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Abstract

To investigate the regulation of seed metabolism and to estimate the degree of metabolic natural variability,
metabolite profiling and network analysis were applied to a collection of 76 different homozygous tomato
introgression lines (ILs) grown in the field in two consecutive harvest seasons. Factorial ANOVA confirmed the
presence of 30 metabolite quantitative trait loci (mQTL). Amino acid contents displayed a high degree of variability
across the population, with similar patterns across the two seasons, while sugars exhibited significant seasonal
fluctuations. Upon integration of data for tomato pericarp metabolite profiling, factorial ANOVA identified the main
factor for metabolic polymorphism to be the genotypic background rather than the environment or the tissue.
Analysis of the coefficient of variance indicated greater phenotypic plasticity in the ILs than in the M82 tomato
cultivar. Broad-sense estimate of heritability suggested that the mode of inheritance of metabolite traits in the seed
differed from that in the fruit. Correlation-based metabolic network analysis comparing metabolite data for the seed
with that for the pericarp showed that the seed network displayed tighter interdependence of metabolic processes
than the fruit. Amino acids in the seed metabolic network were shown to play a central hub-like role in the topology of
the network, maintaining high interactions with other metabolite categories, i.e., sugars and organic acids. Network
analysis identified six exceptionally highly co-regulated amino acids, Gly, Ser, Thr, Ile, Val, and Pro. The strong
interdependence of this group was confirmed by the mQTL mapping. Taken together these results (i) reflect the
extensive redundancy of the regulation underlying seed metabolism, (ii) demonstrate the tight co-ordination of seed
metabolism with respect to fruit metabolism, and (iii) emphasize the centrality of the amino acid module in the seed
metabolic network. Finally, the study highlights the added value of integrating metabolic network analysis with mQTL
mapping.
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Introduction

Tomato is one of the most important crops worldwide (FAO

Statistical Database; last updated 2011), being used mainly for

human consumption. The tomato fruit contributes essential

supplements to the human diet, such as flavonoids, carotenoids

[1], fibers [2], vitamins and essential amino acids [3–5]. The

additional importance of the tomato as a crop plant is that it

constitutes the best-studied fruit-bearing model organism [6–10],

being closely related to potato, eggplant, and pepper—all

members of the Solanaceae family [11,12]. The domestication

of tomato, as of many other crop plants, is coupled to the erosion

of its genetic variability [13–17], leading to the loss of valuable

traits. Strategies based on the exploitation of natural variation

are being extensively employed [16,18–21] in an effort to

reintroduce the lost genetic variation into cultivated species,

including tomato [7], rapeseed [22], wheat [23], rice [24,25],

barley [26], soybean [27], maize [28], the common bean [29],

and pepper [30]. This approach has led to the generation of

mapping populations, facilitating the identification of a vast

array of quantitative trait loci (QTL), including loci for yield-

related traits, flowering time, fruit quality (in terms of BRIX) and

plant-specific organ relations [11,31–35]. Despite the accessibil-

ity to these mapping populations, to date, Arabidopsis has been

almost exclusively used to study the genetic basis of seed traits.

Numerous QTL associated with seed size, dormancy [36–38]

seedling vigor [39,40], and tolerance to salt [41] has been

identified and mapped.

The utility of advanced genetic populations to the study of

metabolic traits in plants has been demonstrated by the generation
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and analysis of a set of 76 introgression lines (ILs) in tomato. This

population was developed by crossing the cultivated strain Solanum

lycopersicum with its distant wild relative S. pennellii. The establish-

ment of these tomato ILs has led to the discovery of more than

2,500 QTL associated with plant morphology and fruit metabo-

lism [2,7,35,42–44]. Existing studies imply that metabolite levels

are generally controlled by multiple genes and are therefore

considered as quantitative traits (QT) regulated by metabolite

QTL (mQTL).

Seed quality traits, such as protein, starch and oil contents, as

well as seed dormancy and vigor, frequently defined as complex

traits, are functionally related to C-N balance, central metabolism

and sink-source interaction during development on the mother

plant [45–50]. Although recent studies on seed development [51–

56] have been invaluable in revealing aspects of the regulation of

metabolism, questions concerning the genetic basis of seed trait

variability remain open due to the lack of integrative studies on a

population scale.

Despite the increased attention currently being paid to

enhancing the nutritional values of seed crops [16,57,58] and to

the economic value of seed quality, the genetic basis regulating the

metabolic processes and C-N balance leading to quantitative

changes in seed traits has yet to be explored. Moreover, the

association between mother plant traits and seed metabolism and

vigor has not yet been subjected to genome-scale comparison in

crops in general and in tomato in particular.

Here, we analyzed the metabolite contents of dry tomato

seeds from two consecutive harvests of a collection of ILs

previously used to investigate the fruit pericarp metabolome

[2,35]. MQTL mapping and correlation-based metabolic

network analysis facilitated the integration of the generated

profiles with metabolic and morphological data collected in

earlier studies ([2,35]; www.phenome-networks.com). The

findings are discussed with respect to the recent advances in

the regulation of plant metabolism.

Results

Metabolic profiling of seeds in a tomato IL population
identifies 46 mQTLs and suggests strong post-
transcriptional regulation
To identify the potential QTL involved in the regulation of the

level of metabolites in the tomato seed, we used a set of 76 ILs

resulting from crosses between the domesticated Solanum lycopersi-

cum (cv M82) and its distant relative S. pennellii, with each IL

carrying a small chromosomal portion (5 cM to 75 cM) of the

distant relative within the chromosomal background of the

domesticated tomato [59]. Seeds harvested from two consecutive

seasons [2] of all 76 ILs and of M82, as control, were subjected to

GC-MS analysis for metabolic profiling [60,61]. In total, we

unequivocally quantified 64 annotated metabolites across the

population in both seasons. We performed one-way ANOVA for

each metabolite across the entire population to identify significant

changes (p#,0.05). Almost all metabolites displayed significant

changes across the population. Dunnett’s test was used to compare

the mean of every metabolite of each IL vis-à-vis the control, M82.

For the purpose of visualizing cohesiveness of the ILs and grouping

of the metabolites, we decided to include changes at the

significance level of p#0.01. In Figure 1 red and blue rectangles

depict significant increases and decreases, respectively, of metab-

olite quantity vis-à-vis the control. Regions with highly significant

changes (p,0.001) are delimited by black rectangles and

magnified (Figure 1). There were significant changes across the

population in four carboxylic acids, fumarate, malate, citrate, and

glycolate, in eleven of the proteogenic amino acids, and in

fructose, glucose, and one non-annotated sugar (Figure 1). Other

metabolites displayed significant changes in few specific lines, such

as glycerol in IL 12-4-1, erythritol in ILs 1-4 and 4-1-1, and Lys in

ILs 1-2, 9-1-2, and 9-2 (Figure 1). A more detailed analysis of each

metabolite displaying significant changes is presented in the bar

graphs in Figure 2a, 2b and Figure 3, showing the relative change

in metabolic content with reference to M82 (here significant

changes were estimated following Bonferroni’s correction). For the

purpose of visualization, the fold-change of metabolic levels with

respect to M82 was used. ILs were characterized by marked

alterations in metabolite level; for example: as compared with

M82, benzoate was reduced by more than half in IL8-2; citrate

was increased on average by 1.8-fold in IL 1-4; fumarate was

increased by more than 2.5-fold in IL 4-4 and IL 5-2; malate was

significantly increased in ILs 1-2, 1-3, 5-3, 6-4, and 10-3; and

glycolate content was more than twofold in IL 1-1-2 and IL 1-2.

The vast majority of the amino acids (15 of the initial 19 amino

acids) exhibited significant changes throughout the population. In

addition, the level of nonanoic acid varied across the population,

with one IL (IL 5-1) exhibiting a 1.3-fold increase with respect to

M82, whereas all the other ILs showed a decrease in the

abundance of this metabolite (from 0.25 to 0.5). For octadecano-

ate, levels were increased by up to 1.4-fold in IL 2-6, IL 3-2, IL 3-

5, and IL 4-3.

In season I, altered sugar content (mostly accumulation)

appeared to be a common trait in the population: Glucose

displayed an eightfold increase in ILs 4-1-1 and 4-2; isomaltose

increased by 7.5-fold in IL 8-3-1, and maltotriose increased by 5.7-

fold in IL 9-3. Significant changes were identified for melezitose in

seven different lines, for raffinose in nine lines, and for sucrose in

19 different lines. However, for all the loci associated with

significant sugar change, only one was reproducible in season II,

namely, IL 8-3-1 for glucose.

Despite the large-scale changes described above, a recurring

pattern was detected for a set of amino acids in four different

Author Summary

Seeds represent 70% of the food source for man and
livestock. However, as a result of millennia of domes-
tication, crop plants have undergone major genetic
deterioration, leading to a loss of important quality
traits. Thus, the reintroduction of these quality traits is
the key to the improvement of crops in modern
agriculture. Seed quality traits include nutritional
components, such as proteins and amino acids, and
seed germination and storability, which are, in turn,
inherently related to metabolism. To understand the
genetic basis of seed metabolism—a strategic need in
the improvement of seed crops—we studied a collec-
tion of offspring plants stemming from the cross
between a domesticated tomato cultivar Solanum
lycopersicum cv M82 and its distant wild relative S.
pennellii. We monitored the changes in metabolism and
studied the mode of regulation of the concentration of
metabolites in the seeds as a result of genetic
introgression, by taking advantage of state-of-the-art
technologies and methods of data elaboration such as
network-based analysis. We identified a number of
candidate genes that may be useful in manipulations
to enhance nutritional values in seeds. Finally, in an
effort to study the relation among the seed, the fruit,
and the mother plant, we determined potential yield-
associated metabolic markers.
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introgressions. By constructing a putative mQTL map (Figure 3),

we mapped 354 significant changes in metabolite content,

represented on the IL map by a color code referring to the

different compound classes. However, it should be noted that the

total number of significant changes, and hence potential QTL, is

an approximation rather than an exact figure. Some of the ILs

share overlapping regions, so that the significant changes detected

on two overlapping ILs for the same metabolite indicate that the

Figure 1. Heat map of metabolites measured across the IL collection during season I. Heat map representation of changes in metabolite
levels measured on dry IL seeds of harvest season I in Akko, Israel. Significance of fold change with respect to cultivar M82 (control) was evaluated by
Dunnett’s test. Blue rectangles indicate a significant decrease in metabolite content, and red rectangles, a significant increase in metabolite content.
Pink areas indicate a non-significant change of metabolic concentrations. Metabolites were categorized according to their compound class. A mirror
heat map of significance values is given in Figure S1. Groups of metabolites for which changes were highly significant (p,0.001) are delimited within
black rectangles and magnified outside the heat map.
doi:10.1371/journal.pgen.1002612.g001
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actual QTL is probably be located in the overlap. Thus, each

overlapping IL does not represent one separate QTL.

