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Obesity represents one of the most complex public health challenges and has recently
reached epidemic proportions. Obesity is also considered to be primarily responsible for
the rising prevalence of metabolic syndrome, defined as the coexistence in the same indi-
vidual of several risk factors for atherosclerosis, including dyslipidemia, hypertension and
hyperglycemia, as well as for cancer. Additionally, the presence of three of the five risk
factors (abdominal obesity, low high-density lipoprotein cholesterol, high triglycerides,
high fasting glucose and high blood pressure) characterizes metabolic syndrome, which
has serious clinical consequences. The current study was conducted in order to identify
metabolic differences in visceral adipose tissue (VAT) collected from obese (body mass
index 43-48) human subjects who were diagnosed with metabolic syndrome, obese indi-
viduals who were metabolically healthy and nonobese healthy controls. Extensive gas
chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spec-
trometry (LC/MS/MS) analyses were used to obtain the untargeted VAT metabolomic pro-
files of 481 metabolites belonging to all biochemical pathways. Our results indicated
consistent increases in oxidative stress markers from the pathologically obese samples in
addition to subtle markers of elevated glucose levels that may be consistent with meta-
bolic syndrome. In the tissue derived from the pathologically obese subjects, there were
significantly elevated levels of plasmalogens, which may be increased in response to oxi-
dative changes in addition to changes in glycerolphosphorylcholine, glycerolphosphory-
lethanolamine glycerolphosphorylserine, ceramides and sphingolipids. These data could
be potentially helpful for recognizing new pathways that underlie the metabolic—vascular
complications of obesity and may lead to the development of innovative targeted
therapies.

Introduction

Patients with obesity-related pathophysiologies such as insulin resistance and the metabolic syndrome
show a markedly increased risk for type 2 diabetes and atherosclerotic cardiovascular disease. This
risk appears to be linked to different alterations in adipose tissue function leading to a chronic inflam-
mation and to the dysregulation of adipocyte-derived factors. Insulin resistance and the resultant
hyperinsulinemia lead to a series of alterations in different pathways that are the basis of many
obesity-related complications. Interestingly, the obese phenotype has a high degree of heterogeneity,
spanning a wide range from metabolically healthy obesity to the combination of several metabolic and
circulatory abnormalities known as the metabolic syndrome. Given the different cardiovascular out-
comes associated with metabolically healthy and ‘at risk’ obesity, there is an urgent need to better
understand how obesity causes diabetes and atherosclerotic complications. The specific molecular
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mechanisms that lead from obesity toward a greater risk of cardiometabolic complications or even cancer
remain elusive. The characterization of the mechanisms involved in the pathophysiology of obesity and insulin
resistance have become a pressing challenge and could lead to the successful development of targeted therapies.

Oxidative stress, inflammation and the dysregulation of multiple lipid metabolic pathways are closely inter-
linked in obesity and seem to be key factors in the pathogenesis of obesity-associated illnesses [1-7]. In particu-
lar, excessive food intake leads to mitochondrial dysfunction, in part due to the effects of high concentrations
of reactive oxygen species and the consequent oxidative stress, which plays a central role in the development of
insulin resistance [8-10] in different clinical conditions, such as obesity, type 2 diabetes and metabolic syn-
drome [11-14]. In turn, mitochondrial dysfunction increases the levels of intracellular FA metabolites (fatty
acyl-CoA, diacylglyerol) that alter insulin signaling in the muscle as well as in the liver [15-18]. Recently, great
interest has emerged regarding the dysregulation of adipose tissue function in obesity-related complications,
particularly with regard to bioactive lipids synthesized in adipose tissue, including sphingolipids and phospholi-
pids, as well as in fatty acids derived from the phospholipids of the cell membrane [19]. While abdominal
obesity is determined by the accumulation of both subcutaneous adipose tissue and visceral adipose tissue
(VAT), several evidence demonstrates that VAT rather than subcutaneous adipose tissue plays a more signifi-
cant pathogenic role in metabolic disease producing many adipokines and cytokines leading to a proinflamma-
tory, procoagulant and insulin-resistant state [20-22]. To investigate the metabolic changes directly in VAT, we
used a wide metabolomic approach to identify individual metabolites and thus discrete pathways in normal
versus obese subjects. The application of metabolomics in obesity was also used to evaluate the therapeutic
effect of various pharmacological and lifestyle-related strategies involved in obesity-related vascular complica-
tions. The goal of the present study was to interrogate the biochemical profiles of human VAT originating from
healthy subjects and an obese cohort stratified by the clinical diagnosis of metabolic syndrome, with the aim of
characterizing the altered metabolism associated with the pathology of metabolic syndrome.

Materials and methods

Study population

The present study included 53 patients admitted to the surgical unit of the University of Rome Tor Vergata for
barijatric or general surgery. The project was approved by the Medical Ethics Committee of the Institution.
Written and informed consent was obtained from all participants before they were included in the study. The
patients were divided into three study groups as indicated in Table 1 and Supplementary Table S1. Group 1: 17
healthy (H) subjects, body mass index (BMI) =25.31 + 0.91, normal waist circumference, matched to the obese
groups for approximate age and sex. Group 2: 18 obese patients without metabolic syndrome, indicated as
obese (O). Group 3: 18 patients with obesity-related metabolic syndrome (indicated as pathologically obese,
PO) defined according to the National Cholesterol Education Program’s Adult Treatment Panel III report
(ATP III) [23]. Metabolic syndrome is present if three or more of the following five criteria are met: waist cir-
cumference over 40 inches (men) or 35 inches (women), blood pressure over 130/85 mmHg, fasting triglyceride
level over 150 mg/dl, fasting high-density lipoprotein (HDL) cholesterol level less than 40 mg/dl (men) or
50 mg/dl (women) and fasting blood sugar over 100 mg/dl. Increased waist circumference was present in all PO
patients, lipid abnormalities were present in 17 patients, hypertension was present in 7 patients and impaired
glucose tolerance was present in 12 patients. Each subject was screened according to clinical history, physical
examination, ECG, chest X-ray and routine chemical analyses. None of the participants in the healthy subjects
group had evidence of present or past hypertension, hyperlipidemia, diabetes, cardiovascular disease or any
other systemic condition. No particular diet has been recommended to the patients before bariatric or general
surgery. Overall exclusion criteria were acute or chronic infection, acute or chronic autoimmune inflammatory
disease, history of cancer and history of alcohol or drug dependence; for a summary of the clinical features and
patient’s habits, see Tables 2 and 3 and Supplementary Table S1. Plasma parameters were evaluated in fasting
conditions.

Sample preparation

Samples were inventoried and immediately stored at —80°C. Each sample was accessioned into the Metabolon
LIMS system and was assigned by the LIMS a unique identifier that was associated with the original source
identifier only. This identifier was used to track all sample handling, tasks and results. The samples (and all
derived aliquots) were tracked by the LIMS system. All portions of any sample were automatically assigned
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Table 1 Experimental design

Group No. of patients Description

H (healthy) 17 6M/11F) Healthy subjects

O (obese) 18 (4M/14F) Obese subjects without metabolic syndrome
PO (pathological obese) 18 (8M/10F) Obese subjects with metabolic syndrome

524 patients

Seledlion Laleni

79 445 patients
1
| |

114 331 patients

! }

Ruandum 18 18 patients

M/F: male and female. Age, years: >20; <65.

their own unique identifiers by the LIMS when a new task was created; the relationship between these samples
was also tracked. All samples were maintained at —80°C until they were processed. Samples were prepared
using the automated MicroLab STAR® system from Hamilton Company. Several recovery standards were added
prior to the first step in the extraction process for QC purposes. To remove protein, dissociate small molecules
bound to protein or to remove those trapped in the precipitated protein matrix and to recover chemically
diverse metabolites, proteins were precipitated with methanol under vigorous shaking for 2 min (Glen Mills
GenoGrinder 2000) followed by centrifugation.

