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Metabolic prediction of important 
agronomic traits in hybrid rice 
(Oryza sativa L.)
Zhiwu Dan1,2, Jun Hu1,2, Wei Zhou1,2, Guoxin Yao1,2, Renshan Zhu1,2, Yingguo Zhu1,2 & 

Wenchao Huang1,2

Hybrid crops have contributed greatly to improvements in global food and fodder production over 

the past several decades. Nevertheless, the growing population and changing climate have produced 

food crises and energy shortages. Breeding new elite hybrid varieties is currently an urgent task, 

but present breeding procedures are time-consuming and labour-intensive. In this study, parental 

metabolic information was utilized to predict three polygenic traits in hybrid rice. A complete diallel 

cross population consisting of eighteen rice inbred lines was constructed, and the hybrids’ plant height, 

heading date and grain yield per plant were predicted using 525 metabolites. Metabolic prediction 
models were built using the partial least square regression method, with predictive abilities ranging 

from 0.858 to 0.977 for the hybrid phenotypes, relative heterosis, and specific combining ability. Only 
slight changes in predictive ability were observed between hybrid populations, and nearly no changes 

were detected between reciprocal hybrids. The outcomes of prediction of the three highly polygenic 

traits demonstrated that metabolic prediction was an accurate (high predictive abilities) and efficient 
(unaffected by population genetic structures) strategy for screening promising superior hybrid rice. 
Exploitation of this pre-hybridization strategy may contribute to rice production improvement and 

accelerate breeding programs.

�e continuously growing global population and changing climate have pushed crop breeders to �nd e�ective 
breeding strategies for meeting food and energy demands. Although hybrid crops have made tremendous contri-
butions to yield improvements over the past several decades, breeding new elite hybrid combinations is urgently 
required to guarantee food security. Quantitative hybridization trials and hybrid performance evaluation, which 
are time-consuming and laborious, form the foundation of present hybrid breeding programs. Breeding proce-
dures are even tougher for self-pollinated plants such as rice and wheat compared with cross-pollinated plants.

Prediction of hybrid performance based on parental information appears to be a practicable method to 
increase breeding efficiency. However, parental phenotypes have exhibited low accuracy for the prediction 
of hybrid performance1,2. Additionally, isozymes have proven to be unreliable for the prediction of F1 yields 
and heterosis3. �en, parental genetic distances based on AFLP (Predictive abilities: 0–0.97, 0.161–0.699 and 
0.06–0.8, respectively)4–6, InDel (0.049–0.21)7, RAPD (0.069–0.785)8, RFLP (− 0.028–0.773)9, SNP (0.26–0.56 
and 0.3–0.46)1,10, and SSR (0.06–0.82, 0.069–0.785, and − 0.028–0.773, respectively)6,8,9 DNA markers have been 
widely used to predict hybrid phenotypes, heterosis or combing ability in maize (Zea Mays L.)5,6,10, rice (Oryza 
Sativa L.)7–9, sun�owers (Helianthus annuus L.)4, and Arabidopsis thaliana1. Some prediction methods based on 
DNA markers produced no signi�cant correlation or low predictive ability between parental genetic distance 
and hybrid performance9,10. Meanwhile, DNA markers were found to be appropriate for the prediction of spe-
ci�c traits5,6,9 and had high predictive ability for populations consisting of genetically related parental lines4,8. 
Additionally, parental transcriptome-based predictions of hybrids showed high predictive ability for intra-pool 
crosses but not inter-pool crosses11. Generally speaking, although various types of biomarkers, populations and 
mathematical models have been tested in various species, problems of low predictive ability or limited applica-
tion ranges of the prediction approaches remain. And worldwide, numerous studies of hybridization are still 
performed every year.
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�e metabolome has manifested potential roles in facilitating crop breeding strategies over the past dec-
ades12,13. �e results from a tomato IL population showed that 73% of the total analysed metabolites were sig-
ni�cantly associated with the whole-plant phenotypes14. Arabidopsis thaliana biomass could be described as a 
function of metabolic compositions with high predictive power15–17. Moreover, metabolite pro�ling of a rice 
recombinant inbred line population and diverse accessions showed promise in bridging the gap between the 
genome and phenome18,19. Importantly, parental metabolites as biomarkers have been tested for the prediction of 
traits such as yield in maize20, biomass and tolerance in Arabidopsis thaliana21,22 and postharvest quality traits in 
potatoes (Solanum tuberosum L.)23.