The IL map suggests that a distinct group of amino acids (Gly,

Ile, Pro, Ser, Val, Thr) are co-localized onto particular

introgressions corresponding to ILs 2-3, 2-5, 2-6-5, 4-3 and 11-

2. In addition, in IL 10-2 all of the above-named amino acids

other than Val were found. Val could, however, be detected in IL

10-3, sharing a large overlap with IL 10-2. Increased levels

(.threefold) in central amino acids and the related non-

proteinogenic amino acid GABA [62] were shown to occur each

in one line only, i.e. IL 3-2 and IL 8-2 (Figure 2a and 2b)

respectively, suggesting a specific regulation harbored by each

segment, which will probably be worthy of future study.

Furthermore, the TCA cycle intermediates fumarate and malate

were shown to be localized in close proximity to each other or to

co-localize to the same introgressed segment, as, for example, ILs

1-3, 1-1-3, 1-2, 4-2, 4-3, 4-3-2, 5-3 and 5-5, suggesting a shared

regulatory mechanism for these two TCA cycle intermediates.

More than 30% (123) of all identified significant changes in season

I were associated with sugars, of which, fructose, glucose, and

sucrose co-localized to many introgressed segments (ILs 2-6-5, 4-1-

1, 5-4, 5-5, 8-3-1). In season II, only 13% (n= 46) of the initially

identified quantitative metabolite changes (354) were confirmed. A

fully annotated map of the conserved metabolic changes (46

putative mQTL) across seasons and their associated loci is

presented in Figure 4. Most variability in sugar levels was observed

to be subject to seasonal influence. In season I, a consistent 50%

reduction in the content of sucrose in ILs 4-1, 4-3, and 4-3-2 was

found. In lines 4-1-1 and 4-2, eightfold and fourfold increases

relative to M82 were found in the contents of glucose and fructose,

respectively. ILs 4-2, 4-3, and 4-3-2 share a large portion of an

overlapping chromosomal segment. Despite seasonal fluctuations,

the co-localized changes in hexose metabolism indicate tight

regulation of sucrose catabolism on chromosome 4. While the

confirmed sugar mQTL were constrained to a single locus (IL 8-3-

1), amino acids showed the highest degree of shared changes (20

out of 46), particularly Ser, Thr, Phe, GABA, and ornithine. On

IL 9-2, an accumulation of the amino acids Lys and ornithine to

levels two- and threefold higher, respectively, than those in M82

were detected. There was a fivefold increase for Asn, as compared

with the control, on chromosome 3 IL 3-3. In addition, five shared

mQTL for the TCA cycle intermediates citrate, succinate, and

malate and two more for salicylic acid were identified (Figure 4).

Next, by mapping the changes in seed metabolites onto a

chromosome map of the introgressed segments (Figure 3) and

comparing it with proposed conserved mQTL in the fruit [2], we

identified a few putative shared metabolic traits of fruit and seeds,

namely fumarate/malate in the seed and fructose/glucose in the

fruit on ILs 1-1-3 and 4-4 and the overlap of ILs 5-4 and 5-5. In

addition, the seed mQTL map shows a significant number of

overlaps between these organic acids and sugars within the seed as

well. To evaluate the genoytpic component and to confirm the

conserved putative mQTLs, we performed a pairwise two-way

ANOVA for each metabolite in corresponding ILs of the seed

datasets for the two seasons; specifically, at an adjusted significance

level of 0.05, the genotype term (IL) and the interaction term

(season * IL) were investigated. The results are presented in

Figure 4, where blue and yellow symbols next to the putative QTL

indicate confirmation of the ANOVA at the single and interaction

term levels, respectively. In total, 30 out of the 46 previously

suggested mQTL were confirmed by the single term (IL), the

interaction term (season * IL), or both (IL+season * IL).

Interestingly, the proposed QTL for malate in IL1-2 was

confirmed solely by the interaction term, while the putative

mQTL for malate in IL1-3 was confirmed by both the single and

the interaction terms (estimated p-values for the single term are

presented in Table S1a, and the interaction term, in Table S1b).

Abundance of metabolites is affected by genetics,
environment, and organ development
For the purpose of testing genetic, environmental, or develop-

mental effects on the changes in metabolite contents across the

population, all measurements of the seed metabolites were

assembled together with the measurements of the pericarp

metabolites (data from [2,35]). A three-factor ANOVA treatment

of the dataset included 3 main factors, 3 two-way interactions, and

1 three-way interaction. The three factors tested with potential

impacts on the variance of the different datasets were: Factor A –

IL (representing the genetic background), Factor B – organ (seed

and fruit), and Factor C – season. Initially, a full-factorial model

with all possible interactions and all single and combined effects

was designed. The IL factor (genetic background) exhibited the

most extensive impact on the variance of the dataset, virtually

affecting the content of every metabolite (averaged estimated p

value 1027). Yet, all factors contributed significantly to the

differences measured. Similar conclusions were drawn for pericarp

analyses, as previously described by [35]. In the full factorial

model, five metabolites, b-alanine, serine, threonine, succinate,

and sucrose, were not affected by factor B (p.0.05). These

findings were confirmed by the single factor model, in which

GABA and proline were also included. Although the analysis

indicated the genotype as the major factor controlling metabolite

content in our study, we should mention that this analysis may

underestimate the number of conserved mQTLs. Indeed the

genetic component is conditional upon the environment as well as

upon parameters such as tissue and plant age; therefore, the

occurrence of non-conserved QTL is not per se indicative of non-

genetic regulation [63].

In an effort to understand how phenotypic plasticity is affected

by chromosomal substitutions (ILs) in comparison to M82, we

calculated the coefficient of variation (CV) on the background of

the seed and of the fruit (Figure 5a). The CV allows insights into

the effects of genotypic and environmental variability on

phenotypic plasticity [64–66]. In the present analysis, the CV of

each (metabolic) trait was calculated for each individual IL; thus,

the higher the CV, the greater the phenotypic plasticity of a

particular genotype for a particular trait in response to the

environment, i.e. the block design of the experimental setup [2].

For both the seed and the fruit, the CV explains 81% of

phenotypic plasticity within the first six bins in the background of

the wild-type M82, but only 75% in the background of the ILs.

For the M82 seed data the first ten bins include 98% of the CV,

while the same percentage of CV is covered for the ILs seed data

in 13 bins. The skewing of the frequency distribution of the CV of

Figure 2. Significant metabolites identified for different ILs in season I. Bar graph representation of significant metabolites identified by
Dunnett’s-test (p-value,0.05 – after Bonferroni correction) as applied to dry IL seeds of harvest season I in Akko, Israel, in comparison with the
control M82. Each bar graph depicts a single metabolite and fold change as compared to M82. Control (M82) levels are shown in dark blue.
Metabolites are categorized according to their compound class.
doi:10.1371/journal.pgen.1002612.g002
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Figure 3. Mapping of significant changes in metabolite content onto introgressed segments. Visualization of significant changes as
compared to M82 as identified by Dunnett’s test applied to IL season I harvest in Akko, Israel. The chromosomes and the site of introgression are
schematically presented with the associated metabolites. Only metabolites exhibiting a significant difference from the control value (p-value,0.05, after
the Bonferroni correction) are shown. Values next to metabolites indicate a positive (green) or negative (red), respectively, change in comparison with the
value for the control M82. Each value is based on a fold change, e.g., glycolate on IL1-1-2 indicates a +1.2 significant increase= (control) 1+1.2= 2.2 higher
content of glycolate in IL 1-1-2 than in the control M82. Metabolites were categorized according to their compound class (see color key on the Figure).
doi:10.1371/journal.pgen.1002612.g003
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individual ILs toward higher values suggests greater phenotypic

plasticity in the introgressed background than in that of M82.

Furthermore, the occurrence of a small portion (,2%) of CV

values greater than 1.6 in the seed background indicates tissue-

specific phenotypic plasticity of certain traits. Moreover, the

maximum CV value in the background of the fruit was 1.86, while

in the seed the maximum CV was 3.67 (almost twofold higher).

Interestingly, CV values of single ILs were higher than the

arbitrary 0.9 in the background of the fruit, e.g., IL9-2 exceeded

the CV value of 0.9 28 times and IL12-1-1 exceeded this value 20

times (results not shown). Highly scoring individual ILs in either

the fruit or the seed background suggests a phenotypic plasticity

induced by specific chromosomal substitutions.

To investigate the basis of heritability of metabolite abun-

dance in the fruit and the seed separately, we estimated the

broad-sense heritability (H2) for each trait (metabolite) across ILs

and M82 in all three fruit datasets [2,35] and in the two seed

datasets. H2 estimates are divided into 10 bins of 0.1 intervals for

which the frequencies of metabolites for the fruit and seed

dataset are given (Figure 5b). H2 values approaching 1 suggest an

increasingly unperturbed genotype-to-phenotype link. The H2

bar plot reveals a positive skewness in the distribution pattern of

the fruit values, while seed values display a near normal

distribution. Intriguingly, none of the H2 values in the

background of the fruit population exceeded 0.5, whereas six

occurrences (traits) exceeding 0.5 were scored in the background

of the seed population, namely, hexadecenoate, maltotriose,

phenylalanine, sorbitol, tyramine, and tyrosine. Taken together,

the patterns observed suggest greater broad-sense heritability of

metabolic abundance in the seed than in the fruit. This

conclusion does not contradict the greater phenotypic plasticity

shown earlier in specific ILs, as higher CVs characterized both

seed and fruit individual ILs, which suggests enhanced

phenotypic plasticity of metabolite traits induced by a small

number of exotic introgressed segments.

