueled by the prospect of
repurposing an effective anti-type II diabetes drug,metformin, for
oncology applications (19, 20). Numerous studies have demon-
strated that metformin impairs cancer cell proliferation and
growth of diverse tumor types (21–24). The precise mechanism
of metformin action has been debated; however, recent studies
demonstrate thatmitochondrial complex I is the key target for this
drug (25, 26). Interestingly, complex I mutations, which are
frequently observed inmany cancers such as the breast, may serve
as biomarkers for increased metformin sensitivity (27). In addi-
tion to drugs that directly impair the electron transport chain,
strategies that target the biosynthetic and redox functions of
mitochondria may emerge as viable therapeutic paths for impair-
ing tumor growth (18).

Metabolic heterogeneity between tumor types
Cancer cells can display distinct metabolic features that are

characteristic of the tissue of origin (13). Indeed, lung, liver,
colorectal cancers, and leukemias rely heavily on glycolysis;
whereas, lymphomas, melanomas, and glioblastomas are char-
acterized as oxidative tumors (Table 1; refs. 13, 15, 28–36).

Table 1. Metabolic strategies that are prioritized by different solid cancers.

Cancer type Metabolic strategy References

Breast cancer ERþ: Glycolysis < OXPHOS (13, 37–42)
- Metabolic coupling with CAFs (Reverse Warburg effect)
- " MCT1, " LDH-A/B
- " Glutamine secretion, " glutamine synthesis (high GS)
TNBC: Glycolysis > OXPHOS
- " Glucose uptake, " GLUT1, " MCT4, " LDH-A/B
- " Glutamine uptake, # glutamine synthesis (low GS)
" Glutaminolysis

Prostate cancer Early-stage: Glycolysis < OXPHOS (13, 49, 51–54)
- Low glucose uptake
- Metabolic coupling with CAFs (Reverse Warburg effect)
- " FFAs synthesis (" FAS)
Late-stage: Glycolysis ¼ OXPHOS
- " MCT1, " LDH-A
- " Glucose uptake
- Metabolic coupling with CAFs (Reverse Warburg effect)
- " FFAs synthesis (" FAS)

Hepatocellular carcinoma Glycolysis > OXPHOS (13, 28–31)
- " Glycolysis, # neoglucogenesis, # glycogenesis
- " Glycolytic enzymes (HK2, G6PD, PKM2)
- " GLUT1
- " Glutamine synthesis (" GS)
- " FFAs synthesis (" FAS)

Colorectal cancer Glycolysis > OXPHOS (32–36)
- " GLUT1, LDH-A, HK1, PKM2
- "" LDH-A for CRC tumors with liver metastases
(trend for the other enzymes)

- " Glutaminolysis (" GLS1)
- " FFAs synthesis (" FAS)

Abbreviations: CRC, colorectal cancer; FAS, fatty acid synthase; FFA, free fatty acid; G6PD, glucose-6-phosphate dehydrogenase; GLS, glutaminase; GLUT, glucose
transporter; GS, glutamine synthetase; HK, hexokinase; LDH, lactate dehydrogenase; MCT, monocarboxylate transporter; PKM2, pyruvate kinase M2 isoform; TNBC,
triple-negative breast cancer.

Lehu�ed�e et al.

Cancer Res; 76(18) September 15, 2016 Cancer Research5202

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/76/18/5201/2740448/5201.pdf by guest on 26 August 2022



Interestingly, recent evidence indicates that tumor cell subtypes
within aparticular typeof cancer can also adopt distinctmetabolic
strategies. For example, triple-negative breast cancers (TNBC)
typically exhibit a classical Warburg-like phenotype, while estro-
gen receptor–positive breast cancers may rely onOXPHOS (Table
1; refs. 13, 37–42). Accumulating evidence reveals that high
glycolytic rates are associated with increased proliferation index
in TNBCs (43), and that activation of oxidative metabolism in
TNBCs can reduce both primary tumor growth and the formation
ofmetastases (44). Recent work has demonstrated that tumor cell
metabolic profiles can differ depending on theirmetastatic poten-
tial. By analyzing the metabolic profiles of various breast cancer
cell lines that possess different metastatic abilities, we and others
have shown that both glycolysis and OXPHOS are increasingly
engaged as metastatic ability is acquired (45, 46).