In the present study, a complete diallel cross population was built with eighteen rice inbred lines as the parents. 
�ree polygenic traits—yield per plant, heading date and maturation stage plant height—were predicted in the 
hybrids using 525 metabolites with the partial least square regression method. �e predictive abilities ranged 
from 0.858 to 0.977 for the three traits. �e population structure and cytoplasmic e�ects had slight in�uences on 
the predictive ability.

Results
Population structure and hybrid performance. Eighteen rice inbred lines were chosen as parental lines 
for the complete diallel cross design (see Supplementary Table S1). All the parental lines were divided into equal 
indica (Fi values from 0.39 to 1) and japonica (Fi values from 0 to 0.33) groups based on the InDel marker estimat-
ing method (see Supplementary Table S1)24. Principal component analysis (PCA) was also applied to the paren-
tal phenotypic and metabolic data to discriminate between the parental lines. PCA of the parental phenotypic 
performance showed that three indica varieties were divided into the japonica group and three japonica varieties 
were in the indica group (Fig. 1a). At the metabolic level, a total of 525 analytes were detected in all eighteen 
inbred lines. Unexpectedly, PCA for the parental metabolic parameters produced a similar grouping result as the 
consequences of the InDel markers and was also highly similar to the dendrogram (Fig. 1b,c).

Three important agronomic traits were measured: yield per plant (YPP), maturation stage plant height 
(MSPH), and heading date (HD). Prior to the analysis, the hybrids were divided into an indica-indica group 
(i-group), a japonica-japonica group (j-group) and an indica-japonica group (ij-group) based on the group to 
which the corresponding parental lines belonged. For the hybrid phenotypes (trait values per se), the highest 
mean YPP was in the i-group, the lowest was in the j-group, and the ij-group was between the i- and j-group 
(Fig. 1d). For MSPH and HD, the highest means were observed for the ij-group, which was consistent with the 
phenomenon that hybridization between inter-subspeci�c rice has stronger biomass heterosis (increased plant 
height) and a later heading date. Box plots depicting the relative low-parent heterosis (LPH), mid-parent het-
erosis (MPH), better-parent heterosis (BPH) and speci�c combining ability (SCA) for the three traits are shown 
in Supplementary Fig. S1a,b. For YPP, the hybrid trait values per se had the closest relationship with SCA (see 
Supplementary Table S2). Trait values of MSPH per se had the closest relationship with BPH, and HD was most 
closely associated with MPH.

Predictions of hybrid performance based on parental traits and genetic distance. First, the sum 
trait values of the parents (sum), the di�erences between the parents (di�erence) and the ratios of the parents 
(ratio) were used as predictive variables. �e highest correlation coe�cient (0.714) was obtained between the HD 
and the sum values of the parents (see Supplementary Table S3). A�er performing linear regression analysis of 
the sum HD values of the parents and the hybrid HD values, the predicted HD values and measured true values 
displayed dramatic deviances (see Supplementary Fig. S2). �erefore, the parental traits were not appropriate for 
the prediction of hybrid performance.

Second, to evaluate whether genetic distance based on parental metabolic data was suitable for predicting 
hybrid performance, squared Euclidean distances based on all 525 analytes were calculated to analyse the corre-
lations (see Supplementary Table S4). �e Pearson correlation coe�cients between genetic distance and hybrid 
performance shown in Supplementary Table S5 suggested that, although genetic distance was signi�cantly corre-
lated with some traits (such as YPP and MSPH), the predictive abilities were quite low, and some traits were not 
closely correlated with genetic distance.