Metabolomic analysis

The extracted samples were divided into five fractions: two for analysis by two separate reverse-phase (RP)/
UPLC-MS/MS methods with positive ion mode electrospray ionization (ESI), one for analysis by RP/UPLC-
MS/MS with negative ion mode ESI, one for analysis by HILIC/UPLC-MS/MS with negative ion mode ESI and
one sample was reserved for backup. Samples were placed briefly on a TurboVap® (Zymark) to remove the
organic solvent. The sample extracts were stored overnight under nitrogen before preparation for analysis. For
further details on data quality and process variability, see the ‘Supplementary Materials and Methods’ section.

Table 2 Clinical characteristic of study population
Plasma measurements were performed in fasting conditions. For each group, mean (+SD) is
reported. t-Test (P < 0.05) evaluated between groups O and PO.

Healthy (H) Obese (O) Pathological obese (PO)
MAP (mmHg) 96.56 + 1.60 95.46 £1.76 95.46+1.76
Waist (cm) 86.23+1.24 106.66 +1.70 105.11+1.35
BMI (kg/m?) 25.31 £0.91 4316 +1.57 48.59 +1.72*
Glycemia (mg/dl) 85.17 +1.89 88.11+£2.48 136.11 £ 12.12*
HDL (mg/dl) 46.47 £ 3.66 49.66 +2.88 37.72+£2.82*
Triglycerides (mg/dl) 107.29+7.30 110.33+10.14 230.83 £ 28.45*

Abbreviations: MAP: mean arterial pressure; BMI: body mass index; HDL: high-density lipoprotein.

© 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society
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Table 3 Selected clinical features/conditions of population study

Healthy (H) Obese (0) Pathological obese (PO)
Hypertension 017 0/18 16/18
Hyperlipidemia 0/17 4/18 5/18
Diabetes o7 0/18 12/18
Hypothyroidism 117 4/18 1/18
Gallstones 5/17 0/18 0/18
Asthma o7 2/18 1/18
Smoking 6/17 9/18 9/18
Contraception 117 2/18 0/18
Favism 117 0/18 0/18
Diverticulosis 017 1/18 0/18
Osteoporosis 117 0/18 3/18
Osas 017 0/18 1/18

Pathway enrichment analysis

For each individual pair-wise comparison, pathway enrichment displays the number of experimentally regulated
compounds relative to all detected compounds in a pathway, compared with the total number of experimentally
regulated compounds relative to all detected compounds in the study. A pathway enrichment value (PEV)
greater than one indicates that the pathway contains more experimentally regulated compounds relative to the
study overall, suggesting that the pathway may be a target of interest related to the experimental perturbation.
Enrichment: (# of significant metabolites in pathway (k)/total # of detected metabolites in pathway (m))/(total
# of significant metabolites (n)/total # of detected metabolites (N)) (k/m)/(n/N).

Results

Clinical parameters and global metabolic profiling

The present study consisted of 53 patients divided into three groups: healthy (H), healthy obese (O) and patho-
logically obese (PO) (Table 1). The clinical parameters used to select subjects are shown in Tables 1-3 and
Supplementary Table S1. As a control, we collected abdominal adipose tissue from 17 healthy subjects (H),
BMI =25.31+0.91, with a normal waist circumference, matched to the obese groups for approximate age and
sex. Then, we collected 18 healthy obese patients without metabolic syndrome, indicated as obese (O), and 18
patients with obesity-related metabolic syndrome, indicated as pathologically obese (PO). The latter group was
defined according to the National Cholesterol Education Program’s Adult Treatment Panel III report (ATP III)
[23]. Increased waist circumference was present in all PO and O patients, lipid abnormalities were present in
16/18 PO patients, hypertension was present in 16/18 PO patients and diabetes was present in 12/18 PO
patients (Table 3). Based on gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/
mass spectrometry (LC/MS/MS) analyses, 481 compounds of known identity were identified in adipose tissue
(Table 4 and Supplementary Table S2). A summary of the metabolites that achieved statistical significance (P <
0.05), as well as those approaching significance (0.05 < P < 0.10), is shown in Supplementary Table S2. Some of
these metabolites are involved in the pathways described below. General platform methods, data analysis and
metabolite detection identification are described in the ‘Materials and Methods” and ‘Supplementary Material’
sections.

Random forest (RF) analysis shows limited but significant separation between groups. To analyze segregation
between groups, we performed RF analysis. RF analysis showed a moderate ability to segregate obese from
healthy controls. Segregation between O and PO patients was less prevalent (Supplementary Figure S1). RF
analysis is an unbiased and supervised classification technique based on an ensemble of a large number of deci-
sion trees. Using the primary groupings of O, PO and healthy controls, RF classification analysis of the meta-
bolic profiles of the VAT resulted in a 71% and 80% predictive accuracy in differentiating the O and PO
samples, respectively, from the healthy controls (Supplementary Figure S1). The outcomes of these RF analyses

© 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society
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Table 4 Summary of metabolites change
Color code indicates statistically significant increase (red) or decrease (green). A total of 197 metabolites changed in a statistically
significant manner.

Significantly altered Group Obese/ Pathological obese/ Pathological obese/
metabolites effect healthy (O/H) healthy (PO/H) obese (PO/O)

Total metabolites P < 197 206 112 87
0.05

Metabolites — 2/ 19/ 86/

Total metabolites 0.05 < 49 45 49 48
P<0.10

Metabolites — 2/ 9/ 46/

were better than random chance alone (50% accuracy for two groups), indicating differences in the metabolite
profiles of the obese groups compared with healthy controls. In contrast, the RF classification between the O
and PO resulted in a lower predictive accuracy of 69%, and while this is greater than one would expect due to
random chance alone, it does suggest that these groups have limited segregation (Supplementary Figure S1). RF
analysis also produced a list of metabolites ranked by their importance to the classification scheme. The
primary class of molecule found to segregate between the O and PO samples was lipids, which included many
lysoplasmalogens (discussed later). Although there was limited segregation between groups, changes in metabo-
lites were analyzed as PEVs obtained via the differential enrichment pathways among groups (Figure 1). A
comparison of PO versus H subjects and PO versus O subjects revealed significantly different metabolites
according to the pathway enrichment value (PEV). In the first group (Figure 1a), we found high PEV in the fol-
lowing pathways: acetylated peptides, creatinine metabolism, eicosanoid, glycogen metabolism, hemoglobin and
porphyrin metabolism, inositol metabolism and ketone bodies. In the second group (Figure 1b), we found high
PEV in ceramide, phosphatidylserine, glutathione, amino sugar metabolism, plasmalogen, sphingolipid and
phospholipid metabolism and y-glutamyl amino acid metabolism. These findings confirm the presence of sig-
nificantly altered metabolic pathways in different patient groups.