In contrast to most tissues, normal prostatic epithelial cells
are highly dependent on glycolysis. During transformation to
early lesions, prostate cancer cells progressively switch toward
OXPHOS-dependent metabolism (47). Interestingly, prostate
cancer cells prioritize glycolytic metabolism during late stages of
cancer progression, rendering themsensitive to 2-DG(13, 48–54).
Thus, prostate cancer cells exhibit amixed phenotype, where both

glycolysis and OXPHOS are required for energy metabolism at
different stage of disease progression (Table 1; ref. 13). Glycolysis
and OXPHOS may be considered complementary strategies that
afford cancer cells maximum metabolic flexibility to deal with
changes in nutrient supply, the biosynthetic/energy demands of
the cell, and the immediate tumor microenvironment.

Metabolic heterogeneity within tumors
In the context of the primary tumor, spatiotemporal influences

such as oxygenation, pH, and the concentrations of glucose and
other metabolites can strongly reinforce metabolic heterogeneity.
Depending on their location within a growing tumor, cancer cell
subpopulationsmayadopt differentmetabolicprofiles tomaintain
bioenergetics. Hypoxia represents a major factor that determines
the metabolic status of tumor cells, and oxygen gradients within
tissues adjacent to blood vessels have been demonstrated. Hypoxia
promotes glycolysis through the stabilization of hypoxia-inducible
factor-1a (HIF-1a), leading to the upregulation of glucose trans-
porters and a variety of glycolytic enzymes (4). A model of "two
compartment" metabolism has been postulated, in which a
symbiotic relationship exists between cancer cells present in
an oxygenated microenvironment with those that exist in an
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Figure 1.

Tumor growth and progression to metastatic disease requires complex metabolic interactions with a variety of different cell types that comprise the primary tumor
and metastatic microenvironments. Breast cancer cells must engage distinct modes of cellular metabolism depending on the cellular and environmental
influences that they experience at each stage of disease progression, which contributes to a high degree of metabolic heterogeneity. Metabolic flexibility and
adaptation exhibited by cancer cells is critical for their ability to seed and colonize distinct metastatic microenvironments. ROS, reactive oxygen species;
TDF, tumor-derived factors; FFA, free fatty acids; CKB, creatinine kinase brain-type; BCAA, branched chain amino acids.
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adjacent hypoxic zone. In this model, a "glycolytic subpopu-
lation" of cancer cells exposed to hypoxia can release lactate
as a by-product, which serves as fuel for OXPHOS-dependent
metabolism within an "oxidative" cancer cell population (Fig. 1;
refs. 12, 55). This metabolic symbiosis may be controlled by the
differential expression of distinct lactate transporters such as the
monocarboxylate transporters, MCT1 and MCT4 (56). Hypoxic/
glycolytic cancer cells express high level of MCT4 that functions as
amajor lactate exporter, whereas oxygenated/aerobic cells express
MCT1, which promotes lactate uptake (2).

On the basis of the importance of MCT transporters as med-
iators of metabolic symbiosis, inhibition of MCT1 has been
proposed as an anticancer treatment. Inhibition ofMCT1 by CHC
(alpha-cyano-4-hydroxycinnamate) or depletion by siRNA-medi-
ated approaches reduces lactate uptake, induces a switch from
lactate-fueled respiration to glycolysis, and consequently blocks
metabolic symbiosis and tumor progression (55). The MCT1
inhibitor, AZD3965, is currently under clinical evaluation for
various advanced cancers (ClinicalTrials.gov, NCT01791595).
Interestingly, recent work has shown that MCT1 inhibition, in
cells that coexpressMCT1 andMCT4, decreases pyruvate export in
glycolytic breast cancer cells, promotes oxidativemetabolism, and
decreases the proliferation of tumor cells in vitro and in vivo,
suggesting an alternative lactate transport–independent role for
MCT1 as a pyruvate exporter (57). Thus, MCT1 inhibitors may
interfere with "two-compartment" metabolism by disrupting
metabolic symbiosis in heterogeneous tumors or impair tumor
growth of uniformly glycolytic tumors by forcing a shift towards
oxidative phosphorylation.

In addition, metabolic reprogramming is a key determinant
allowing cancer stem cells (CSC) to survive drastic changes in the
tumormicroenvironment andmaintain their unique self-renewal
abilities (2, 58, 59).