While seed and fruit samples were harvested in parallel, the

possibility that the developmental processes of the two organs can

affect metabolite abundance differently cannot be excluded.

Moreover, phenotypic polymorphisms in the two tissues might

arise from genotype6developmental interactions, such as tissue-

specific promoters that cause a gene to be expressed in only one or

the other tissue.

Candidate gene identification in mQTL of interest
In an attempt to identify candidate genes potentially associated

with identified mQTL of the seed (Figure 3), all marker genes

associated with each introgressed segment were identified via the

SOL Genome Network of the tomato genome (http://

solgenomics.net/ - for approach see section of Materials and

Methods). Next, the functionality of the identified genes was

inferred using information on the respective orthologs in the A.

thaliana genome. Finally, in an effort to find co-responding

metabolic genes that could further explain metabolite patterns of

change, the SeedNet database (http://vseednet.nottingham.ac.uk;

[67]) and the Seed Co-Prediciton Network SCoPNET database

(http://vseednet.nottingham.ac.uk; [68]) were queried.

Figure 4. mQTL map of shared significant changes over seasons I and II. GC-MS measurements were performed for consecutive seasons I
and II in Akko, Israel; metabolic concentrations were measured in dry seeds. The putative mQTL and their associated metabolites are depicted in the
Figure. Symbols next to putative mQTL indicate results of pairwise 2-way ANOVA for each metabolite across the seasons of matching ILs. Blue
symbols refer to the single term – genotype; yellow symbols refer to the interaction term – season * genotype. Blue and yellow ticks indicate
confirmed by single or interaction term, respectively; blue and yellow crosses indicate not confirmed by single or interaction term, respectively.
doi:10.1371/journal.pgen.1002612.g004

Figure 5. Tests of heritability as estimated on a tomato seed and fruit IL population. Coefficient of variation (CV) values were calculated by
taking the ratio of the standard deviation over the mean for every metabolite individually for each IL and M82. Thereafter, the resulting CV values
were divided into 40 bins of incrementing intervals of 0.1, for which the relative frequencies in the wild type and the ILs were estimated in both the
fruit and in the seed (panel a). Broad-sense heritability (H2) values were calculated for all metabolites on the background of the seed and fruit IL
population across two and three seasons, respectively. Values of H2 were divided into bins of 0.1 intervals. Bar graphs represent the total number for
each respective bin on the background of the seed and fruit population (panel b). For exact estimation of H2 values see Methods and Materials.
doi:10.1371/journal.pgen.1002612.g005
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By applying the described approach, a number of potential

candidate genes were identified, putatively regulating altered

metabolic processes in the seed, as follows:

Amino acid metabolism: Co-localized QTL characterized by

quantitative changes in the Arg/ornithine content for season I

were shown to be shared for ornithine in season II on IL 2-4. In

this segment, gene At4g21120 was identified; this gene encodes for

a member of the cationic amino acid transporter subfamily and is

involved in Arg import. Associated with Arg/ornithine metabo-

lism, the identified marker gene itself is most probably responsible

for the altered levels detected for Arg and ornithine.

Glycolysis: Although significant changes in sugars in season I

did not reoccur in season II, ILs 4-1, 4-3, and 4-3-2 still displayed

intriguing features. Characterized by highly overlapping segments,

these three ILs had increased levels of fructose and glucose

together with a decreased content of sucrose, suggesting a QTL

embedding genes with a significant impact on sucrose metabolism.

For the introgressed segments associated with sucrose, namely, 4-1

and 4-3, no gene directly involved in sucrose metabolism was

found. However, on IL 4-3 ortholog At5g10920 was detected; this

gene is involved in the Arg biosynthetic process [TAIR database]

and is correlated by SeedNet to gene At5g48300, which encodes

for a glucose-1-phosphate adenylyltransferase (Table S2). In

addition, on IL 4-3-2 in chromosome 4, we identified ortholog

At5g63840, which is involved in cellulose biosynthetic processes

with a glucosidase and a hydrolase. Here, too, in agreement with

our findings, SCoPNET co-predicted a strong association with

aforementioned gene At5g48300 (Table S3).

By following the same approach, we also identified candidate

genes putatively associated with the pattern of change of co-

localized fumarate/malate and glucose/fructose (Figure S2) in

ILs 1-1-3, 4-4, and 5-4 (for IL 5-4 see Text S1). In these cases, we

identified Arabidopsis orthologs exhibiting significant correlations

to genes found in the introgressed segment and associated with

the co-localized mQTLs. That said, on segment IL 1-1-3 we

identified an aspartate semialdeyhde dehydrogenase, At1g14810

[TAIR database], shown to be correlated to a fructose bipho-

sphate aldolase (r=0.81) involved in the catalysis of fructose-6-

phosphate, and concomitantly correlated to malate dehydroge-

nase (r=0.84), a key enzyme in the TCA cycle, as mentioned

earlier (Table S4). On IL 4-4, ortholog At1g20575 involved in D-

ribose catabolism [TAIR database] was found to co-predict on

SCoPNET to pyruvate kinase, an important enzyme in glycolysis

(Table S5) and concomitantly to succinate dehydrogenase of the

TCA cycle and mitochondrial electron transport chain on

SeedNet (Table S6).

It should be noted that all genes as mentioned here have been

identified by marker gene investigation of the tomato genome.

Their functionality in association to the mQTL is to some extent

speculative and remains to be tested. Moreover, a metabolic gene

may not necessarily represent the regulating gene of metabolite

content, and a significant amount of non-linearity between the

level of expression of a ‘‘metabolic’’ gene and the content of the

respective metabolite has been shown in tomato and Arabidopsis

[69,70].

Potential single-nucleotide polymorphisms (SNPs) or frame

shifts within the sequences of the open-reading frame (ORF) and

promoter regions of several candidate genes of the alleles were

analyzed (Text S2). DNA sequences of S. lycopersicum alleles were

obtained by BLAST searches of predicted cDNA sequences in the

NCBI (http://www.ncbi.nlm.nih.gov/) and SOL Genomics Net-

work (http://solgenomics.net/) Website, while those of S. pennellii

were obtained by sequencing PCR products by using primers

whose design was based on the sequence of S. lycopersicum genes

(Text S2). The allelic sequences were then aligned and compared.

The alleles of SGN-U261955, an Arg/ornithine-metabolism-

related gene and ortholog of AAT1 (At4g21120; [71]), revealed a

178-bp difference in the background of total lengths: S.

lycopersicum=4697 bp and S. pennellii=4691 bp (Text S2). More-

over, a comparison of genetic polymorphism on the promoter

region revealed a 178-bp of gap in the S. lycopersicum promoter

sequence. Two genes that were predicted to be associated with

glycolysis, SGN-U242840 (putative argininosuccinate-lyase, ortho-

logous gene of At5g10920) and SGN-U217186 (putative glucosi-

dase, orthologous gene of At5g63840), revealed several polymor-

phisms in their coding regions. The S. lycopersicum allele of SGN-

U242840 was characterized by an 84-bp gene deletion in its ORF

(see Text S2). In contrast, no allelic differences were seen in the

ORF sequence of SGN-U217816. However, many allelic differ-

ences were found in the promoter region, where even more gaps

(107/1000 bp) were observed. Thus, the large differences in the

promoter region, but high similarity of the coding region, hints at

different modes of regulation of gene expression, causing the

changes in metabolic levels, rather than a diverse functionality of

the gene product. However, further experimentation will be

needed to confirm this hypothesis, including testing the possibility

of tissue-specific expression of candidate genes, which might lead

to the differences shown in the seed and fruit metabolism of the

same IL.

Correlation analysis reveals a highly concerted interplay
of amino acids in the seed metabolic network, as
affected by genetic introgression
In an attempt to evaluate co-regulation of groups of

metabolites affected by genetic alteration, we conducted a series

of correlation analyses on the metabolite profiles of the IL

population for seasons I and II. A pair-wise correlation among all

metabolites, applying the Pearson’s product-moment correlation

is visualized as a heat map in Figures S3 and S4. In this

visualization, the triangular constellation of amino acids in the

center of the figure indicates a high correlation between the

pattern of change in the contents of most amino acids across the

population. An averaged absolute r-value of 0.53 was calculated

for all pair-wise correlations between amino acids, ranging

between 0.98 for Val and Ile and 20.03 for b-Ala and Met.

Amino acids showed mainly positive correlations, with a ratio of

189 positive correlations to one negative correlation. Six amino

acids, Val, Ile, Gly, Pro, Ser, and Thr, exhibited notably high

correlations, with an average r-value of 0.87. The high degree of

correlation of these six amino acids can be explained by their co-

localization onto the same QTL (Figure 3). Other significantly

high correlations among the amino acids were found between

GABA and b-Ala, and between Asn, ornithine, Lys and Tyr. In

contrast, Asp, Glu and Met exhibited a noticeably low degree of

co-ordination among the amino acids. Correlation analysis

revealed that amino acids were also strongly positively correlated

to carboxylic acids, polyhydroxy acids, N compounds, phos-

phates, and polyols, including compounds such as urea,

nicotinate, phosphoric acid, glycerol-3-phosphate, glycerol,

erythritol, sorbitol, and inositol. The same amino acids also

showed strong correlations with pyruvate, a key intersect of

various metabolic pathways, with an average r-value of 0.48, and

a maximum r-value 0.63 between Gly and pyruvate. Further-

more, significant correlations were detected between the

following amino acids, Asn, Asp, Arg, Lys, Tyr, b-Ala, GABA,

ornithine and 4-OH-benzoate of the shikimate pathway and

citrate.

Mapping Metabolic QTL in Tomato Seeds
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Generally, there were only a few negative correlations, and

these involved mainly sugars: 52.9% of the total 620 correlations

associated with sugars were negative. The strongest negative

correlation of 20.55 for the complete dataset was recorded for the

fatty acid nonanoate and for sucrose. The TCA cycle intermedi-

ates, fumarate and malate, and salicylate also correlated negatively

to the monosaccharides fructose and glucose and to the

disaccharide sucrose.

Using the same approach, we also computed all pairwise

correlations based on both seasons, which will be discussed in the

context of network analysis.