Indications of increased oxidative stress in pathologically obese individuals in

relation to obese individuals

Here, we detected differential levels of metabolites which confirmed different levels of oxidative stress in
adipose tissue from PO and O subjects (Figure 2a-m). PO tissue samples exhibited lower levels of glutathione
(GSH), although this did not achieve significance, and elevated levels of oxidized glutathione (GSSG, P < 0.05)
when compared with O samples. This may highlight a difference in redox homeostasis between both groups of
obese subjects. Furthermore, modestly higher levels of cysteine-glutathione disulfide (marker of free radical
exposure, 0.05 <P <0.10) as well as methionine sulfone (P <0.05), N-acetylmethionine sulfoxide (0.05<P <
0.10) and cysteine (the oxidized form of cysteine, P < 0.05) in the PO samples in relation to O further support
increased oxidative stress. High levels of ophthalmate (P <0.05), a tripeptide analog of GSH in which cysteine
has been replaced by 2-aminobutyrate that is also considered a marker of oxidative stress, were also detected in
PO samples. Aside from direct free radical detoxification, GSH can be utilized for the generation of y-glutamyl
amino acids. y-Glutamyl amino acids regulate the exchange of intra- and extracellular GSH and are generated
via y-glutamyl transferase (GGT) through the transfer of a y-glutamyl moiety of glutathione to an amino acid
acceptor. The extracellular metabolism of GSH by GGT promotes the release and recovery of constituent
amino acids, such as glutamate and cysteine. Thus, GGT functions as a source of essential amino acids both
for protein synthesis and for the maintenance of intracellular levels of GSH. As noted in the heatmap
(Supplementary Table S2), there were significantly higher levels of many y-glutamyl amino acids, including
v-glutamylglutamine (P <0.05), y-glutamylthreonine (P <0.05) and y-glutamylvaline (P <0.05), along with
higher levels of the GSH catabolite 5-oxoproline (P<0.05) (Figure 2h-k), which may be indicative of
v-glutamyl amino acid degradation in an attempt to restore cysteine and GSH levels. Interestingly, many of
these changes were not found to be significantly different between the PO and O subjects. Surprisingly, the
majority of the metabolites included in Figure 2 were similar between the PO and H groups in comparison
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Figure 1. Biochemical changes in adipose tissue from groups evaluated as the pathway enrichment value (PEV).
Metabolite changes were expressed as the pathway enrichment value (PEV). Values are based on the significantly regulated
metabolites (P < 0.05) from the different groups. (a) Pathologically obese versus healthy and (b) pathologically obese versus
obese relative to all detected compounds in the pathway. PEV =k/m/n/N, k = number of significant metabolites in pathway,

m = total number of detected metabolites in pathway, n = total number of significant metabolites, N = total number of detected
metabolites. Detailed statistics are shown in Supplementary Table S2.

with O and H groups (see Supplementary Table S2). For example, the levels of y-glutamylvaline and cysteine-
glutathione disulfide did not significantly changed between PO versus H (fold change 1.131 and 0.778, respect-
ively), while significantly changed between O versus H (fold change 0.662, and 0.553, respectively; P < 0.05;
Supplementary Table S2). This could be due to biological variability between samples or may indicate a com-
pensatory and/or adaptation mechanism toward oxidative stress in PO subjects VAT. Another important
finding of our study was the significant differences in lipid metabolites, including ceramides, sphingosine,
sphingomyelins and plasmalogens in the pathologically obese subjects.

Ceramide and sphingolipid metabolism

Obesity is associated with the accumulation of lipid metabolites in organs, including the liver and the heart.
These lipids, including ceramides, are critical for obesity-induced pathologies [24]. All of the detected cera-
mides [ceramide (d14: 1/22:0, d16: 1/20:0; P <0.05), ceramide (d18: 1/14:0, d16: 1/16:0; P <0.05), ceramide
(d18: 1/17:0, d17: 1/18:0; P<0.05) and ceramide (d18: 1/20:0, d16: 1/22:0, d20: 1/18:0; P <0.05)] were
found to be significantly higher in PO samples compared with O samples (Figure 3a-d). These metabolite
changes were not significantly altered comparing O versus H and PO versus H groups (fold change ranging
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Figure 2. Oxidative stress is increased in pathologically obese samples.
The levels of reduced glutathione (GSH) (a), oxidized glutathione (GSSG) (b), cysteine-glutathione disulfide (c), methionine
sulfone (d), N-acetylmethionine sulfoxide (e), cysteine (f), ophthalmate (g), y-glutamylgluatmine (h), y-glutamylthreonine (i),
v-glutamylvaline (j) and 5-oxoproline (k) were measured as described in the Materials and Methods. The box legend is shown
in (I). Pathway connections of the cited metabolites are shown in (m). H, healthy; O, obese; PO, pathologically obese. GGT,
v-glutamyl transferase; GS, glutathione synthetase; GCS, glutamylcysteine synthetase. Data have been plotted in the whisker
plots. Detailed statistics are shown in Supplementary Table S2.

from 0.869 to 1.269; Supplementary Table S2), indicating that they are specific for PO subjects. Other sphingo-
sines and sphingomyelins (behenoyl sphingomyelin, tricosanoyl sphingomyelin and lignoceroyl sphingomyelin)
were also found to be significantly (P<0.05) higher within the PO group compared with the O group
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Figure 3. Ceramide and sphingolipid metabolism are increased in pathologically obese adipose tissue.

Increased levels of ceramide (a-d), sphingosine (e) and sphingomyelin derivatives (f~=h) were detected in pathologically obese
adipose tissue versus obese tissue. Pathway connections of the cited metabolites are shown in (i). The box legend is as
indicated in Figure 2I. H, healthy; O, obese; PO, pathologically obese. Data have been plotted in the whisker plots. Detailed
statistics are shown in Supplementary Table S2.
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(Figure 3e-i). While sphingosine was not significantly altered comparing O versus H and PO versus H groups
(fold change 0.815 and 1.227, respectively), behenoyl sphingomyelin, tricosanoyl sphingomyelin and lignocer-
oyl sphingomyelin metabolite changes decreased significantly O versus H groups (fold change 0.832, 0.815 and
0.695, respectively; P <0.05). Sphingolipids are part of the cell membrane and are components of lipid rafts.
They also serve as bio-effector molecules involved in cell proliferation. These changes may be consistent with
putative changes in sphingolipid intake and turnover. Interestingly, ceramides are lipid metabolites that accu-
mulate in tissues in response to obesity, and pharmacological strategies that reduce ceramide levels in tissues
improve metabolic health [21]. These molecules may also be associated with inflammation, which would be
consistent with the slightly higher levels of the eicosanoid 15-HETE and prostaglandins (Figure 4a,b).
15-HETE and 6-ketoprostaglandin Flalpha were significantly up-regulated in PO versus H subjects (fold
change 1.263 and 1.740, respectively; P <0.05), while slightly higher levels were detected in O subjects
(Supplementary Table S2) without reaching statistical significance.