Metabolic coupling between cancer cells and the tumor stroma
Metabolic symbiosis is not restricted to interactions between

distinct cancer cell populations, but also extends to metabolic
crosstalk between the tumor and stroma. The stromal component
is mainly composed of cancer-associated fibroblasts (CAF), adap-
tive and innate immune cells, mesenchymal progenitor cells,
adipocytes, and endothelial cells that are situated within an
extracellular matrix, although this varies between tumor types
(60). A bidirectional interaction between cancer and stromal
cells supports tumor growth,metastasis, and therapeutic response
(e.g., chemoresistance, radioresistance) through the secretion of a
diverse repertoire of soluble and vesicle-associated factors (60).

The Reverse Warburg Effect
In 2009, Lisanti and colleagues proposed that tumor cells

promote the Warburg effect in neighboring CAFs, a process
referred to as the "Reverse Warburg effect" (61). Subsequently,
CAFs secrete energy-rich metabolites, such as ketone bodies,
lactate, and pyruvate, which in turn can be taken up by cancer
cells and oxidized in the mitochondria for energy production
(62). Accumulating evidence suggests that glycolytic CAFs pro-
mote tumor progression (63). Given the major role of CAFs in
tumor progression, the Reverse Warburg effect may represent an
important metabolic hallmark of CAFs.

In contrast to tumor cells, the increase in glycolysis within CAFs
is not associated with elevated proliferation of CAFs themselves,

but strongly promotes tumor growth andmetastasis (64). Lactate
secretion from CAFs induces a local acidic microenvironment,
which can enhance extracellular proteolysis and promotes the
acquisition of drug resistance by tumor cells (65). As with met-
abolic interactions between distinct tumor subpopulations, met-
abolic coupling betweenCAFs and cancer cells relies upon unique
MCT expression patterns within these compartments. Epithelial
cancer cells typically express high level of MCT1, thus promoting
the uptake of lactate from the MCT4-expressing CAFs (63, 66).
Interestingly, metabolic coupling between cancer cells and stro-
mal cells may occur in an opposite fashion. For example, in a
colorectal cancer model, metabolic symbiosis has been described
between oxidative stromal fibroblasts and glycolytic cancer
cells (67).

Cancer Cells Interact Metabolically with
Multiple Stromal Cell Types

While the paradigm ofmetabolic coupling between tumor and
stroma has been the most extensively studied with CAFs, other
stromal cells types may engage in a similar fashion with the
growing tumor. In response to tumor-derived factors, adipocytes
release free fatty acids through lipolysis, which can be directly
taken up by cancer cells to sustain tumor growth via b-oxidation
(68). Metabolic reprogramming in cancer cells can alsomodulate
the functions of infiltrating immune cells, thereby leading to
tumor progression (69). Recent studies suggest that altered energy
metabolism in tumor-associated macrophages (TAM) can lead to
distinct polarization states of these inflammatory cells. M1 (anti-
tumor)macrophages preferentially engage glycolysis, whereasM2
macrophages (protumor) predominantly rely on OXPHOS (70).
Cancer cells can also blunt antitumor T-cell responses by out-
competing cytotoxic tumor-infiltrating lymphocytes (TIL) for
available glucose, effectively creating an immunosuppressive
environment through starvation of TILs, which favors tumor
growth (71, 72). Thus, metabolic reprogramming in stromal
cells can support a symbiotic relationship between cancer and
the microenvironment that fuels tumor growth and metastasis
(Fig. 1).

Metabolic Plasticity during Metastasis
The majority of cancer-related deaths result from the spread of

cancer cells from the primary tumor to a distant site of metastasis.
The metastatic cascade is divided into distinct steps that include:
(i) the acquisition of migratory and invasive abilities in the
primary tumor, (ii) intravasation of cancer cells into the blood-
stream, (iii) extravasation of cancer cells into the parenchyma of a
distant organ or tissue, and (iv) cancer cell survival and prolifer-
ation to form macrometastases (73). This traditional view of the
metastatic process is known as the "linear progression model" of
metastasis. In contrast, an alternate hypothesis, referred to as the
"parallel progression model," has been proposed that argues
metastatic dissemination is an early event during tumor progres-
sion (74, 75). In accordance with this model, recent genomic
studies of matched primary tumors and metastases suggest inde-
pendent evolution (76, 77). Interestingly, the study of chemically
induced skin tumors and metastases suggest that commonmuta-
tions have an A-to-T signature indicative of the carcinogen while
nonshared mutations are G-to-T transitions that signify exposure
to oxidative stress (76). Accumulating evidence suggests that
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disseminating cancer cells undergo profound metabolic repro-
gramming during the discrete steps to successfully metastasize. It
is conceivable that these metabolic changes are selected by the
pressures exerted on tumor cells by the metastatic microenviron-
ment, which enables the emergence of distinct subpopulations
that appear genomically distinct from the primary tumor. Alter-
natively, it is also possible that thesemetabolic stressesmay shape
the genomic evolution of disseminated cancer cells, resulting in
parallel progression that is divergent from the primary tumor.