Stepwise linear regression and partial least square (PLS) regression with metabolic data and 
hybrid performance. Next, the sums, di�erences and ratios of the parents’ relative metabolite levels were 
calculated, and stepwise linear regression was used to identify the appropriate metabolic predictors. �e adjusted 
R2 values in Supplementary Table S6 shows that the highest value was 0.677 for HD, while no metabolite could be 
used for the regression of traits such as SCA-YPP. Furthermore, the predictive abilities of di�erent traits varied 
widely, and they were not su�ciently high for most traits.

�en, partial least square regression was used to create a prediction model with metabolic data of the three 
traits. In Fig. 2a, 17 latent factors were extracted for all the traits using the sums and di�erences of the parents’ 
relative metabolite levels as variables. Unfortunately, the highest R2 value obtained was 0.6, and some hybrid traits 
could not be predicted using these parental variables.

Surprisingly, however, high R2 values were obtained when the ratios of parental metabolic data were used as 
predictive variables (Fig. 2b). For this analysis, 104 to 107 latent factors were extracted from the metabolic data; 
most of the traits exhibited the highest R2 values at approximately 50 latent factors. �en, the number of latent 
factors at the top R2 value for each trait was �xed to obtain the values of variable importance in the projection 
(VIP) of each variable. Because Latent Factor 1 explained the largest proportion of the variance, the VIP values 
of Latent Factor 1 were reordered to reduce the number of variables. A�er excluding variables whose VIP values 
were smaller than 1, the remaining variables were used for PLS regression. Finally, although more than 300 var-
iables were excluded from the regression model, and only slight decreases were observed in R2 values compared 
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with the values obtained using all 525 metabolites (Table 1). Among the 15 predicted traits, LPH-YPP used the 
fewest (149) variables and LPH-HD used the most variables (196).

Considering that 149–196 is still a quite large number of variables and might result in over�tting22, the VIP 
values of each variable were reordered again in the PLS regression model to minimize the amount of variables. 
Unfortunately, the R2 values decreased dramatically.

Metabolic prediction of agronomic traits by PLS regression. �e coe�cient of each variable in the 
PLS regression results was used to build the equations (see Supplementary Table S7). �en, a predicted value was 
assigned for every trait in each hybrid. �e relationship between the observed YPP (Fig. 3a), MPH-YPP (Fig. 3b), 
BPH-YPP (Fig. 3c), and SCA-YPP (Fig. 3d) values and the predicted values demonstrated the high accuracy for 
this metabolite-based prediction method. �e lowest predictive ability was 0.858 with SCA-YPP and the highest 
was 0.924 with YPP. High predictive abilities were also achieved through the PLS regression approach for the 
remaining traits (Table 2).

Because the complete diallel cross population consisted of rice inbred lines ranging from typical indica to typ-
ical japonica, the predictive abilities might vary with di�erent hybridization groups. �us, the predictive abilities 
for the i-group, j-group and ij-group were calculated to validate the stability of the prediction model (Table 2). As 
shown in Fig. 4a,b, the predictive abilities of YPP in the i-group and j-group were 0.849 and 0.806, respectively. 
Surprisingly, the predictive ability of the ij-group was as high as 0.948 (Fig. 4c). Moreover, the predictive abilities 
of relative heterosis and SCA of YPP were all the highest for the ij-group, thereby showing a promising approach 
for exploiting inter-subspeci�c heterosis25.