Plasmalogens and lysoplasmalogens

Plasmalogens are a class of membrane glycerophospholipids containing a fatty alcohol with an ether
bond at the sn-1 position that are enriched in polyunsaturated fatty acids at the sn-2 position [25].
Many detected plasmalogens, including 1-(1-enyl-palmitoyl)-2-palmitoyl-GPC (glycerolphosphorylcholine),
1-(1-enyl-palmitoyl)-2-arachidonyl-GPC, 1-(1-enyl-palmitoyl)-2-arachidonyl-GPE (glycerolphosphorylethano-
lamine) and 1-(1-enyl-stearoyl)-2-arachidonoyl-GPE, were found to be significantly (P <0.05) greater in PO
samples compared with those from H and O subjects (Table 5), indicating that the increase of these metabolite
might be specific for PO subjects. Plasmalogens are known to be involved in protecting mammalian cells from
redox damage and may be elevated in response to the previously described indicators of oxidative stress.
Plasmalogens are also anti-inflammatory and serve as lipid signaling molecules. Their production may be a
compensatory response to the development of metabolic syndrome. Plasmalogen levels increase as a conse-
quence of inflammation and metabolic changes. This seems to be related to immuno-metabolism, linking
immunological/inflammation conditions to metabolic diseases. Therefore, plasmalogens can be used as biomar-
kers for early disease detection and later to monitor disease progress [26]. Additionally, lysoplasmalogens, in
which the sn-2 acyl chain has been cleaved, were also found to be significantly elevated in PO samples com-
pared with O and H samples. Among them, 1-(1-enyl-palmitoyl)-GPE, 1-(1-enyl-oleoyl)-GPE and 1--
(1-enyl-stearoyl)-GPE were elevated (P <0.05, Table 5) in PO (fold change ranging from 1.275 to 1.893, P<
0.05). This is likely due to increased lipase activity in PO versus H and O groups, possibly as a mechanism to
increase fatty acid levels.

Phospholipids and lysolipids

The most abundant lipid components of the cell membrane are phospholipids. We detected many
phospholipids that were significantly (P <0.05) higher in the PO tissue compared with tissue from obese (O)
subjects (Table 6). Among these, we found glycerolphosphorylcholine (GPC), glycerolphosphoethanolamine,
1,2-dipalmitoyl-GPC, 1-stearoyl-2-arachidonoyl-GPC, 1-palmitoyl-2-arachidonoyl-GPC, 1-steroyl-2-arachidonoyl-GPI
(glycerolphosphorylinositol), 1-steroyl-2-arachidonoyl-GPE, 1-palmitoyl-2-steroyl-GPC, 1-stearoyl-2-oleoyl-GPG

a 6-keto prostaglandin Fialpha b 15-HETE

RQ
RQ

= TR U TR TR |

[} —— ——
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H 0 PO H 0 PO

Figure 4. Inflammatory markers increase in obese and in pathologically obese samples.

The levels of prostaglandins (a) and 15-HETE (b) were observed in pathologically obese adipose tissue and obese tissue
compared with samples from healthy subjects. The box legend is as indicated in Figure 2I. H, healthy; O, obese; PO,

pathologically obese. Data have been plotted in the whisker plots. Detailed statistics are shown in Supplementary Table S2.
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Table 5 Plasmalogen and lysoplasmalogen

Fold of change

Sub pathway Biochemical name O/H PO/H PO/O
Plasmalogen 1-(1-Eenyl-palmitoyl)-2-oleoyl-GPE (P-16:0/18:1) 0.9598 1.0265 1.0695
1-(1-Enyl-palmitoyl)-2-lincleoyl-GPE (P-16:0/18:2) 0.9408 0.8587 0.9127
1-(1-Enyl-palmitoyl)-2-palmitoyl-GPC (P-16:0/16:0) 0.7662 1.3105 1.7108
1-(1-Enyl-palmitoyl)-2-palmitoleoyl-GPC (P-16:0/16:1) 0.9391 1.269 1.3513
1-(1-Enyl-palmitoyl)-2-arachidonoyl-GPE (P-16:0/20:4) 0.9845 1.3352
1-(1-Enyl-palmitoyl)-2-oleoyl-GPC (P-16:0/18:1) 0.794 1.0023 1.2624
1-(1-Enyl-stearoyl)-2-oleoyl-GPE (P-18:0/18:1) 0.7632 0.7778 1.019
1-(1-Enyl-stearoyl)-2-linoleoyl-GPE (P-18:0/18:2) 0.7595 0.8419
1-(1-Enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4) 0.8315 1.3102 1.5756
1-(1-Enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2) 0.8564 1.1088 1.0047
1-(1-Enyl-stearoyl)-2-arachidonoyl-GPE (P-18:0/20:4) 0.8307 1.12 1.3483
Lysoplasmalogen 1-(1-Enyl-palmitoyl)-GPE (P-16:0) 0.8126
1-(1-Enyl-oleoyl)-GPE (P-18:1) 0.7024
1-(1-Enyl-stearoyl)-GPE (P-18:0)
1-(1-Enyl-oleoyl)-2-oleoyl-GPE (P-18:1/18:1) 0.8247 0.9042 1.0964
1-(1-Enyl-oleoyl)-2-linoleoyl-GPE (P-18:1/18:2) 0.8442 0.7229 0.8563
Glycerolipid metabolism Glycerol 0.7238 0.825 1.1398
Glycerol 3-phosphate 0.8259 0.9142 1.1069
Glycerophosphoglycerol 0.8827 1.1881 -

Values in the table indicate ratio.

Green indicates significant differences (P < 0.05) between groups shown, metabolite ratio <1.00.
Red indicates significant differences (P < 0.05) between groups shown, metabolite ratio >1.00.
Non-colored: mean values are not significantly different for that comparison.

and 1-stearoyl-2-linoleoyl-GPS (glycerolphosphorylserine) to be increased. Interestingly, phospholipid metabolism
did not significantly changed comparing PO versus H groups (Table 6), except for an increase of GPC (fold change
1.376, P<0.05) and a decrease of glycerophosphoinositol, 1,2-dilinoleoyl-GPC, 1-oleoyl-2-linoleoyl-GPE and 1--
linoleoyl-2-arachidonoyl-GPC (fold change 0.608, 0.617, 0.686 and 0.650, respectively, P <0.05). On the contrary,
phospholipid metabolism significantly decreased comparing O versus H groups, suggesting a possible compensatory
and/or adaptation mechanisms toward oxidative stress in PO subjects VAT. Phospholipids are amphipathic mole-
cules containing both hydrophilic and hydrophobic moieties [27]. GPC and GPE are the most abundant phospholi-
pids in mammals and provide the majority of cellular membrane lipids. Studies in muscle-specific CDP
(ethanolaminephosphate cytidylyltransferase) knockout mice, an enzyme involved in GPE production, suggested
that phospholipids, rather than diacylglycerol or triacylglycerol, are the probable modulators of muscle insulin resist-
ance and obesity [28]. Maintaining a balance in the GPC: GPE ratio seems to be important for health; obesity and
the concomitant oversupply of fatty acids divert this balance. Plasma lipidomic studies in humans have also shown
a clear association between GPE (and consequently, a decreased GPG: GPE ratio) with obesity, pre-diabetes and
type 2 diabetes mellitus [29,30]. This change was also observed in adipose tissue from PO and O subjects compared
with H subjects (Table 6). Finally, the accumulation of lysolipids (Table 7) in PO tissues compared with obese (O)
tissues, specifically 1-palmitoyl-GPC, 1-stearoyl-GPC, 1-palmitoyl-GPE, 1-stearoyl-GPE, 1-stearoyl-GPI and 1--
stearoyl-GPS (P <0.05), may highlight increased lipid membrane turnover in subjects with metabolic syndrome.
The increases in lipid membrane turnover is not observed if we compare O and PO groups with the H group, sug-
gesting that these metabolites are associated with obesity.