Transient metabolic changes during metastasis
A reversible epithelial-to-mesenchymal transition (EMT) is one

mechanism that enhances the migratory and metastatic pheno-
types of cancer cells (78). Recentworkhasdemonstrated that breast
cancer cells undergoing EMT exhibit enhanced glycolytic metab-
olism associatedwith suppression of anabolicmetabolic pathways
(Fig. 1; ref. 79). Another group identified a specific metabolic
signature associated with the EMT process in breast cancer cells,
which was associated with poor overall survival in breast cancer
patients (80). In contrast, invasive breast cancer cells exhibit a shift
toward OXPHOS metabolism, via a pathway dependent on the
transcriptional coactivator, PGC-1a (peroxisome proliferator-acti-
vated receptor gamma coactivator-1a), which is a key regulator of
mitochondrial biogenesis andmetabolism. Clinical data have also
correlated PGC-1a expression with invasive breast cancers and
formation of distant metastases (81). PGC-1a confers cellular
protection from oxidative stress (82), and its engagement may
protect circulating cancer cells from apoptosis. Consistent with
these findings, metastatic melanoma cells have been shown to
undergo reversible metabolic changes, marked by elevated expres-
sion of key enzymes within the folate pathway. Engagement of the
folate pathwaymanages oxidative stress through the production of
NADPH, which enhances the ability of melanoma cells to with-
stand oxidative stress and colonize distinct metastatic sites (83).
Circulating cancer cells isolated from the bloodstream preferen-
tially engage OXPHOS-dependent metabolism when compared
with the primary tumor or lungmetastases, reinforcing the concept
ofmetabolic plasticity of the cancer cells duringdiscrete steps of the
metastatic process (Fig. 1; ref. 81).

Distinct metastatic microenvironments select for specific
modes of cancer cell metabolism

Metabolic characterization of breast cancer cells has revealed
distinctmetabolic profiles as cells gainmetastatic potential. A shift
toward aerobic glycolysis is observed in tumorigenic but non-
metastatic breast cancer cells compared with normal mammary
epithelial cells, and the acquisition of metastatic phenotypes is
associated with further changes in both glycolytic and OXPHOS
metabolites (84). OXPHOS and increased mitochondrial metab-
olism have also been shown to be required for the metastatic
phenotype (81, 85). We recently demonstrated that highly met-
astatic breast cancer cells enhance their metastatic fitness by
engaging both OXPHOS and glycolysis as metabolic strategies,
and that distinct metabolic profiles may dictate metastatic fitness
to distinct organ sites. Using organ-selective breast cancer variants
obtained by in vivo selection, we have demonstrated that meta-
static breast tumor cells differentially engage distinct metabolic
strategies depending on their metastatic site. Breast cancer cells
isolated from bone or lung metastases preferentially engage
OXPHOS, compared with liver-metastatic breast cancer cells that
prioritize glycolysis (45). The unique metabolic profile of liver-

metastatic breast cancer cells was associated with engagement of
HIF-1a- and pyruvate dehydrogenase kinase1 (PDK1)-dependent
pathways. PDK1, which inhibits PDH (pyruvate dehydrogenase)
to prevent the conversion of pyruvate to acetyl-coA, is specifically
required to efficiently promote the formation of liver metastases,
and is highly expressed in liver metastases from human breast
cancer patients. Finally, in contrast to theprimary tumor, silencing
PDK1 in liver-metastatic breast cancer cells induces a dramatic
reduction in liver metastatic burden (45). These results raise the
idea that particular metabolic programs may better equip meta-
static breast cancer cells to survive and colonize distinctmetastatic
microenvironments (Fig. 1).

These data highlight PDK1 as a therapeutic target for meta-
static breast cancer. Dichloroacetate (DCA), a structural ana-
logue of pyruvate, represents the most-studied agent capable of
inhibiting PDK activity (86). DCA-mediated PDK inhibition
allows entry of pyruvate into the TCA cycle, restoration of
oxidative phosphorylation in cancer cells, and diminishes
metastasis (87–89). The efficacy of DCA as a cancer therapy is
under clinical evaluation in various models, including treat-
ment-refractory metastatic breast cancer (90). However, DCA
suffers from some drawbacks as a therapeutic agent, such as low
potency/selectivity and poor pharmacokinetics (91). The poten-
tial of PDK family members as therapeutic targets has prompted
considerable interest in developing specific inhibitors against
these enzymes (91–93).