Figure 1. Population structure and hybrid phenotypes in three sub-groups. (a) Principal component 
analysis (PCA) of the eighteen rice inbred lines with data for three agronomic traits. �ree indica varieties were 
grouped into the japonica group, and three japonica varieties were grouped into the indica group. Red circles 
indicate japonica varieties, and blue circles indicate indica varieties. Solid green lines represent the zero values 
for each component. (b) PCA of the eighteen inbred lines with metabolite pro�ling data. All 525 analytes were 
used in the PCA. Two indica varieties were grouped into the japonica group. (c) Dendrogram of the eighteen 
inbred lines. All eighteen inbred lines were divided into two clear groups. Consistent with the grouping result in 
(b), only two indica varieties were in the japonica group. �e red solid box indicates the japonica group, and the 
green solid box indicates the indica group. (d) Hybrid phenotypes in three subgroups. �e yield per plant (YPP), 
maturation stage plant height (MSPH) and heading date (HD) were evaluated.
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Finally, the cytoplasm from the reciprocal parental lines might have di�erent in�uences on hybrid perfor-
mance; these di�erences might be obstacles to applying the metabolic prediction strategy in screening for poten-
tial sterile and restorer lines. Hence, the whole population was divided into two sets of reciprocal hybrids to test 
whether cytoplasmic e�ects a�ected the predictive ability. �e results demonstrated that di�erent cytoplasms had 
weak in�uences on the predictive ability (see Fig. 4d,e and Supplementary Table S8).

Discussion
Accuracy and e�ciency are two pivotal indicators for the application of a biotechnology-assisted prediction 
model in breeding. Because predictive ability might be heavily in�uenced in populations consisting of genetically 
distant lines4,11; therefore, assessing whether a prediction model is appropriate is largely determined by its pre-
dictive abilities in di�erent genetic structures. To avoid incomplete bias prediction, the predictive model should 
be built on representative inbred lines. In addition, the richer the information on these inbred lines, the higher 
the potential accuracy of the model. In this experiment, eighteen rice inbred lines were used to build a prediction 
model. �ese lines were collected from a wide range of locations (China, Italy and India) and possessed di�erent 
degrees of indica or japonica contents and variable general combining abilities (see Supplementary Table S1).  

Figure 2. Relationships between PLS latent numbers and R2 values. (a) Sums and di�erences between 
parental relative metabolite levels were used as predictive variables for the hybrid phenotypes, relative heterosis 
and speci�c combining ability in PLS regression. �e R2 values varied largely between di�erent traits. (b) Ratios 
of parental relative metabolite levels were used for hybrid performance prediction. R2 values of most traits were 
highest (above 0.8) at approximately 50 latents. YPP =  Yield per plant, MSPH =  Maturation stage plant height, 
HD =  Heading date, LPH =  Low-parent heterosis, MPH =  Mid-parent heterosis, BPH =  better-parent heterosis, 
SCA =  Speci�c combining ability.

Traits
Latent 

number* R2
Variable 
number

Latent 
number† R2

YPP 52 0.824 184 70 0.807

MSPH 51 0.890 161 77 0.871

HD 57 0.944 193 78 0.938

LPH-YPP 49 0.860 149 66 0.828

LPH-MSPH 52 0.893 181 66 0.884

LPH-HD 54 0.916 196 78 0.905

MPH-YPP 51 0.814 162 68 0.784

MPH-MSPH 49 0.855 181 73 0.838

MPH-HD 53 0.896 182 72 0.884

BPH-YPP 52 0.829 166 69 0.810

BPH-MSPH 52 0.887 164 78 0.869

BPH-HD 55 0.905 178 73 0.896

SCA-YPP 48 0.691 183 64 0.661

SCA-MSPH 50 0.758 159 79 0.704

SCA-HD 53 0.861 171 76 0.844

Table 1.  R2 values of PLS regression with all 525 variables and with variables with VIP values larger than 1.  
*Latent number for di�erent traits of PLS analysis with all 525 variables. †Latent number for di�erent traits of 
PLS analysis with variables with VIP values larger than 1. YPP =  Yield per plant, MSPH =  Maturation stage 
plant height, HD =  Heading date, LPH =  Relative low-parent heterosis, MPH =  Relative mid-parent heterosis, 
BPH =  Relative better-parent heterosis, SCA =  Speci�c combining ability.
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To some extent, they represented a large range of rice accessions that were suitable for building the prediction 
model. �erefore, this model may also be applicable to rice inbred lines that were not included in this experiment.