Glucose-related metabolites

We also observed increased glucose levels in PO samples as well as higher levels of the isobaric compound
mannitol/sorbitol and aminosugars, thus confirming the high levels of glucose and suggesting reduced glucose
utilization or excess accumulation (Supplementary Table S2). Glucose metabolism has been found to be altered
in obesity in both animal and human studies. Consistent with the development of type 2 diabetes in subjects
with metabolic syndrome, there were significantly (P <0.05) higher levels of glucose in the PO samples
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Table 6 Phospholipid and phosphatidylserine

Fold of change

Sub pathway Biochemical name O/H PO/H PO/O

Phospholipid metabolism Choline 0.8446 1.025 1.2135
Choline phosphate 0.7411 0.927 1.2508
Cytidine 5’-diphosphocholine 0.7675 0.7213 0.9398
Glycerophosphorylcholine (GPC) 1.1283 -
Phosphoethanolamine 0.6956 0.8006 1.151
Cytidine-5’-diphosphoethanolamine 0.7169 0.7054 0.984
Glycerophosphoethanolamine 0.7826 1.0496 -
Trimethylamine N-oxide 0.4647 0.5189 1.1166
Glycerophosphoinositol 0.6834 0.89
1,2-dipalmitoyl-GPC (16:0/16:0) 0.921 1.3188
1,2-dipalmitoyl-GPE (16:0/16:0) 0.7746 1.3938
1-Palmitoyl-2-oleoyl-GPC (16:0/18:1) 0.8633 1.0016 1.1602
1-Palmitoyl-2-linoleoyl-GPC (16:0/18:2) 0.8498 0.9106 1.0715
1-Stearoyl-2-arachidonoyl-GPC (18:0/20:4) - 0.9524 15016
1-Stearoyl-2-oleoyl-GPC (18:0/18:1) 0.9112 1.2064
1,2-Dioleoyl-GPC (18:1/18:1) 0.7798 0.8107 1.0396
1-Palmitoyl-2-arachidonoyl-GPC (16:0/20:4n6) 0.693 0.8964 1.2936
1-Stearoyl-2-linoleoyl-GPC (18:0/18:2) 0.7834 0.9391 1.1987
1-Palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) 1,0731 1.223 1.1397
1-Stearoyl-2-arachidonoyl-GPI (18:0/20:4) - 1.2414 1.5022
1-Oleoyl-2-linoleoyl-GPC (18:1/18:2) 0.7876 1.0524
1-Palmitoyl-2-arachidonoyl-GPI (16:0/20:4) 0.9459 0.9118 0.964
1-Palmitoyl-2-oleoyl-GPE (16:0/18:1) 0.8476 0.906 1.0688
1-Stearoyl-2-arachidonoyl-GPE (18:0/20:4) 0.8252 1.0353 12546
1-Stearoyl-2-oleoyl-GPE (18:0/18:1) 0.856 1.0496 1.2262
1-Palmitoyl-2-arachidonoyl-GPE (16:0/20:4) 0.865 0.9296 1.0746
1-Palmitoyl-2-linoleoyl-GPE (16:0/18:2) 0.8183 0.753 0.9202
1-Stearoyl-2-linoleoyl-GPE (18:0/18:2) 0.8621 0.9628 1.1167
1-Palmitoyl-2-stearoyl-GPC (16:0/18:0) 0.5824 0.834
1,2-Dioleoyl-GPE (18:1/18:1) 0.8626 0.9025 1.0462
1-Stearoyl-2-oleoyl-GPG (18:0/18:1) - 1.0062 1.3957
1,2-Dilinoleoyl-GPC (18:2/18:2) 0.8967
1-Oleoyl-2-linoleoyl-GPE (18:1/18:2) 0.7854 0.8745
1-Linoleoyl-2-arachidonoyl-GPC (18:2/20:4n6) 0.5833 1.1155
1-Stearoyl-2-linoleoyl-GPS (18:0/18:2) 0.8614 1.0575
1-Oleoyl-2-arachidonoyl-GPE (18:1/20:4) 0.804 0.8962 1.1147
1-Oleoyl-2-arachidonoyl-GP! (18:1/20:4) 0.9686 0.9344 0.9647

Phosphatidylserine (PS) 1-Stearoyl-2-arachidonoyl-GPS (18:0/20:4) - 1.0041 -
1-Stearoyl-2-oleoyl-GPS (18:0/18:1) 0.9226

Values in the table indicate ratio.

Green indicates significant differences (P < 0.05) between groups shown, metabolite ratio <1.00.
Red indicates significant differences (P < 0.05) between groups shown, metabolite ratio >1.00.

Non-colored: mean values are not significantly different for that comparison.

compared with O samples (Figure 5a,b); surprisingly, no significant differences were found comparing O versus
H and PO versus H (Supplementary Table S2), and this could be probably due to biological variability between
samples. No significant changes were found in TCA (tricarboxylic acid cycle) cycle (Supplementary Figure S2)
intermediates, except for o-ketoglutarate, which was significantly increased in PO samples compared with O
samples (fold change 1.678, P <0.05). o-Ketoglutarate decreased comparing O versus H groups (fold change
0.518, P<0.05) and PO wversus H group, though the latter did not reached statistical significance
(Supplementary Table S2). While not significant, the corresponding decrease in 1,5-anhydroglucitol (1,5-AG),
the levels of which in blood are known to inversely mirror those of glucose due to their competition for clear-
ance from the blood by the kidney [31], would be supportive of the elevated glucose levels (Figure 5a,b,e).
While the focus of this study was adipose tissue, these changes along with a higher level of the isobaric
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Table 7 Lysolipid

Fold of change

Sub pathway Biochemical name O/H

Lysolipid 1-Palmitoyl-GPC (16:0)
2-Palmitoyl-GPC (16:0)
1-Palmitoleoyl-GPC (16:1)
2-Palmitoleoyl-GPC (16:1) 1.032
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1-Stearoyl-GPC (18:0)

1-Oleoyl-GPC (18:1) 1.1695
1-Linoleoyl-GPC (18:2) 0.901
1-Arachidonoyl-GPC (20:4n6) 0.7937 1.1277

1-Palmitoyl-GPE (16:0)
1-Stearoyl-GPE (18:0)

-
o
(@]
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1-Oleoyl-GPE (18:1) 0.9201 1.4176
1-Linoleoyl-GPE (18:2) 0.9047 0.604 0.6676
1-Arachidonoyl-GPE (20:4n6) 0.9047 1.0085 1.1148
1-Stearoyl-GPI (18:0) 1.1757
1-Stearoyl-GPS (18:0) 1.0762

Values in the table indicate ratio.

Green indicates significant differences (P < 0.05) between groups shown, metabolite ratio <1.00.
Red indicates significant differences (P < 0.05) between groups shown, metabolite ratio >1.00.
Non-colored: mean values are not significantly different for that comparison.

compound 2-hydroxybutyrate/2-hydroxyisobutyrate (Supplementary Table S2) are consistent with that of type
2 diabetes. In association with glucose, there were also trending (0.05 < P <0.10) higher levels of the isobaric
compound mannitol/sorbitol (Figure 5c¢,d), which may be an indication of excess glucose being shunted
toward the sorbitol pathway and either reduced glucose utilization or excess accumulation. Additionally,
there were also significantly higher levels of aminosugars (Figure 6a-e), including glucuronate and
N-acetylglucosamine  6-phosphate  (0.05<P<0.10, trend toward a significant difference), and
N-acetylglucosamine 1-phosphate, N-acetylneuraminate and erythronate (P <0.05), which may also be indica-
tive of increased glucose levels.