Metabolic Adaptations of Tumor and
Stroma within Unique Metastatic
Microenvironments

On the basis of the tenets of the "seed and soil" hypothesis first
proposed by Stephen Paget, once metastatic tumor cells extrav-
asate into a foreign tissue, their ability to successfully colonize and
grow depends on their ability to influence and respond to their
new microenvironment. Thus, the efficient formation of metas-
tases is largely determined by the compatibility between tumor
cells and the metastatic microenvironment in which they seed
(94). Emerging studies support the idea that specific metastatic
microenvironments are associated with unique metabolic char-
acteristics of the metastatic cancer cells.

Metabolic adaptation of disseminated cancer cells to unique
metastatic microenvironments

Metabolic adaptation by cancer cells to specific metastatic sites
is best exemplified by the recent studies of brain metastases. The
brain possesses unique metabolic characteristics with respect to
glucose availability, such as metabolic coupling between astro-
cytes and neurons, commonly referred to as the "lactate shuttle."
In this scenario, lactate secreted by astrocytes is taken up by
neurons to fuel OXPHOS-dependent metabolism (2). Thus, as
a consequence of the lactate shuttle, available glucose concentra-
tions are variable and may be growth limiting for brain metas-
tases. However, the brain interstitial space contains high levels of
glutamine and branched chain amino acids, which can serve as
alternate energy substrates to fuel the growth of metastatic breast
cancer cells seeding the brain (95). Brain metastases may also
adapt to limiting glucose levels by oxidizing acetate in the TCA
cycle (96).

Recently, it was demonstrated that metastatic colorectal cancer
cells reprogram hepatocyte-derived metabolites to enable the
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successful colonization and formation of liver metastases (97).
miR-551 and miR-483 were identified as suppressors of efficient
colorectal cancer liver metastasis through their ability to inhibit
the expression of creatinine kinase brain-type. This enzyme, when
released by metastatic cells, phosphorylates liver-derived creatine
to produce phosphocreatine, which is subsequently imported
into the metastatic colorectal cancer cells to generate ATP (97).
Thus, disseminated cancer cells can adopt strategies to utilize
metabolites present within the microenvironment to survive the
metabolic stresses encountered during seeding and successful
colonization of a foreign metastatic site (Fig. 1).

Cancer cells influence the metabolism of stromal cells within
different metastatic sites

Cancer cells not only respond to the foreignmicroenvironment
in which they seed, but they can also influence the metabolism of
stromal cells. Tumor-derived exosomes, which are derived from
the endocytic pathway, represent emerging effectors of intercel-
lular communication between cancer cells and their microenvi-
ronment (98). Recent work demonstrated that breast cancer–
derived vesicles can suppress glucose uptake by niche cells in
common metastatic sites, including lung fibroblasts and astro-
cytes, to allow preferential glucose uptake by metastatic breast
cancer cells (99). These vesicles were found to contain high miR-
122 levels, which suppresses glucose uptake by stromal cells by
downregulating glycolytic enzymes such as pyruvate kinase (99).
These observations suggest that reprogramming the metabolism
of stromal cells in the tumor microenvironment is an active
process initiated by cancer cells to favor their own growth (Fig. 1).

Conclusions
Accumulating evidence has highlighted the diversity of meta-

bolic strategies adopted by cancer cells, and the metabolic inter-

play between distinct cancer cell populations within the tumor
and between the tumor and stroma. In addition to aerobic
glycolysis, metastatic tumor cells can engage complementary
metabolic strategies such as OXPHOS for maximum metabolic
flexibility, which allows cancer cells to respond to rapidly chang-
ingmetabolic demands and/or conditions. Emerging data suggest
that metabolic reprogramming is required during metastatic
dissemination and is critical for efficient colonization of distant
sites. Depending on the specific site of metastasis, metastatic
cancer cells differentially engage distinct metabolic programs to
ensure their survival. One future challenge is to better understand
how tumor cells maximize available resources by remodeling the
tumor microenvironment (e.g. CAFs, macrophages, adipocytes)
to sustain their survival and proliferation. Understanding the
mechanisms underlying critical metabolic adaptations made by
metastatic cancer cells and defining key metabolic codependen-
cies between cancer cells and the surrounding stroma may afford
new approaches to clinically manage metastatic disease.
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