Correlation analysis between morphological traits and
seed metabolites displays negative inter-organ
correlation and reveals contrasting trends
Next, we analyzed our metabolite dataset against traits of the

mother plant, the fruit and the seed for associations [2,35]. In

total, 35 morphological traits were compared to the 64 seed

metabolite compositions (the entire dataset is available on http://

phnserver.phenome-networks.com). Following z-score transforma-

tion, we performed correlation analysis employing the Pearson’s

product-moment correlation. The results of this analysis are

presented in Figure 6 and in greater detail in Figure S4.

The analysis produced a relatively high number of negative

correlations: in total, 61.2% (1392 out of 2275 correlations) of all

associations were negative. The correlation between GABA and

the harvest index (HI) displayed the highest negative value of

20.71 in the association matrix (p,0.005), indicating that the

content of GABA in the seed is highly associated with the growth

of the mother plant. Furthermore, significant – and mainly

negative – associations were found primarily for morphological

traits of the seed and of the fruit (Figure S4). Specific metabolites

were shown to correlate with morphological traits—among the

organic acids, glycerate, 4-OH-benzoate, benzoate, pyruvate,

citrate, salicylate, fumarate, malate, and particularly succinate;

among the amino acids, GABA, Asp, Met, Gln, Phe, Asn,

ornithine, Arg, Lys, and Thr; and among N compounds, uracil,

putrescine, tyramine, and adenine. The amino acids Lys, Arg,

Asn, Phe, and ornithine concertedly correlated (negatively) to HI

and to fruit weight, and Tyr, Lys, Arg, Asn, Phe, Glu, Met, Asp,

ornithine, and GABA correlated (negatively) to the ratios – seed

weight to fruit and seed number to fruit (Figure S4). A strong

positive correlation was found between glycerate and several

morphological traits (plant weight, total yield, and BRIX, Figure

S4). The traits plant weight and BRIX also correlated positively

(,0.7) with the content of polyol erythritol in the seed.

Network analysis highlights the higher intragenotypic
correlation of seed metabolism than fruit metabolism
To further investigate the degree of correlation between

metabolites in the seed, we applied network analysis and visualized

the metabolite-to-metabolite association via a graph of nodes and

Figure 6. Morphological traits—metabolite correlation/significance. Correlation between metabolic data as analyzed on dry IL seeds of
harvest season I in Akko, Israel and the ILs’ morphological traits. The Pearson product-moment correlation was used to calculate all pairwise
correlations between morphological traits and metabolites heading the rows and morphological traits and metabolites heading the columns. In the
colored area, rectangles represent r values resulting from Pearson correlation coefficient computation (see correlation color key). In the black and
white area, rectangles represent p-values respective to Pearson correlation coefficient (see Significance color key). Z-score transformation was
employed to enable correlation computation. X and Y-axes are categorized into morphological traits and metabolites, grouped by compound classes.
doi:10.1371/journal.pgen.1002612.g006
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edges. In addition, the metabolites measured in the pericarp by

Schauer et al. [2] were integrated into a comparative analysis in an

attempt to unfold inter-organ correlation to introgression and

common mechanisms of metabolic regulation. In the generated

networks, each node represents a metabolite, and an edge joining

two nodes represents the association between two metabolites, in

our case a correlation (either positive or negative) across the

population of introgression lines. Results for all networks as

described here are presented in Table S7. The resulting fully

annotated networks are presented in Figures S5 and S6, where

metabolites are grouped and color-coded according to their

compound classes. The graphic outcome and network parameters

revealed that the interconnectivity of the seed metabolite network

is significantly greater than that of the fruit metabolite network: All

measured network parameters, particularly network connectivity

and density, reflect a tighter interconnectivity of the seed

metabolite network over the fruit metabolite network, i.e. a

twofold higher connectivity characterized the seed network (Table

S7). The fruit network included 83 nodes, interlinked by 383

edges. At the r threshold of 0.3, the fruit network showed a lower

degree of connectivity (9.23) than the seed network (Table S7).

The resulting ratio of edges to nodes for the fruit network was

4.61, as opposed to 10.95 for the seed network. It should be noted

that the sustainability of the fruit metabolite network could be

achieved only at an r-value threshold of 0.3, which implies weaker

associations between metabolites. As opposed to the significant

divergence in the other network parameters, the cluster coefficient

of the seed network was similar to that of the fruit network. The

network analysis suggests a generally higher independence of

groups of metabolites in the fruit network as compared to the

dependence of all metabolites on the amino acid module in the

seed network. To test whether the differences in network

properties are due to inherent differences in the variance of the

two datasets, we conducted the following test. The average

variance of the entire seed dataset for season I was calculated and

used as reference value to rank the computed variance of each IL

of the fruit dataset for season I (Table 1). Next, subsets of the

identified fruit ILs were used to construct subset networks.

Applying F-value statistics, we showed that none of the chosen

fruit ILs was significantly different from the average seed variance

(Table S8). The initial subset was composed of 15 ILs incremented

iteratively to a total of 25 ILs, listed in Table 1. Each subset was

subjected to network analysis computing the following network

measures: density, degree, clustering coefficient, and diameter. To

determine the statistical difference to the respective network

measures in the seed metabolite network, we permuted the subset

of ILs 1,000 times, calculating all the above-mentioned measures

at each permutation. The results of the permutation tests were

used to estimate p-values of the observed differences between the

subsets and initial seed network measures (Table 1). As shown in

Table 1, all fruit IL subset networks exhibited lower values for the

network measures density, degree, and clustering coefficient than

the seed network. It should be noted that the findings of the

network analysis show trends of the calculated network properties.

For example, while degree and density show increasing trends with

incremented number of ILs (from 0.032 to 0.15 for 15 to 25, 50,

and 76 lines), the clustering coefficient shows a decreasing trend

(from 0.45 to 0.38 for 15 to 76 lines). However, all properties

Table 1. Network measures estimated on fruit and seed datasets.

Network Density Degree Clustering coefficient Diameter

value p-value1 value p-value1 value p-value1 value p-value1

76 Seed IL network 0.35 - 21.87 - 0.61 - 6 -

15 Fruit IL network 0.032 0.001 2.49 0.001 0.45 0.001 9 1.000

16 Fruit IL network 0.036 0.001 2.77 0.001 0.44 0.001 12 1.000

17 Fruit IL network 0.040 0.001 3.05 0.001 0.43 0.001 12 1.000

18 Fruit IL network 0.043 0.001 3.28 0.001 0.47 0.001 13 1.000

19 Fruit IL network 0.041 0.001 3.18 0.001 0.45 0.001 11 1.000

20 Fruit IL network 0.043 0.001 3.31 0.001 0.43 0.001 10 1.000

21 Fruit IL network 0.047 0.001 3.59 0.001 0.49 0.001 11 1.000

22 Fruit IL network 0.047 0.001 3.62 0.001 0.47 0.001 9 1.000

23 Fruit IL network 0.044 0.001 3.72 0.001 0.43 0.001 11 1.000

24 Fruit IL network 0.044 0.001 3.77 0.001 0.43 0.001 10 1.000

25 Fruit IL network 0.047 0.001 3.77 0.001 0.42 0.001 12 1.000

50 Fruit IL network 0.078 0.001 5.97 0.001 0.47 0.001 11 1.000

76 Fruit IL network 0.15 0.001 8.18 0.001 0.38 0.001 7 1.000

1p value based on 1,000 permutations.
Individual ILs were ranked according to increasing difference in variance of the fruit dataset compared to the average variance in the seed dataset (Table S8). Network
properties were calculated from a network reconstructed by using the data from the ordered list of ILs. For instance, for n = 25, the 25 ILs from Table S8 were used in
creation of the correlation network associated to the data from only these n= 25 ILs. Subsets comprising the first 15 to 25, 50 and 76 of the fruit ILs ranked in non-
decreasing order with respect to their variance were used to construct correlation-based networks (r$0.3, p#0.01). Four network properties were calculated for each
subset-based fruit network: density, degree, clustering coefficient, and diameter (value). Values represent the estimates of the respective network measures for each
subset of fruit ILs. By performing the classical permutation test with 1,000 repetitions, the statistical significance of the differences in measures between the subset-
based fruit networks and the seed network (first data row in the table) were measured. In each permutation, the order of each metabolite within the subset was
randomized, and the newly ordered dataset was subjected to correlation analysis and network measures estimation. The difference between newly generated network
property values in the seed and the fruit, upon randomization, were tested to check whether their value is at most that of the difference for the original networks.
Subsequently, the total number of occurrences meeting this criterion formed the basis for the empirical p-value estimation. With the exception of the network diameter,
density, degree, and clustering coefficient of the fruit IL subset networks are significantly different from the corresponding measures in the seed network.
doi:10.1371/journal.pgen.1002612.t001
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display mild fluctuations, as exemplified for density and degree

properties between subsets with 17 and 19 ILs. This observation

can be attributed to the addition of a single IL and its impact on

the topology of the network, as each IL modifies the outcome of

the correlation coefficients and their respective p-values. Diameter,

on the other hand, exhibits strong fluctuations, with a stagnating

pattern towards an increasing number of ILs. This finding was not

surprising considering that graph (network) theory postulates on

diameter of a network: giving the length of the longest from all

pairwise shortest paths, the diameter of a network is an ordered

property (max= longest) expected on average to be strongly

affected by addition of few, strategically positioned, edges. In

contrast, the average degree and the density – depending only on

the number of edges, but not their position in the network with

respect to the other edges – are expected to exhibit much smaller

fluctuations, which is in keeping with the results from our

empirical study.

The same test was performed iteratively on subsets of ranked

seed ILs, based on the former calculated average variance of the

seed dataset to exclude the possibility that the differences in

network measures are a consequence of the reduced number of ILs

used in the test. All network measures for the seed IL subsets were

significantly different from those for the fruit IL subsets (data not

shown). Taken together, these results indicate that the observed

differences in network topology are indeed a consequence of

differential metabolic regulation in response to genetic alteration

rather than the result of differences in variance between the seed

and fruit. That said, the discrepancies in the variance of the two

datasets – possibly originating in different heritabilities – of the two

tissues, their different ploidy levels, the tissue-specific regulation of

gene expression, and differences in the accuracy of defining the

developmental stage of the two tissues amplify the differences

measured between the two networks.