Discussion

Obesity dramatically increases the risk of developing metabolic, cardiovascular and oncological diseases, and
poses a heavy burden to society [32,33]. Specifically, VAT has a crucial role in the development of some of the
most important obesity-related comorbidities, including insulin resistance, type 2 diabetes, dyslipidemia, hyper-
tension and nonalcoholic fatty liver disease. The excess fat that is unable to be stored in adipose tissue tends to
accumulate in other tissues, including the liver and muscle, causing toxic effects related to the excessive accu-
mulation of reactive lipid species [34-39]. The accumulation of fat in the muscle and liver tends to worsen
insulin resistance resulting in alterations in lipid and carbohydrate metabolism. Insulin resistance, and the con-
sequent hyperinsulinemia, plays a central role in the alterations of many metabolic pathways, including protein
synthesis, uptake of glucose in muscle and adipose tissue, proteolysis, lipid metabolism, glycogen metabolism
and endogenous glucose production [40]. The data reported here demonstrate that in VAT collected from
obese individuals with metabolic syndrome (PO) compared with metabolically healthy obese individuals (O)
and nonobese healthy controls (H), significant differences can be observed. Focusing on PO versus O groups,
we observed dysregulation of oxidative stress markers, multiple lipid metabolic pathways and increased markers
of elevated glucose levels. Obesity decreases antioxidant defenses by lowering several antioxidant enzymes,
including glutathione peroxidase, glutathione reductase and catalase, and by altering the activity of cytochrome
P450 [41,42]. In agreement with this perspective, we found high levels of GSSG, cysteine-glutathione disulfide,
methionine sulfone, N-acetylmethionine sulfoxide and cysteine, supporting the hypothesis of altered redox
homeostasis and increased oxidative stress in adipose tissue extracted from PO subjects compared with H sub-
jects. Another relevant result is the dysregulation of multiple lipid metabolic pathways, which contribute to the
onset and progression of metabolic disease. Specifically, we confirmed the role of ceramides in the metabolic

© 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society
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Figure 5. Glucose-related metabolites are modulated in obese and pathologically obese adipose tissue.
The levels of anhydroglucitol(1,5-AG) (a), glucose (b), mannose (c) and mannitol/sorbitol (d) were differentially detected in
pathologically obese adipose tissue versus obese tissues. Pathway connections of the cited metabolites are shown in (e). The
box legend is as indicated in Figure 2I. H, healthy; O, obese; PO, pathologically obese. Data have been plotted in the whisker
plots. Detailed statistics are shown in Supplementary Table S2.
complications of obesity; ceramide is generated in response to obesity signals [such as saturated fatty acids,
lipopolysaccharide or proinflammatory stimuli by enhancement of sphingolipid biosynthesis or sphingolipid
recycling) [43-45]. There are several studies suggesting that specific sphingolipids may provide a common
pathway that links excess nutrients and inflammation to increased metabolic and cardiovascular risk [46,47].
Moreover, ceramides antagonize insulin signaling at the level of RACa serine/threonine-protein kinase [48,49],
and their actions can be resolved from those of glucosylceramides. Inhibition or ablation of the enzymes that
catalyze the formation of ceramides causes insulin sensitization, anti-artherogenic properties and cardioprotec-
tion [46,50-53]. In addition, consistent with the literature linking ceramides with inflammation, we observed
high levels of 15-HETE and prostaglandins in subjects with PO compared with the O group. Another interest-
ing finding from our study is the altered levels of sphingomyelins in the adipose tissue of PO subjects, as other
studies have suggested the role of sphingomyelins containing saturated, but not unsaturated, acyl-chains in the
obesity, insulin resistance and decreased liver function in young adults with obesity [54,55]. Our findings agree
with the genetic ablation of the Sgms2 gene in mice which reduces plasma membrane levels of sphingomyelin
and inhibits weight gain, while also increasing glucose tolerance and insulin sensitivity in animals fed a
high-fat diet compared with wild-type controls [36,56].
© 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society
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Figure 6. Accumulation of aminosugars in pathologically obese tissue.

The accumulation of aminosugars indicates abnormal glucose metabolism. Gluconate (a), N-acetylglucosamine 6-phosphate
(b), N-acetylglucosamine 1-phosphate (c), N-acetylneuraminate (d) and erythronate (e) were increased in pathologically obese
tissues versus obese tissues. The box legend is as indicated in Figure 2I. H, healthy; O, obese; PO, pathologically obese. Data
have been plotted in the whisker plots. Detailed statistics are shown in Supplementary Table S2.

We also found a significantly greater number of detected plasmalogens in the PO samples compared with
those from H and O subjects. Again, our data implicate a relevant role for plasmalogens in PO subjects. These
are a class of phospholipids that are expressed in many human tissues. They are important structural compo-
nents of membranes and appear to play an important role not only in diseases such as obesity, type 2 diabetes
and inflammation but also in cancer and heart failure [57]. Plasmalogens have antioxidant and anti-
inflammatory activity and protect unsaturated lipid membranes from oxidative products. Recent studies suggest
that plasmalogens can modulate oxidative stress, inflammation and cholesterol efflux in the setting of metabolic
disease [58,59]. Some conflicting data in the literature on plasmalogens in various metabolic diseases could be
explained by the fact that plasmalogen levels increase as a compensatory response to the development of meta-
bolic syndrome [58]. The role of plasmalogens in diabetes mellitus has been outlined in recent years. In type 1
diabetes, they were found to be consistently diminished in the serum of children who later progressed to T1D,
while proinflammatory LPCs were elevated in the serum several months before autoantibodies could be
detected [60]. A possible explanation for this might be that B-cells are particularly susceptible to oxidative
stress [61] and that plasmalogens can serve as radical scavengers. In patients with end-stage renal disease, plas-
malogens represent a marker of oxidative stress and are simultaneously depleted in erythrocyte membranes and
predictive of cardiovascular mortality [62].

Surprisingly, we found that some metabolic pathways, including the one related to oxidative stress, phospho-
lipid metabolism, plasmalogens and sphingolipids metabolism, were not significantly affected comparing PO
versus H groups, while did not significantly change or significantly decreased comparing O versus H groups.
Taking into account the complexity of the data obtained, we cannot explain why the PO group shares common
metabolomic signature with the H group. We cannot exclude that the biological variability within datasets
limited the statistical significance and hence the biochemical interpretation of the present study. Note that
adipose tissue, especially from obese and nonobese individuals, may be dramatically different between groups
due to many factors including reduced levels of cytoplasmic levels within cells due to intracellular lipids.
Taking into account all the limitations of the present study, we limited our attention to specific metabolites that
significantly changed among the groups.

Conclusion

Limited metabolic differences were observed within this dataset comparing samples collected from pathologic-
ally obese, healthy obese patients and healthy lean subjects. RF analysis was able to effectively segregate the O
from the H samples. While there were limited differences between the PO and O patient-derived samples, we

© 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society
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found consistent indications of increased oxidative stress markers from the PO samples in addition to increased
markers of elevated glucose levels, findings which may be consistent with metabolic syndrome. In the adipose
tissue derived from the PO subjects, there were significantly elevated levels of plasmalogens. Ceramides and
sphingolipids were also increased, which may reflect changes in cellular signaling or sphingolipid turnover. The
GPC: GPE ratio was altered in PO samples.