�e relationship between parental metabolite pro�ling and hybrid performance should be nonlinear26 and 
was treated as a megavariate quantitative structure-activity relationship in this study27. Because of its power-
ful multi-dimensional information regression ability, partial least squares projections to latent structures28 were 
applied to build the hybrid trait prediction model. Meanwhile, because cross-validation is built into the PLS 
algorithms27, the predictive signi�cance is assessed and predictive abilities can be insured for every trait. In 
addition, taking advantage of the values of variable importance in the projection, the low contribution variables 
were excluded and the representative variables were reserved for the equations22. �e high predictive abilities  
(0.858–0.977) in Table 2 demonstrate that PLS matched the metabolic prediction model quite well.

Metabolites have close connections with phenotypes14,17,19. Before determining the exact function of a 
metabolite, correlation analysis between the relative metabolite levels and phenotypes can be used as a type of 
rough estimating method29. In this study, di�erent groups of metabolites were exploited to predict various traits. 
Because speci�c metabolites may have single or multiple functions in di�erent pathways, metabolites such as 
saccharic acid, p-Cresol, and triacontanoic acid methyl ester were found to be predictive variables for two or 
more traits (see Supplementary Table S9). Di�erent correlation levels were detected for the metabolites that were 
predictive variables for all three traits (see Supplementary Table S10). Some of these overlapping metabolites 
manifested signi�cant positive and negative correlations with di�erent traits, which might be the origin of the 
balance between component traits30 or outcomes of feedback regulation of the biological networks involved in 
complex traits31. Meanwhile, only a single value was used to represent reciprocal hybrids when calculating the 
ratios of relative parental metabolite levels. Ignorance of the relationship between the female parent and male par-
ent might decrease the predictive abilities for the reciprocal hybrids. However, almost no predictive ability change 

Figure 3. Observed and predicted values of YPP, MPH-YPP, BPH-YPP, and SCA-YPP. (a) Relationships 
between observed yield per plant and predicted yield per plant. Predicted values were calculated with the 
equations based on variable coe�cients in the PLS regression results. �e horizontal axis represents the 
observed values, and the vertical axis represents the predicted values. �e green solid line represents the total �t 
line, and the black dotted line is y =  x. (b–d) Relationships between the observed relative mid-parent heterosis, 
better-parent heterosis, speci�c combining ability of YPP and the corresponding predicted values. YPP =  Yield 
per plant, LPH =  Low-parent heterosis, MPH =  Mid-parent heterosis, BPH =  better-parent heterosis, 
SCA =  Speci�c combining ability.



www.nature.com/scientificreports/

6Scientific RepoRts | 6:21732 | DOI: 10.1038/srep21732

was found between the reciprocal hybrids. �erefore, close balances might exist between metabolites and their 
associations might be controlled by the rules of chemistry26. �e in�uences of the complex associations between 
metabolites on the hybrid trait prediction model remain unknown.

Nevertheless, predictable metabolites in the prediction model might simply have high predictive abilities for 
the traits. �erefore, biological functions of the predictive variables in this study were analysed to verify their 
contributions to the prediction model. Fructose (a predictive variable for yield per plant and maturation stage 
plant height) contributes strongly to the metabolic e�ciency of rosette fresh weight and protein concentration in 
Arabidopsis29. Ferulic acid, a phenolamide32, plays an important role in plant development33 and is a predictive 
variable for plant height. Spermidine (a predictive variable for heading date and yield per plant) is associated with 
�oral induction and development33,34. Furthermore, signi�cant correlations have been found between alanine 
and biomass or yield-related traits in Arabidopsis35 and tomatoes14. Hence, our results demonstrate that the high 
predictive abilities for the three traits were not merely coincidental.