Amino acids function as a structural hub within the seed
metabolic network
Modules are defined as metabolites affiliated with their

compound classes and highly interconnected. Within the seed

network, the most apparent module is of amino acids (illustrated as

green nodes in Figure S5). The amino acids module is

characterized by a relatively high interconnectivity: 479 of the

total of 689 edges are directly connected to one amino acid or to a

number of amino acids. Similarly to the seed network, a tightly

intra-linked group of amino acids is evident in the fruit network,

where it accounts for 213 of the 383 edges, i.e., 56%, as compared

to the 67% in the seed. In contrast to the seed network, the fruit

network is characterized by a rigid sugar module. The sugar

module incorporates 11 nodes and 86 edges in total (23%), linking

it directly to all other compound classes, but particularly to

carboxylic acids and polyols. For instance, sugars and carboxylic

acids (23 nodes) are interlinked by 11 edges, and sugars and

polyols (17 nodes) are connected by 20 edges. Another apparent

difference between the two networks is the absence of a fatty acid

module in the fruit network.

To test the occurrence of associations between the seed and the

fruit networks, a combinatorial fruit-seed metabolite network was

constructed (Figure 7). The results of network parameter

calculations are presented in Table S7. The combinatorial

network revealed a large number of negative linkages between

the fruit and the seed modules—37.5% of 269 edges connecting

the two tissues. It should be noted that fruits and seeds were

collected in parallel and thus the associations may indeed reflect

true metabolic interactions between the two organs. In particular,

sugar metabolites of the fruit network demonstrated negative

correlations to seed metabolites, notably to amino acids, whereas

fruit phosphate maintained 25 positive correlations to seed

metabolites, mostly to seed amino acids. In the seed-fruit

correlation analysis, negative correlations between sugars were

evident: seed sucrose correlated negatively to almost all fruit

sugars; a similar pattern was observed for raffinose; fruit glucose

and fruit fructose correlated negatively to most compound classes

of the seed, particularly to amino acids and carboxylic acids,

whereas seed fructose and seed glucose did not display negative

correlations to fruit sugars. Octadecanoate, the only fatty acid

apparent in the fruit network, connected with more edges to the

seed network, particularly to organic acids, amino acids, and

phosphates, than to the fruit network (14:2 connection). Notably,

the module of the fruit amino acids did not show connections to

the seed network. We confirmed the general observations of the

network topology and modular structure by employing network

analysis on season II and by generating integrated networks for

both seasons. The results are summarized in Figures S5, S6, and

S7 and Text S3.

The NeMo algorithm identifies structurally functional
clusters and further highlights the amino acids in the
seed as core to its structure
We next used the combined network to generate clusters of

metabolites displaying significantly high degrees of connectivity

between nodes. When applied to the integrated data matrix, the

NeMo algorithm [72] generated two separate main clusters of

seed and fruit metabolites (Figure 8). Within the seed metabolite

cluster, we detected two highly interconnected sub-clusters,

which could, in fact, be merged into a single cluster. We

confirmed the validity of the NeMo algorithm (see Materials and

Methods) by permuting the metabolite class membership and

calculating the resulting modularity. Furthermore, amino acids

were embedded and spread equally between the seed sub-clusters

and were highly connected to all other seed metabolites. In

contrast to fruit amino acids, which were scattered throughout

all fruit clusters, the seed amino acids b-Ala, Val, Ser, Arg, Thr,
Pro, Ile, and Asp, appeared to be acting as a single group,

maintaining a high number of connections to the second seed

metabolite cluster, which included Gly, the sixth of the above-

mentioned amino acids. The centrality of the amino acid module

in the seed was evident across the two seasons (Figure S8).

Cluster analysis on the intersect graph showed the grouping of

Thr, Ile, Val, Pro, and Ser into one cluster, whereas Gly was

embedded in a different cluster. The cluster analysis of the seed

season II network showed that Ile, Val, Pro, and Ser were

grouped into one cluster, whereas Thr and Gly were incorpo-

rated into a different cluster.

In an effort to assess the observed correlations for seasons I and

II and to understand the nature of cross-seasonal changes

(environmental or genetic), we correlated metabolites for the seed

across the two seasons, applying the same parametric constraints

as before. The results are presented in Figure 9 as a bipartite

network graph. The amino acid modules for both seasons

maintained an extensive number of cross-seasonal links. In total,

the two amino acid modules accounted for 27 of the 63 nodes, 67

of the 82 edges, and 35 edges of purely positive correlations to

each other. Here, too, we observed the tight connectivity of the

above-mentioned amino acids across the seasons, i.e. Ile of season

II was linked to Pro, Thr, and Tyr of season I; Thr of season I

was connected to Ile, Phe, Ser, Thr, Tyr, Val, and ornithine of

season II; and Val of season II was connected to 12 of the 15

amino acids of season I. Another noticeable example of cross-

seasonal linkage was malate of season I with malate of season II.
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During the QTL mapping, we detected two malate QTL in ILs

1-2 and 1-3. The cross-seasonal correlation of malate appears to

be of a genetic nature and thus confirms the validity of the

detected QTL and further hints at a genetic basis in the co-

regulation of the carboxylic acids and sugars.

Lastly, correlation analysis was used to compare changes in

metabolite abundance in seeds and fruit. All three available fruit

networks (season I, III, and IV) [2] and seed networks (season I

and II) were analyzed for conserved correlations, always applying

the same constraining parameters as already described (r$0.3,

p#0.01). In addition, all six possible cross–tissue networks were

constructed, where each combinatorial network was compared

for re-occurring correlations to each network. The results are

given in Table S9. Two main observations were made via these

analyses: i) the relative number of conserved correlations across

two seed seasons always exceeded the number of conserved

correlations among all the possible combinations between three

fruit seasons, and ii) there were no conserved correlations

between the combinatorial fruit-seed networks across all seasons,

thus hinting at a conditional environmental factor in fruit-seed

interaction.

Discussion

In this study, the genetic basis of natural variability in seed

primary metabolism and its response to perturbation were

investigated. To accomplish this aim, we employed metabolite

profiling on seeds from a collection of tomato introgression lines

(ILs) containing segmental substitutions of the wild species

chromosome in the genetic background of the M82 cultivar.

Next, we integrated data from previous metabolic profiling studies

on fruit pericarp together with yield-related parameters and plant

morphological traits [2,7]. The integrated heterogeneous data

matrices were investigated by correlation network analysis, which

allowed us to comparatively study the structure and topology of

the seeds and of the fruit metabolic network.

A number of putative mQTL were identified, in particular, for

amino acids and organic acids, which – in contrast to most sugars

– were confirmed in two consecutive seasons by pairwise two-way

ANOVA.

An investigation of the genetic basis of metabolite polymor-

phism, by factorial analysis, indicated that genetic factors

significantly affected the level of every metabolite. The CV

Figure 7. Seed-fruit metabolite network. Network visualization of metabolites as analyzed on dry IL seed and fruit metabolites of harvest season
I in Akko, Israel. Metabolites are represented as nodes, and their relations, as edges. The Pearson product-moment correlation was employed to
compute all pairwise correlations between metabolites across the entire set of ILs. Only significant correlations are depicted. A significance level of
#0.01 and an r-value of$0.3 were considered to be significant. Seed metabolites are depicted as circular black-bordered nodes, fruit metabolites are
depicted as diamond-shaped red-bordered nodes. Metabolites are color coded and clustered according to their compound classes. The two tissue
sub-networks are separated spatially into the left region (seed network) and right region (fruit network). Positive correlations are denoted as blue
edges, and negative correlations are denoted as red edges. Computations of the correlations were conducted under the R environment. Cytoscape
was used to generate the graphical output of the networks.
doi:10.1371/journal.pgen.1002612.g007
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confirmed these findings, showing a general promoting effect of

the genetic introgression on the phenotypic plasticity of the

metabolite traits. In addition, distinct chromosomal segments led

to higher phenotypic plasticity in the seed in ,2% of the traits.

Nonetheless, in specific comparisons of tissue-dependent broad-

sense heritability, the greater occurrences of H2 values approach-

ing 1 in the analysis of the seed dataset indicates increased

heritability of metabolic traits in the seed compared to the fruit,

while the high frequency of relatively low H2 values in the

background of the fruit suggests metabolic polymorphism more

affected by environmental factors.

Correlation-based network analysis indicated that the seed

metabolic network is inherently more coordinated than the fruit

network, as is reflected in a higher number of correlations (the vast

majority of which being positive correlations), leading to higher

density and higher cluster coefficients. In other words, a more

conserved link between genotype and trait, associated with highly

synchronized patterns of change in metabolite abundance, reflects

the tight regulation of metabolic processes in the seed, which is

probably aimed at maintaining the metabolic balance needed for

storage reserve allocation, C-N partitioning, and reorganization of

metabolism at the onset of germination. We hypothesize that the

metabolism of the fruit pericarp, if not acting concertedly as it

should, poses a lesser danger to species survival than irregularities

in seed metabolism.

The findings of significantly coordinated regulation of metabolic

processes in seeds of different species, e.g., strawberry, Arabidopsis

and pea [73–76], and of defective germination in seeds with

unbalanced metabolism [77–81] imply that during evolution of

seed-plants plants have also been selected on the basis of their

efficient regulation of seed metabolism. Seed metabolism acts

concertedly both during development and when major perturba-

tions are introduced [73,74,76]. Coordinated activity of metabolic

processes may be due to the presence of transcription factors or to

allosteric and/or epistatic interactions [82,83]. Via sequence

analysis of a subset of candidate genes and the corresponding

promoter regions, we concluded that certain metabolic polymor-

phisms result either from differential functionality of the gene

product or from differential gene regulation. Moreover, variations

at the metabolite level might originate from a developmental

regulation of gene expression. The relevance of developmental

specificity, i.e., tissue-specific promoters, and variation in the

ploidy levels of the fruit and the seed in relation to metabolic

regulation should be further investigated. Last, we cannot exclude

different degrees of precision in defining the developmental stage

of the two tissues between different plants.