The collection of additional patient’s tissue specimens to increase the power of the study to limit individual
biological variability as well as the combined analysis of additional matrices (i.e. plasma) will be necessary in
future work to increase the rigorous aspect of the present study. Nevertheless, our data show that in the
adipose tissue of patients with metabolic syndrome, there were many biochemical alterations that confirm the
theory that increased adipose tissue mass induces a chronic inflammatory state and oxidative stress. The results
obtained will possibly serve as preliminary data to develop new hypothesis and innovative targeted therapies.
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Supplementary Materials and Methods

Study Parameters

Data Quality and Instrument and Process Variability:

QC Sample Measurement Median RSD
Internal Standards Instrument Variability 4%
Endogenous Biochemicals | Total Process Variability 8%

Instrument variability was determined by calculating the median relative standard deviation
(RSD) for the internal standards that were added to each sample prior to injection into the
mass spectrometers. Overall process variability was determined by calculating the median
RSD for all endogenous metabolites (i.e., non-instrument standards) present in 100% of the
Client Matrix samples, which are technical replicates of pooled client samples. Values for
instrument and process variability as shown in the table above meet Metabolon’s acceptance
criteria.

Metabolon Platform

Sample Accessioning: Following receipt, samples were inventoried and immediately stored
at -80°C. Each sample received was accessioned into the Metabolon LIMS system and was
assigned by the LIMS a unique identifier that was associated with the original source
identifier only. This identifier was used to track all sample handling, tasks, results, etc. The
samples (and all derived aliquots) were tracked by the LIMS system. All portions of any
sample were automatically assigned their own unique identifiers by the LIMS when a new
task was created; the relationship of these samples was also tracked. All samples were
maintained at -80°C until processed.

QA/QC: Several types of controls were analyzed in concert with the experimental samples: a
pooled matrix sample generated by taking a small volume of each experimental sample (or
alternatively, use of a pool of well-characterized human plasma) served as a technical
replicate throughout the data set; extracted water samples served as process blanks; and a
cocktail of QC standards that were carefully chosen not to interfere with the measurement of
endogenous compounds were spiked into every analyzed sample, allowed instrument
performance monitoring and aided chromatographic alignment. Tables 1 and 2 (shown on
the following page) describe these QC samples and standards. Instrument variability was
determined by calculating the median relative standard deviation (RSD) for the standards
that were added to each sample prior to injection into the mass spectrometers. Overall
process variability was determined by calculating the median RSD for all endogenous
metabolites (i.e., non-instrument standards) present in 100% of the pooled matrix samples.
Experimental samples were randomized across the platform run with QC samples spaced
evenly among the injections, as outlined in Figure 1, on the following page.



Table 1: Description of Metabolon QC Samples

Type Description Purpose
Large pool of human plasma
maintained by Metabolon that Assure that all aspects of the Metabolon
MTRX . . s -
has been characterized process are operating within specifications.
extensively.
Pool created by taking a small Assess the effect of a non-pla_srn_a m{fltI‘lX on
. the Metabolon process and distinguish
CMTRX | aliquot from every customer : . LS
biological variability from process
sample. Lo
variability.
Process Blank used to assess the
PRCS | Aliquot of ultra-pure water contribution to compound signals from the
process.
SOLV Aliquot of solvents used in Solvent Blank used to segregate

extraction.

contamination sources in the extraction.

Table 2: Metabolon QC Standards

Type Description Purpose
RS Recovery Standard Assess lvarlabllllty and Verlfylperformance of
extraction and instrumentation.
IS Internal Standard Assess variability and performance of

instrument.

e

replicates created from an
aliquot of all client study

Clientsamples

a DAY2

CMTRX: Technical

samples / K

Figure 1. Preparation of client-specific technical replicates. A small aliquot of each client
sample (colored cylinders) is pooled to create a CMTRX technical replicate sample (multi-
colored cylinder), which is then injected periodically throughout the platform run. Variability
among consistently detected biochemicals can be used to calculate an estimate of overall
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CMTRX Process Blank

Final injecm
Study samples randomized and balanced

Clientsamples j

process and platform variability.




Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-
MS/MS): All methods utilized a Waters ACQUITY ultra-performance liquid chromatography
(UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer
interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer
operated at 35,000 mass resolution. The sample extract was dried then reconstituted in
solvents compatible to each of the four methods. Each reconstitution solvent contained a
series of standards at fixed concentrations to ensure injection and chromatographic
consistency. One aliquot was analyzed using acidic positive ion conditions,
chromatographically optimized for more hydrophilic compounds. In this method, the extract
was gradient eluted from a C18 column (Waters UPLC BEH C18-2.1x100 mm, 1.7 um) using
water and methanol, containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid
(FA). Another aliquot was also analyzed using acidic positive ion conditions, however it was
chromatographically optimized for more hydrophobic compounds. In this method, the extract
was gradient eluted from the same afore mentioned C18 column using methanol, acetonitrile,
water, 0.05% PFPA and 0.01% FA and was operated at an overall higher organic content.
Another aliquot was analyzed using basic negative ion optimized conditions using a separate
dedicated C18 column. The basic extracts were gradient eluted from the column using
methanol and water, however with 6.5mM Ammonium Bicarbonate at pH 8. The fourth
aliquot was analyzed via negative ionization following elution from a HILIC column (Waters
UPLC BEH Amide 2.1x150 mm, 1.7 pm) using a gradient consisting of water and acetonitrile
with 10mM Ammonium Formate, pH 10.8. The MS analysis alternated between MS and data-
dependent MS" scans using dynamic exclusion. The scan range varied slighted between
methods but covered 70-1000 m/z. Raw data files are archived and extracted as described
below.

Bioinformatics: The informatics system consisted of four major components, the Laboratory
Information Management System (LIMS), the data extraction and peak-identification
software, data processing tools for QC and compound identification, and a collection of
information interpretation and visualization tools for use by data analysts. The hardware and
software foundations for these informatics components were the LAN backbone, and a
database server running Oracle 10.2.0.1 Enterprise Edition.

LIMS: The purpose of the Metabolon LIMS system was to enable fully auditable laboratory
automation through a secure, easy to use, and highly specialized system. The scope of the
Metabolon LIMS system encompasses sample accessioning, sample preparation and
instrumental analysis and reporting and advanced data analysis. All of the subsequent
software systems are grounded in the LIMS data structures. It has been modified to leverage
and interface with the in-house information extraction and data visualization systems, as well
as third party instrumentation and data analysis software.

Data Extraction and Compound Identification: Raw data was extracted, peak-identified
and QC processed using Metabolon’s hardware and software. These systems are built on a
web-service platform utilizing Microsoft’s .NET technologies, which run on high-performance
application servers and fiber-channel storage arrays in clusters to provide active failover and
load-balancing. Compounds were identified by comparison to library entries of purified
standards or recurrent unknown entities. Metabolon maintains a library based on
authenticated standards that contains the retention time/index (RI), mass to charge ratio
(m/z), and chromatographic data (including MS/MS spectral data) on all molecules present in
the library. Furthermore, biochemical identifications are based on three criteria: retention
index within a narrow RI window of the proposed identification, accurate mass match to the
library +/- 10 ppm, and the MS/MS forward and reverse scores between the experimental
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data and authentic standards. The MS/MS scores are based on a comparison of the ions
present in the experimental spectrum to the ions present in the library spectrum. While there
may be similarities between these molecules based on one of these factors, the use of all three
data points can be utilized to distinguish and differentiate biochemicals. More than 3300
commercially available purified standard compounds have been acquired and registered into
LIMS for analysis on all platforms for determination of their analytical characteristics.
Additional mass spectral entries have been created for structurally unnamed biochemicals,
which have been identified by virtue of their recurrent nature (both chromatographic and
mass spectral). These compounds have the potential to be identified by future acquisition of a
matching purified standard or by classical structural analysis.