However, the metabolic prediction model might not be directly applicable to other breeding programs. In 
this study, metabolite pro�ling of 15-day-old seedlings of the parental lines was chosen to provide the predic-
tors for hybrid traits. �us, the metabolite pro�ling data were only a snapshot of the whole plant growth proce-
dure. However, plant metabolism is a highly dynamic system that changes substantially over time20,36. �erefore, 
although high predictive abilities for three agronomic traits were obtained in this study, the metabolite pro�ling 
data presented here might be unsuitable for traits such as grain number per panicle or tiller number per plant. 
�erefore, the appropriate time points must be adapted when forecasting other polygenic traits from assembled 
metabolite pro�ling data.

Furthermore, the performance of a plant in nature is the consequence of the combination of genetic informa-
tion and environmental in�uences; thus, the e�ects of environmental inputs on metabolome-assisted breeding 
strategies might need to be taken into account26. Metabolite pro�ling data of naturally growing parental seedlings 
in a speci�c �eld environment should be more accurate for the prediction of hybrid performances in correspond-
ing locations.

In summary, a reliable and e�cient metabolic prediction strategy was provided by combining parental metab-
olite pro�ling with a PLS regression method for rice hybrids. �e high predictive abilities for three agronomic 
traits were implemented with respect to hybrid phenotypes, relative heterosis and speci�c combining ability. �e 
predictive abilities for the three traits were only slightly in�uenced by population structures (genetic relatedness) 
or cytoplasmic e�ects. Additionally, metabolite-based prediction might be more suitable for traits such as resist-
ance (susceptibility) or tolerance ability21,23,37 because small molecules function more directly in these defence 
processes by confronting biotic/abiotic pressures.

Methods
Plant materials. �e eighteen rice inbred lines were selected based on their proportions of indica-japonica 
content using the InDel marker estimation method24. A complete diallel cross design was used. All the hybrid 
seeds were produced through manual emasculation at the Hybrid Rice Hainan Experimental Base of Wuhan 
University in Lingshui (N18° 30′  22.12″ , E110° 2′  10.72″ ), Hainan Province, China, in 2012. Seedlings of the 
eighteen inbred lines and 306 hybrids were planted with a randomized block design in three replicates at the 
Hybrid Rice Ezhou Experimental Base of Wuhan University in Ezhou (N30° 22′  19.82″ , E114° 44′  59.17″ ), Hubei 
Province, China, in June 2012. Ten plants were planted per row with a spacing of 16.5 ×  26.4 cm. Four cytoplasmic 
male-sterile plants (named YTA) were planted around these experimental plants to decrease marginal e�ects. �e 

Traits
Whole 

population i-group j-group ij-group

YPP 0.924 0.849 0.806 0.948

MSPH 0.951 0.911 0.901 0.956

HD 0.977 0.987 0.937 0.977

LPH-YPP 0.931 0.927 0.906 0.940

LPH-MSPH 0.954 0.931 0.897 0.965

LPH-HD 0.964 0.963 0.894 0.968

MPH-YPP 0.921 0.883 0.911 0.940

MPH-MSPH 0.938 0.933 0.856 0.948

MPH-HD 0.954 0.963 0.838 0.957

BPH-YPP 0.916 0.848 0.926 0.935

BPH-MSPH 0.949 0.933 0.904 0.949

BPH-HD 0.931 0.953 0.948 0.913

SCA-YPP 0.858 0.783 0.873 0.898

SCA-MSPH 0.885 0.940 0.736 0.868

SCA-HD 0.940 0.963 0.916 0.927

Table 2. Predictive abilities of the whole population and three subgroups for the three polygenic traits. 
YPP =  Yield per plant, MSPH =  Maturation stage plant height, HD =  Heading date, LPH =  Relative low-
parent heterosis, MPH =  Relative mid-parent heterosis, BPH =  Relative better-parent heterosis, SCA =  Speci�c 
combining ability.
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middle �ve plants of each replicate were chosen for data collection. �ree agronomic traits were evaluated: grain 
yield per plant, heading date and maturation stage plant height. Means among the replications were calculated for 
each trait and used in the data analysis.