Figure 8. Degree of connectivity cluster network. Network visualization of metabolites as analyzed on dry seed and the fruit of IL season I
harvest in Akko, Israel. Metabolites are presented as nodes, and their relations, as edges. The Pearson product-moment correlation was employed to
compute all pairwise correlations across the entire set of ILs. Only significant correlations are shown. Clusters of high connectivity of metabolites were
generated on the basis of the network presented in Figure 7 by applying the clustering algorithm supplied by the NeMo for Cytoscape plug-in.
Metabolites were clustered together on the basis of the degree of connectivity to adjacent metabolites. The two main clusters (seed-fruit) were
verified by computing the modularity value Q by using the fast greedy community algorithm under the R environment. Seed metabolites are
depicted as circular black-bordered nodes, and fruit metabolites are depicted as diamond-shaped red-bordered nodes. Positive correlations are
denoted as blue edges, and negative correlations, as red edges. Computations of the correlations were conducted under the R environment.
Cytoscape was used to generate the graphical output of network.
doi:10.1371/journal.pgen.1002612.g008
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Figure 9. Bipartite cross-seasonal correlation network. Bipartite cross-seasonal network visualization of metabolites as analyzed on dry IL
seeds of harvest seasons I and II in Akko, Israel. Metabolites were correlated employing Pearson’s correlation coefficient among seasons and ordered
according to their compound classes. Nodes represent metabolites of harvest seasons I and II, respectively. Edges represent significant correlations
across seasons among metabolites. Blue edges depict positive correlation, and red edges, negative correlations. A significance level of #0.01 and an
r-value of$0.3 were considered to be significant. Computations of the correlations were conducted under the R environment. Cytoscape was used to
generate the graphical output of the network.
doi:10.1371/journal.pgen.1002612.g009
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Statistical analysis indicated significant effects of the season and

of organ development on metabolite abundance. Thus, it is not

inconceivable that the genetic network controlling the tomato seed

metabolism is dependent, at least in part, on both the environment

and on tissue and plant development [60,84,85]. The high

fluctuations of the seed sugar levels between seasons I and II may

be in response to differences in environmental conditions.

According to the Israel Meteorological Service (IMS – ims.gov.il),

temperatures recorded for August of season I (2004) were below

average. Season II (2005), on the other hand, showed tempera-

tures above average of up to +1uC during the daytime and up to

+2.5uC at night in plane plateaus, such as the Western Galilee

Experimental Station, Akko, Israel, where the plants were grown.

As shown by the 3-factor modeling, the seasonal factor has a

significant impact on the variance of the dataset. Schauer et al.

[35] have previously shown that inter-seasonal comparisons

greatly reduce the number of QTL; they recorded only 43

conserved QTL across three seasons of initially 889 detected

significant changes [2].

The high degree of negative correlations between seed

metabolites and morphological traits indicates an opposite pattern

of change of distinct morphological traits with respect to the

specific metabolite quantities across the population. Cartographic

network analyses revealed that, in particular, the contents of seed

metabolites were negatively correlated with the harvest index (HI).

These results are in keeping with earlier findings showing negative

associations between fruit metabolites and the HI [2,7]. While

correlation analysis alone cannot reveal the direction of cause and

effect, it is likely that the supply of metabolites and/or the tradeoff

between organs during plant growth determines the level of

metabolites in each respective organ. Negative correlations

between seed metabolites and HI were observed mainly for amino

acids and N compounds, which also shared a correlation to the

seed-weight-to-fruit ratio and seed-number-to-fruit ratio. Interest-

ingly, a similar observation was made for the amino acid

composition of the pericarp [2], and subsequent studies on a

different introgression line population confirmed that this

correlation held under different cultivation practices that modified

the whole plant sink-source balance [58]. Taken together, these

lines of evidence show a direct link between N partitioning and

crop yield. That said, sugar levels in the seed do not seem to be

affected by changes in morphological traits as opposed to the sugar

levels in the fruit pericarp [2]. These pieces of evidence suggest

that the delivery of photoassimilates, in particular C moieties, from

the leaves to the seeds does not stand in relation to the delivery to

the fruit pericarp, as recorded by Schauer et al. [2]. Generally,

since the development of seeds is set as the terminal stage of plant

development, it may be concluded that major global changes in

metabolite levels in the seed are the result of variation in growth

and resource allocation, rather than vice versa, suggesting

competition for resources between vegetative growth and

reproductive organ development. A marked interplay between

fruit and seed was shown by applying network analysis. Short fatty

acids, polyamines, putrescine, organic phosphates, and particularly

sugars, were involved in correlations between the two organs

(Figure 8). It is reasonable to suggest that in the regulation of

carbon allocation via processes of sugar sensing and transport [86],

a pyramidal interaction regulates pericarp sugar metabolism (on

the basis of plant vegetative growth and HI), which, in turn, affects

the seed precursors for storage reserves. Beyond metabolic

linkages, it is clear that plants function as integrated systems, in

which metabolic and developmental pathways draw on common

resource pools and respond to changes in environmental energy

and resource supplies [87].

With regard to the regulation of seed metabolic processes,

network analysis revealed the existence of a tightly inter-regulated

amino acid module, acting as the backbone to the network, in

contrast to the independent amino acid sub-network of the fruit

pericarp. The occurrence of a highly intra-connected amino acid

module is also in keeping with results from analyses of an A.

thaliana seed ethylmethane sulfonate (EMS) mutant population,

which showed an unexpected concerted change in the content of

12 biosynthetically unrelated proteogenic free amino acids [88].

The inter-dependence of biosynthetically unrelated amino acids

observed in our study concurred with that of biosynthetic related

amino acids, such as Gly, Ser, Thr, Ile and Val, of which Thr, Gly,

and Ile are directly associated with the Asp family [89,90], Ser is

closely related to Gly, and Val biosynthesis is initiated by Thr

(KEGG pathway database - [91–93]). Amino acids closely related

by a biochemical pathway exhibited even stronger correlations

than the average in the amino acid module. The significant

positive correlations between amino acids imply that ratios

between amino acid levels within a seed ‘‘must’’ be maintained,

and they reflect a highly regulated amino acid metabolism that

includes both protein and non-protein amino acids (i.e. GABA),

both aromatic and aliphatic, likely to occur at the post-

transcriptional level in the regulation of N allocation. That said,

we cannot rule out the possibility that integration of induced

changes at the transcriptional level accounts for the intragenotypic

correlation of amino acid metabolism. The vast number of highly

significant associations between the amino acids and carbon

metabolites in the seed is indicative of considerable crosstalk

between C and N networks, as is exemplified by the correlation

between pyruvate-nicotinate (niacin, precursor of NAD), on the

one hand, and amino acids and glycolytic intermediates, on the

other hand. Our results support previous suggestions of an

extensively overlapping regulatory basis for central pathways in

N and C metabolism [46,94,95].

Furthermore, network analysis suggests a possible important

functional role for unbound metabolites in the dry seed [47] to

ensure a balance of the downstream processes vital for

germination, such as protein assembly and hormone biosynthesis;

for instance, the alteration in Lys metabolism during seed

maturation in Arabidopsis caused abnormal protein biochemical

characteristics (solubility) and impaired germination [47,76]. To

date, the function of unbound metabolites in mature seeds has

been widely disregarded. Dry mature seeds – for instance in A.

thaliana – store mRNAs of more than half of all genes [96] that

regulate the content and proportions of unbound pools of

metabolites in the mature seeds. These lines of evidence suggest

that the regulation of unbound metabolites during see maturation

is vital for post-dispersal storage and germination.

To conclude, our study shows that metabolite profiling in

combination with significant genetic variability can reveal

important regulatory mechanisms in seed metabolism. Network

analysis, coupled with tests of heritability and phenotypic

plasticity, highlighted the inherent differences between seeds and

fruit in the metabolic network structure and in the modes of

inheritance and revealed a hierarchy of regulation between

morphological yield-related and metabolite traits. Being applied

on data from heterogeneous sources, correlation-based network

analysis has proven successful—from the simple test of consistency

of the measurements across seasons, through a comprehensive

understanding of fruit-seed metabolite response to genetic

alteration, to the identification of modules and metabolites with

significant structural roles, which are worthy of further research.

In particular, the analysis of the seed metabolic response to genetic

alteration highlighted the relevance to keeping specific areas of
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metabolism balanced. As such, metabolic network analysis

combined with genetic resources can lead to the development of

significant supportive approaches in defining broader strategies for

crop quality improvement.

Materials and Methods

Growth conditions
The metabolite data set was obtained from seeds of field-grown

ILs from two seasons (2004 – season I and 2005 – season II)

isolated from exactly the same plants as the fruit pericarp material

described in ref. [2,35]. The field trials were conducted at the

Western Galilee Experimental Station in Akko, Israel. Plants were

grown in a completely randomized design with one plant per m2.

Seedlings were grown in greenhouses for 35–40 days and then

transferred to the field. Fruit was harvested when 80 to 100% of

the tomatoes were red [59]. The field was irrigated with 320 m3 of

water per 1,000 m2 of field area throughout the season.

Metabolite profiling by gas chromatography/mass
spectrometry
Relative metabolite content was determined essentially as

described in ref. [60] and [61] with modifications specific to

tomato [97] and seed tissue [73].

Data processing and statistics
Metabolite data generated by GC-MS comprised unique mass

intensity values for each annotated compound. The raw data for

each metabolite was normalized by dividing each value by the

median of all tags in the corresponding data file generated from

each chromatogram. In addition, to overcome biases due to

separate injection periods, we ran a bulked extraction of M82 as

reference throughout the injection sets. The response values were

then normalized on the M82 reference sample. Descriptive

statistics were calculated with R statistical software, Microsoft

Excel 2004 for Mac, and MatLab 2008b version. For subsequent

multivariate analyses, the data were log10 transformed. Solely for

purposes of visualization, the data were also fold-transformed.

QTL mapping
QTL mapping analyses were performed on the reference-based

normalized raw data, followed by log10 transformation. To test

whether metabolite quantities changed significantly across all ILs

and the control M82, one-way ANOVA was performed for each

metabolite. A permissive threshold level of #0.05 was chosen to

test for significant changes. Subsequently, metabolites that were

identified to be significantly altered were subjected to Dunnett’s

test, with M82 as the control. This analysis detected specific ILs

with significant quantitative changes in metabolic levels and as

such identified putative QTL. After the Bonferroni correction, our

initial p-value of 0.05 resulted in a critical value of #0.006.