For metabolite pro�ling analysis, seeds of the eighteen rice inbred lines were �rst submerged in water for two 
days at 28 °C. �en, the seeds were placed in an incubator at 28 °C for 24 h to accelerate germination. Next, seed-
lings at approximately the same stage were transferred to soil containers. �ree random replicates were applied for 
each inbred line; the spacing between seedlings was 2 ×  2 cm. Finally, all the seedlings were placed in a phytotron 
with a temperature of 28 °C, 70% relative humidity and an 8 h light/16 h dark photoperiod. On day 15, 100 mg 
of the seedlings (root excluded) were collected into 2 ml EP tubes for each replicate and immediately frozen in 
liquid nitrogen.

Gas chromatography mass spectrometry–based metabolite profiling. For each sample, 0.4 ml of 
methanol-chloroform (Vmethanol:Vchloroform =  3:1) and 20 µ l of ribitol (0.2 mg/ml stock in dH2O, Sigma-Aldrich Co. 
LLC., USA) were added as internal standards. A�er vortex mixing for 10 s, steel balls were placed into EP tubes 
and the samples were homogenized with a ball mill (JXFSTPRP-24, Shanghai Jingxin Experimental Technology, 
Shanghai, China) for 5 min at 55 Hz. �en, the samples were centrifuged for 15 min at 12,000 rpm at 4 °C. �e 
supernatant (approximately 0.4 ml) was transferred to a new 2 ml GC/MS glass vial. An equal volume of approx-
imately 13 µ l (based on the number of samples) from each sample was transferred into a new 2 ml GC/MS glass 
vial as a mixed sample for quality control. �en, the extracts were dried in a vacuum concentrator without heating 
at 30 °C for approximately 1.5 h. Next, 80 µ l of methoxymethyl amine salt (dissolved in pyridine, �nal concen-
tration of 20 mg/ml) was added to the dried extracts and incubated at 37 °C for 2 h in an oven a�er mixing and 
sealing. �e lids were opened, and 100 µ l of BSTFA (containing 1% TCMS, v/v, Regis Technologies, Inc., USA) 
was added to each sample; then, the samples were resealed and incubated at 70 °C for an hour. When the samples 
had cooled to room temperature, 10 µ l of FAMEs (standard mixture of fatty acid methyl esters, 1 mg/ml C8-C16 
and 0.5 mg/ml C18-C30 in chloroform) was added to the mixed sample. �en, the sample was mixed well for 
GC-MS analysis.

GC/TOF MS analysis was performed using an Agilent 7890 (Agilent Technologies, USA) gas chromatograph 
system coupled with a Pegasus HT time-of-�ight mass spectrometer (LECO Corporation, USA). �e system 
utilized a DB-5 MS capillary column coated with 5% diphenyl cross-linked with 95% dimethyl polysiloxane 
(30 m ×  250 µ m inner diameter, 0.25 µ m �lm thickness; J&W Scienti�c, Folsom, CA, USA). A total of 1 µ l of the 

Figure 4. Observed and predicted YPP values in three subgroups and two reciprocal groups.  
(a–c) Relationships between observed yield per plant and predicted values in the i, j and ij three subgroups. 
�e entire hybrid population was divided into three subgroups based on whether a parental line was indica or 
japonica (Fig. 1b). �e predictive abilities in di�erent population structures showed only slight changes.  
(d–e) Relationships between observed yield per plant and predicted yield per plant in reciprocal hybrids. �e 
whole population was divided into two groups of reciprocal hybrids to test cytoplasmic e�ects on predictive 
ability. �e results demonstrated that di�erent cytoplasms only weakly in�uenced predictive ability. YPP =  Yield 
per plant.
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sample was injected in the splitless mode with helium as the carrier gas. �e front inlet purge �ow was 3 ml min−1, 
and the gas �ow rate through the column was 20 ml min−1. �e initial temperature was held constant at 50 °C for 
1 min, followed by a 10 °C per min ramp up to 330 °C, and then maintained for 5 min at 330 °C. �e injection, 
transfer line, and ion source temperatures were 280 °C, 280 °C, and 220 °C, respectively. �e energy was − 70 eV 
in electron impact mode. Spectra were recorded in full-scan mode with an m/z range of 85–600, at a rate of 20 
spectra per second a�er a solvent delay of 366 s.