Despite this highly restrictive criterion, we chose here to depict

putative QTL with a critical value of #0.01 in the Dunnett’s test

heat map. Values illustrated by gradual color codes in the

Dunnett’s test heat map exclusively delimit significant changes, but

additionally depict the average metabolic level for each identified

IL after log transformation, as mentioned above. Pinkish areas

indicate no significant alterations of metabolic quantities vis-à-vis

control M82. Due to the differences in the datasets, the confidence

intervals were calculated for the season II dataset. Only ILs

generating a significant change for both seasons, following the

strict adjusted p-value after the Bonferroni correction, were

considered to be shared, leading to the identification of 46 shared

QTL. The QTL heat map and hot spots were assembled with

MatLab 2008b version and edited with Photoshop version 8.0 for

Mac, also serving as the graphics editor for the QTL map. The bar

graph figure displays ILs for significantly identified metabolites

and the metabolic quantity in relation to control M82. Solely for

the purpose of visualization, all values for metabolites were

averaged and displayed as a fold changes with respect to M82. The

bar graphs were generated in R, utilizing the default settings, and

edited in Photoshop.

Two- and three-way-factor ANOVA modeling
The three main factors with potential impact on the variance of

the different datasets were chosen as follows: IL (representing the

genetic background), tissue (seed and fruit), and season (I, II, III,

IV). All ANOVA models were tested with log-transformed data

with fixed factors, creating dummy variables for the season and the

tissue factor. A significance threshold of p#0.05 was chosen. For

the 2-way ANOVA, seed seasons I and II were integrated into the

analysis. Here, a pairwise ANOVA was run for every metabolite

with corresponding ILs and controls for both seasons. For the 3-

way ANOVA, a full-factorial model with all possible interactions

and with all single and combined effects, was initially designed,

including the fruit season I, III, and IV datasets and the seed

season I dataset. In an iterative mode, the model was applied

individually to all metabolites present in all datasets subjected to

the analysis. Based on the outcomes, subsequent models were

formulated. Also, models testing only for two-way interactions or

two-way and single effects were designed to show the impact of

single factors and combined factors on the variance of the datasets.

Heritability test: Coefficient of variation (CV) and broad-
sense heritability (H2)
The CV values were calculated by taking the ratio of the

standard deviation over the mean for every metabolite individually

for each IL and M82. Subsequently, the resulting CV values were

divided into 40 bins of incrementing intervals of 0.1 for which the

relative frequencies in the wild type and the ILs were estimated

(Figure 5a) in both the fruit and the seed. Broad-sense heritability

was calculated by estimating mean square values from ANOVA by

applying the following linear model: yijkl=M+Si+R(S)j(i)+Gk+GSi-

k+eijkl, where y corresponds to the log of a single metabolite, M to

the grand mean, S to the season, R(S)j(i) to the effect of replicate j

in season i, G to the genotype, and e to the error term. As for the

CV analysis, the results were arranged into bins of 0.1 intervals, for

which the absolute amount of each bin was determined separately

for each tissue. Heritability was calculated per trait (across all ILs

and M82), while the CV of each trait was estimated for each

individual IL.

Candidate gene identification
Following QTL mapping and comparative analysis of various

tissue and seasonal maps, introgressed segments of interest were

identified for further analysis of candidate gene identification. We

used the map of the tomato IL population as provided by the Sol

Genome network. This map displays individual chromosomes with

restriction sites of the different introgressed segments. It also

displays all identified marker genes. We developed a script

automatically identifying all marker genes in the HTML code,

following its link to the TAIR database and downloading the

functionality of the gene as provided. After obtaining all

information, each identified marker gene in the sites of interest

was manually examined for its functionality and proposed as a

potential candidate gene, based on its relevance to metabolic

activity; each marker of interest was then subjected to database
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query, as described above. Genes with unknown functionalities

were also included into the list of potential candidate genes.

Gene sequence and alignment analysis
DNA sequences of SGN-U261955, SGN-U217186, and SGN-

U242840 of M82 were obtained by BLAST search of predicted

cDNA sequence in the NCBI (http://www.ncbi.nlm.nih.gov/) and

SOL Genomics Network (http://solgenomics.net/) websites, using

sequences of cDNA obtained from the SOL Genomics Network

website. DNA of S. pennellii was extracted from leaf tissues by using

standard protocols. The primers for sequencing of S. pennellii were

designed on the basis of the sequence of M82 genes (Text S2). The

PCR products were cloned and sequenced. The resulting

sequences were aligned using Clustal X2 (http://www.clustal.

org/) and GeneDoc (http://www.nrbsc.org/gfx/genedoc/).

Correlation analysis—pairwise correlation
Correlation analysis between all metabolite pairs and metabolite

plus morphological trait pairs were performed by averaging IL

replicates for each metabolite and morphological trait. Correla-

tions across whole populations were calculated by using Pearson’s

product-moment correlation (Pearson’s r), as provided by the R

statistical software. Prior to correlation calculations for metabolite

and morphological trait pairs, data was standardized by Z-score

transformation. A Z-score quantifies the original value in terms of

the number of standard deviations of that score from the mean of

the distribution and thereby facilitates comparisons of observations

from different normal distributions. If the variable to be

transformed is the sample mean, then the standard deviation is

substituted for the standard error. Corresponding p-values were

calculated using the cor.test function as provided by R, which

analyzes the association between paired samples.

Network analysis
Networks constructed for seed and fruit metabolites, in

separate and holistic modes, were based on correlation analyses.

To combine metabolic data from the fruit and the seed, each data

set was normalized by its tissue weight. For the seed we utilized

the correlation matrix described above, and for the fruit we

calculated correlations based on Pearson’s product-moment

correlation. For the normalized combinatorial data set, the

Pearson’s product-moment correlation was also applied. Corre-

lations between all metabolites were tested by using IL mean

values (n = 76 lines) in season I. Since the metabolites yielded

3655 and 2016 pairs in the fruit and seed matrix, respectively, we

chose a critical p-value of #0.01 and an r–value of $0.3 to detect

significant correlations and to generate adjacency matrices. The

689 and 383 resulting pairs for the seed and fruit networks,

respectively, were depicted as a cartographic network, where a

node corresponds to a metabolite and a link between two nodes

represents a significant correlation between those two metabo-

lites. All computations and preparation for subsequent network

visualizations were generated in R. The graphical presentation of

the network was composed with Cytoscape version 2.7.0.

Network statistics were computed utilizing the plugin NetworkA-

nalyzer 2.6.1 [98] developed at the Max Planck Institute for

Informatic (MPII) in Saarbruecken, Germany for the following

network parameters: degree of connectivity, defined as the

average number of edges adjacent to the nodes in a network;

the clustering coefficient, describing the local cohesiveness of a

network and computing the probability of connectivity of two

nodes with a common neighbor; the network density, character-

izing the proportion of edges in a network in relation to the total

amount of potential edges in a network; and the diameter, which

is defined as the longest path among all shortest paths over all

pairs of nodes present in the network [99]. Module identifications

were performed utilizing the plugin NeMo (Network Module

Identification) v1.4 [72], which detects modules based on high

connectivity. To verify modules as displayed by the NeMo plugin,

we computed the modularity value Q by predefining member-

ships assigning seed metabolites to one cluster and fruit

metabolites to another cluster. We then permuted the member-

ship vector 105 times, recalculating Q and computing p. As a

second approach, we applied the fast greedy community

algorithm to verify the tightly connected seed metabolism, as

observed before. We also calculated Q, recording the maximal

value as computed by the algorithm. We randomized the seed-

fruit network 104 times and recalculated max Q for each iteration

to compute p. All calculations were performed utilizing functions

of the igraph package in R.

Network measure comparison
The average variance of the seed season I dataset was

computed, under consideration of outliers, by independently

calculating the variance of each metabolite for each IL and

estimating the average. Similarly, the variance of metabolites for

every IL was calculated in the fruit dataset. Subsequently, the

average variance was calculated for each IL. The single fruit IL

variance averages were ranked in accordance to the seed season I

dataset average variance (closest to furthest). The differences of

the single fruit IL variances to the averaged seed variance were

determined by applying F-value statistics. Iteratively subsets of

the ranked ILs containing the average metabolic values were used

to create networks and compute network measures by using

functions of the R igraph package. To be consistent with former

correlation based network construction, we applied the same

thresholds for correlation coefficients (0.3) and p-values (0.01). At

each iteration, the number of ranked fruit ILs was incremented,

generating subsets of ILs ranging from 15 to 25. Each subset was

subjected to permutation tests to evaluate statistical differences

between seed metabolite network measures and subset network

measures. The proposed null-hypotheses yielded no significant

differences between subset network measures and seed network

measures.

Data set availability
The original data set of seed metabolites as generated by GC-

MS conductance may be viewed on the Phenome Networks

platform (URL listed in the section of URLs). This platform

facilitates the manipulation, correlation and analysis of data in a

way similar to that described here. Users may view all statistical

tests performed here.

URLs
R statistical software, http://www.R-project.org; Cytoscape:

Analyzing and Visualizing Network data, http://www.cytoscape.

org; Phenome Networks, http://phnserver.phenome-networks.

com/; The Sol Genomics Network, http://solgenomics.net/;

SeedNet and SCoPNET, http://vseed.nottingham.ac.uk/; The

Arabidopsis Information Resource (TAIR), http://www.arabidopsis.

org/; The A. thaliana Co-Response Database, http://csbdb.mpimp-

golm.mpg.de/csbdb/dbcor/ath/ath_tsgq.html; The KEGG path-

way database, http://www.genome.jp/kegg/pathway.html; NCBI,

http://www.ncbi.nlm.nih.gov/; ClustalX, http://www.clustal.org/;

GeneDoc, http://www.clustal.org/; Israel Meteorological Service,

http://ims.gov.il.
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Supporting Information

Figure S1 Heat map of metabolites that changed significantly

across the IL collection during season I. Heat map representation

of significant metabolites identified by Dunnett’s test as applied to

IL season I harvest in Akko, Israel, as compared with cultivar M82

(control) analyzed on dry seeds. Each metabolite was individually

compared with M82 on each IL. Colored rectangles indicate a

significant change as compared with the control. A probability

threshold of #0.01 is illustrated. Metabolites were categorized

according to their compound class. Groups of metabolites yielding

highly significant changes (p,0.001) are delimited within black

rectangles and magnified outside the heat map.

(PDF)

Figure S2 Co-localization of seed and fruit mQTL. Map of co-

localized mQTL of fumarate, malate, fructose, and glucose in the

seed and fruit as analyzed on season I and II harvests in Akko,

Israel. Co-localizations of named metabolites show a putative

tissue independent relationship between the two TCA cycle

intermediates and the two monosaccharaides.

(PDF)

Figure S3 Metabolite-metabolite correlation. Visualization of

metabolite-metabolite correlation. Heat map of metabolite-

metabolite correlations as analyzed on dry IL seeds of IL harvest

season I in Akko, Israel. Metabolites were categorized according to

their compound class. The Pearson product-moment correlation

was employed to compute correlation between metabolites

heading the rows and metabolites heading the columns. Each

colored rectangle depicts an r value resulting from the computa-

tion (see color key top right). Regions with accumulated high

correlation throughout various metabolites are identified by black

rectangles and magnified outside the heat map.

(PDF)

Figure S4 Morphological traits – metabolite correlation. Depic-

tion of correlation between metabolic data as analyzed on dry IL

seeds harvest season I in Akko, Israel and morphological traits of

the ILs. The Pearson product-moment correlation was employed

to compute correlation between morphological traits heading the

rows and metabolites heading the columns. Colored rectangles

display r values resulting from Pearson’s correlation coefficient

computations (see color key). Z-score transformation was used to

enable correlation calculations. Areas with high correlation are

denoted by black rectangles and magnified outside the graph.

Metabolites were categorized according to their compound class.

(PDF)

Figure S5 Seed metabolite network. Network visualization of

metabolites as analyzed on dry IL seeds of harvest seasons I and II

in Akko, Israel. Metabolites are presented as nodes, and their

relations, as edges. Metabolites are color-coded and clustered

according to the compound classes. The Pearson product-moment

correlation was applied across the entire set of ILs to compute

pairwise correlations. Only significant correlations are depicted. A

significance level of ,0.01 and an r-value of.0.3 were considered

to be significant. Positive correlations are shown as blue edges,

negative correlations, as red edges.

(PDF)

Figure S6 Fruit metabolite network. Network visualization of

metabolites as analyzed on IL fruits of harvest season I in Akko,

Israel. Metabolites are presented as nodes, and their relations, as

edges. Metabolites are color-coded and modulated according to

the compound classes The Pearson product-moment correlation

was applied across the entire set of ILs to compute pairwise

correlations. Only significant correlations are depicted. A

significance level of #0.01 and an r-value of $0.3 were considered

to be significant.

(PDF)

Figure S7 Seed metabolite network union of seasons I and II.

Network visualization of metabolites as analyzed on dry IL seeds of

harvest seasons I and II in Akko, Israel. The networks of the two

seasons were converged into a single network. Metabolites are

presented as nodes, and their relations, as edges, where red edges

represent conserved correlations, green edges represent correla-

tions occurring solely in season I, and blue edges represent

correlations occurring solely in season II. Metabolites are color-

coded and clustered according to the compound classes. The

Pearson product-moment correlation was applied across the entire

set of ILs to compute pairwise correlations. Only significant

correlations are depicted. A significance level of ,0.01 and an r-

value of .0.3 were considered to be significant. Computations of

the correlations were conducted under the R environment.

Cytoscape was used to generate the graphical output of the

network.

(PDF)

Figure S8 Degree of connectivity cluster network of seasons I

and II. Network visualization of metabolites as analyzed on dry IL

seeds of harvest seasons I and II in Akko, Israel. Metabolites are

presented as nodes, and their relations, as edges. The Pearson

product-moment correlation was employed to compute all

pairwise correlations across the entire set of ILs. Only significant

correlations are depicted. Clusters of high connectivity of

metabolites were generated on the basis of the network presented

in Figure S5 by applying the clustering algorithm supplied by the

NeMo for Cytoscape plug-in. Metabolites were clustered together

on the basis of the degree of connectivity to adjacent metabolites.

Computations of the correlations were conducted under the R

environment. Cytoscape was used to generate graphical output of

network.

(PDF)

Figure S9 Seed metabolite network intersect of seasons I and II

– compound class and degree of connectivity cluster view.

Network visualization of metabolites as analyzed on dry IL seeds

of harvest seasons I and II in Akko, Israel. The networks of the two

seasons were converged into one network by selecting only the

conserved correlations throughout both seasons. Metabolites are

presented as nodes, and their relations, as edges, where red edges

represent conserved correlations. The Pearson product-moment

correlation was employed to compute all pairwise correlations

across the entire set of ILs. Only significant correlations are

depicted. A significance level of #0.01 and an r-value of $0.3

were considered to be significant. Left region: Metabolites are

color coded and modulated according to the compound classes.

Right region: Clusters of high connectivity of metabolites were

generated on the basis of the network presented in in Figure S5 by

applying the clustering algorithm supplied by the NeMo for

Cytoscape plug-in. Metabolites are clustered together on the basis

of the degree of connectivity to adjacent metabolites.

(PDF)

Table S1 IL pairwise ANOVA for all metabolites across seed

seasons I and II. 2-way ANOVA was performed in a pairwise

manner for each metabolite in corresponding ILs of the two seed

seasons (I and II). The Table shows the estimated p-values for each

IL and metabolite for the single term ‘genotype’ (Table S1a) and

the interaction term ‘season * genotype’ (Table S1b).

(XLS)
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Table S2 Candidate gene At5g10920 and its correlated genes

associated with glycolysis on IL 4-3. Candidate gene At5g10920 as

identified on IL 4-3 putatively associated with glycolysis and

correlated genes as generated by SeedNet available on http://

vseednet.nottingham.ac.uk. The candidate gene is involved in Arg

biosynthesis. The correlated genes are supplied with the Pearson

correlation coefficient values. Correlated genes of relevance to

glycolysis are highlighted in grey. Localization of gene candidates

was achieved by utilizing data as analyzed on dry IL seeds of

harvest seasons I and II in Akko, Israel.

(PDF)

Table S3 Candidate gene At5g63840 and its correlated genes

associated with glycolysis on IL 4-3-2. Candidate gene At5g63840
as identified on IL 4-3-2 putatively associated with glycolysis and

co-predicted genes as generated by SCoPNET available on

http://vseednet.nottingham.ac.uk. The candidate gene is involved

in cellulose biosynthetic processes with glucosidase and hydrolase

activities. The co-predicted genes are supplied with the co-

prediction PMI values. Co-predicted genes of relevance to

glycolysis are highlighted in grey. Localization of gene candidates

was achieved by utilizing data as analyzed on dry IL seeds of

harvest seasons I and II in Akko, Israel.

(PDF)

Table S4 Candidate gene At1g14810 and its correlated genes

associated with organic acid and hexose sugars on IL 1-1-3.

Candidate gene At1g14810 as identified on IL 1-1-3 putatively

associated with organic acid and hexose sugars and correlated

genes as generated by SeedNet available on http://vseednet.

nottingham.ac.uk. The candidate gene codes for an aspartate

semialdeyhde dehydrogenase. The co-predicted genes are supplied

with Pearson’s coefficient values. Correlated genes of relevance to

glycolysis are highlighted in grey. Localization of gene candidates

was achieved by utilizing data as analyzed on dry IL seeds of

harvest seasons I and II in Akko, Israel.

(PDF)

Table S5 Candidate gene At1g20575 and its correlated genes

associated with organic acid and hexose sugars on IL 4-4.

Candidate gene At1g20575 as identified on IL 4-4 putatively

associated with organic acids and hexose sugars and co-predicted

genes as generated by SCoPNET available on http://vseednet.

nottingham.ac.uk. The candidate gene is involved in D-ribose

catabolism. The co-predicted genes are supplied with the co-

prediction PMI values. Co-predicted genes of relevance to organic

acids or sugars are highlighted in grey. Localization of gene

candidates was achieved by utilizing data as analyzed on dry IL

seeds of harvest seasons I and II in Akko, Israel.

(PDF)

Table S6 Candidate gene At1g20575 involved in the D-ribose

catabolism and its correlated genes associated with organic acid

and hexose sugars on IL 4-4. Candidate gene At1g20575 as

identified on IL 4-4 putatively associated with organic acid and

hexose sugars and correlated genes as generated by SeedNet

available on http://vseednet.nottingham.ac.uk. The candidate

gene is involved in D-ribose catabolism. The co-predicted genes

are supplied with Pearson’s coefficient values. Correlated genes of

relevance to organic acids or sugars are highlighted in grey.

Localization of gene candidates was achieved by utilizing data as

analyzed on dry IL seeds of harvest seasons I and II in Akko,

Israel.

(PDF)

Table S7 Parameters as calculated on seed and fruit networks.

Based on the networks presented in Figure 7, Figure 8, and Figures

S5, S6, S7, S8, S9, the following typical network typical

parameters at different r thresholds were computed: number of

nodes, number of edges, degree of connectivity, clustering

coefficients, network density, and network diameter. In addition,

the percentage of the significant correlations at a given r threshold

in accordance to the total number of correlations were calculated.

(PDF)

Table S8 Fruit ILs ranked based on individual variances

compared with overall average variance of seed IL population.

Shown are the 25 fruit ILs chosen for the subset network

parameters comparison with reference to the network parameters

of the seed IL network. ILs were ranked based on their variance as

compared with the average variances of the seed IL dataset. To

show differences of variances F-statistics were applied to estimate

p-values. None of the chosen ILs show significant differences

between individual IL variance and overall average seed IL dataset

variance.

(PDF)

Table S9 Conserved correlations across seasons and tissues.

Conserved correlations across seasons within the same tissue.

Conserved correlations of combinatorial fruit-seed networks were

also compared for different seasons. To compare networks,

datasets must be synchronized for metabolites, which leads to loss

of correlations. Roman Capitals refer to harvest seasons.

(PDF)

Text S1 Candidate gene identification via the A. thaliana co-

response database.

(PDF)

Text S2 Candidate gene BLAST results against Solanum pennellii.

(PDF)

Text S3 Confirmation of season I seed network via repetition of

analysis on season II seed network.

(PDF)
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