�e Chroma TOF 4.3X so�ware from LECO Corporation and the LECO-Fiehn Rtx5 database38 were used for 
raw peak extraction, data baseline �ltering and calibration, peak alignment, deconvolution analysis, peak identi-
�cation and integration of the peak area. �e RI (retention time index) method was used for peak identi�cation; 
the RI tolerance was 5000.

Data analysis. Relative low-parent heterosis (LPH), mid-parent heterosis (MPH), better-parent hetero-
sis (BPH) and speci�c combining ability (SCA) for each trait were calculated using the following equations: 
LPH =  (F1-PLow)/PLow, MPH =  (F1-PMean)/PMean, BPH =  (F1-PHigh)/PHigh, GCAi (general combining ability) =  Pi.-P.., 
and SCAij =  Pij-P..-Pi.-Pj.

39. For the heading date, earlier heading indicated positive heterosis. F1 is the trait value 
of the hybrid; PLow, PMean and PHigh are the low value, mean value and high value of the two corresponding par-
ents, respectively. Pij is the trait value of the hybrid from parent i and parent j, P.. is the mean of all the hybrids, 
Pi. is the mean of the hybrids from parent i and Pj. is the mean of the hybrids from parent j. �e relative metab-
olite levels of each analyte were obtained by calculating the ratio between the areas of the analyte and its corre-
sponding ribitol in each repeat. Means among the replications were used as the raw metabolic data. Metabolic 
data were log2-transformed for statistical analysis. Analytes with the same annotations but di�erent mass and 
similarity (such as 2-hydroxypyridine), the su�xes − 1, − 2, and − 3 were added in retention time order to dif-
ferentiate between them in the analyses. Microso� Excel 2010 (Microso�, USA) was used to calculate the sums 
(sum =  (Female P+ Male P)*0.5) of the parents, di�erences (di�erence =  Female P-Male P) between the parents, 
and ratios (ratio =  Female P/Male P) of the parents’ phenotypic data. Female P represents the mean of the female 
parent values and male P represents the mean of the male parent values. When parental metabolic data were used 
as predictive variables, only single sum, di�erence and ratio values were calculated for the reciprocal hybrids. For 
example, for reciprocal hybrids YB/Balilla and Balilla/YB, if the relative level of Analyte X is a1 for YB and a2 for 
Balilla, the sum, di�erence, and ratio values for Analyte X of these reciprocal hybrids are (a1 +  a2)*0.5, a1 – a2, 
and a1/a2, respectively. �e reason for this calculation approach is explained in the Discussion. Correlation anal-
yses and regression analyses were performed with IBM SPSS Statistics 20 (IBM, USA). Average linkage between 
groups was chosen as the cluster method in the hierarchical cluster analysis. Squared Euclidean distance was 
calculated as the genetic distance. Principle component analysis was achieved through factor analysis, and eigen-
values greater than 1 were extracted; maximum iterations for convergence was 25; and the non-rotation method 
was applied for factor analysis. In stepwise linear regression, the probability of F was used as the stepping method 
criteria. �e entry value was 0.05, and the removal value was 0.10. Partial least squares regression was conducted 
with the PLS extension bundle for SPSS. Main e�ects were used to specify model e�ects. Maximum numbers of 
latent factors were adjusted until no more latent factors could be extracted. �en, in the Proportion of Variance 
Explained table, the number of latent factor to a trait was determined where the corresponding adjusted R-square 
value was at the highest. A�er the number of latent factor was �xed, all the 525 parental metabolic data were 
applied to PLS again. And variable importance in the projection of Factor 1 was used for reordering. Parameters 
of independent variables were used to calculate the corresponding values of the dependent variables. Predictive 
ability was de�ned based on the Pearson correlation (2-tailed) coe�cient of the predicted and observed values2,20.
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