Curation: A variety of curation procedures were carried out to ensure that a high quality
data set was made available for statistical analysis and data interpretation. The QC and
curation processes were designed to ensure accurate and consistent identification of true
chemical entities, and to remove those representing system artifacts, mis-assignments, and
background noise. Metabolon data analysts use proprietary visualization and interpretation
software to confirm the consistency of peak identification among the various samples.
Library matches for each compound were checked for each sample and corrected if necessary.



Metabolite Quantification and Data Normalization: Peaks were quantified using area-
under-the-curve. For studies spanning multiple days, a data normalization step was
performed to correct variation resulting from instrument inter-day tuning differences.
Essentially, each compound was corrected in run-day blocks by registering the medians to
equal one (1.00) and normalizing each data point proportionately (termed the “block
correction”; Figure 2). For studies that did not require more than one day of analysis, no
normalization is necessary, other than for purposes of data visualization. In certain instances,
biochemical data may have been normalized to an additional factor (e.g. cell counts, total
protein as determined by Bradford assay, osmolality, etc.) to account for differences in
metabolite levels due to differences in the amount of material present in each sample.
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Figure 2: Visualization of data normalization steps for a multiday platform run.



Statistical Methods and Terminology

Statistical Calculations: For many studies, two types of statistical analysis are usually
performed: (1) significance tests and (2) classification analysis. Standard statistical analyses
are performed in ArrayStudio on log transformed data. For those analyses not standard in
ArrayStudio, the programs R (http://cran.r-projectorg/) or JMP are used. Below are
examples of frequently employed significance tests and classification methods followed by a
discussion of p- and g-value significance thresholds.

1. Welch’s two-sample ¢-test

Welch’s two-sample t-test is used to test whether two unknown means are different
from two independent populations.

This version of the two-sample t-test allows for unequal variances (variance is the
square of the standard deviation) and has an approximate t-distribution with degrees

of freedom estimated using Satterthwaite’s approximation. The test statistic is given
2

by t= (X; — X,)//s?/n, + s3/n,, and the degrees of freedom is given by (Z—% + ﬁ) /
1

ny
\m) | \m2)

Tt where X, X, are the sample means, si, s, are the sample standard
1™ 27
deviations, and ni, nz are the samples sizes from groups 1 and 2, respectively. We
typically use a two-sided test (tests whether the means are different) as opposed to a
one-sided test (tests whether one mean is greater than the other).

2. Matched Pairs t-test

The matched pairs t-test is used to test whether two unknown means are different
from paired observations taken on the same subjects.

The matched pairs t-test is equivalent to the one-sample t-test performed on the
differences of the observations taken on each subject (i.e., calculate (x1 - x2) for each
subject; test whether the mean difference is zero or not). The test statistic is given by
t = (k; — Xx,)/n, with n - 1 degrees of freedom, where i, X, are the sample means for
groups 1 and 2, respectively, sq is the standard deviation of the differences, n is the
number of subjects (so there are 2n observations).

3. One-way ANOVA

ANOVA stands for analysis of variance. For ANOVA, it is assumed that all populations
have the same variances. One-way ANOVA is used to test whether at least two
unknown means are all equal or whether at least one pair of means is different. For
the case of two means, ANOVA gives the same result as a two-sided t-test with a pooled
estimate of the variance.

An ANOVA uses an F-test which has two parameters - the numerator degrees of
freedom and the denominator degrees of freedom. The degrees of freedom in the
numerator are equal to g - 1, where g is the number of groups. If n is the total number
of observations (n1 + nz), then, the denominator degrees of freedom is equal to n - g.
The F-statistic is the ratio of the between-groups variance to the within-groups



variance, hence the higher the F-statistic the more evidence we have that the means
are different.

Often within ANOVA, one performs linear contrasts for specific comparisons of
interest. For example, suppose we have three groups A, B, C, then examples of some
contrasts are A vs. B, the average of A and B vs. C, etc. For single-degree of freedom
contrasts, these give the same result as a two-sided t-test with the pooled estimate of
the variance from the ANOVA and degrees of freedom n - g. Below, we show the three
formulas for A vs. B from a three group design as shown above. The numerator is
same in each case, but the denominator differs by the estimates of the variances, and
the degrees of freedom are different for each (if the theoretical assumptions hold, then
the contrast has the most power, as it has the largest degrees of freedom).

Welch'’s two-sample t-test
By t= (¥4 — X5)//S3/n4 +s2/ng , and the degrees of freedom is given by

s4 2 5% 2
oy, (@), ()
(S_A+S_B)/ L+l

ng ng np—-1 npg—1

Two-sample t-test with pooled estimate of variance from A and B

= (= %)/ 5301/ + /)

where sZ; = ((ng — Ds? + (ng — 1)s2)/(n, + ng — 2), where the degrees of freedom
isna +np- 2.
The contrast from the ANOVA,

t= (Xg— %p)/\/s2(1/ny +/np)
where s2 = ((ny — DsZ + (ng — 1)sg + (n¢ — 1)s¢)/(ny + ng + ne — 3), where the
degrees of freedom is given by where the degrees of freedom is ns + ng + nc- 3.

. Two-way ANOVA

ANOVA stands for analysis of variance. For ANOVA, it is assumed that all populations
have the same variances. For a two-way ANOVA, three statistical tests are typically
performed: the main effect of each factor and the interaction. Suppose we have two
factors A and B, where A represent the genotype and B represent the diet in a mouse
study. Suppose each of these factors has two levels (A: wild type, knock out; B:
standard diet, high fat diet). For this example, there are 4 combinations
(“treatments”): A1B1, A1B2, A2B1, A2B2. The overall ANOVA F-test gives the p-
value for testing whether all four of these means are equal or whether at least one pair
is different. However, we are also interested in the effect of the genotype and diet. A
main effect is a contrast that tests one factor across the levels of the other factor.
Hence the A main effect compares (A1B1 + A1B2)/2 vs. (A2B1 + A2B2)/2, and the B-
main effect compares (A1B1 + A2B2)/2 vs. (A1B2 + A2B2)/2. The interaction is a
contrast that tests whether the mean difference for one factor depends on the level of
the other factor, which is (A1B2 + A2B1)/2 vs. (A1B1 + A2B2)/2.



Some sample plots follow. For the first plot, there is a B main effect, but no A main
effect and no interaction, as the effect of B does not depend on the level of A. For the
second plot, notice how the mean difference for B is the same at each level of A and the
difference in A is the same for each level of B, hence there is no statistical interaction.
The final plot also has main effects for A and B, but here also has an interaction: we
see the effect of B depends on the level of A (0 for A1 but 2 for A2), i.e., the effect of the
diet depends on the genotype. We also see here the interpretation of the main effects
depends on whether there is an interaction or not.

Main Effect for B, but no Main Effect for A, no Interaction

< 4
mean A1B2 mean A2B2
™ — L *
~ 4
mean A1B1 mean A2B1
o 4
T T T T T
0 1 2 3 4



Main Effect for A, Main Effect for B, No Interaction

mean A2B2
mean A1B2
mean A2B1
mean A1B1
T T T
1 2 3

Main Effect for A, Main Effect for B, with Interaction

mean A2B2

mean A1B1 and mean A1B2 mean A2B1




5. Two-way Repeated Measures ANOVA

This is typically an ANOVA where one factor is applied to each subject and the second
factor is a time point. See two-way ANOVA as many of the details are similar except
that the model takes into account the repeated measures, i.e., the treatments are given
to the same subject over time. The two main effects and the interaction are assessed,
with particular interest to the interaction, as this shows where the time profiles are
parallel or not for the treatments (parallel mean no interaction).

One additional note, the standard analysis assumes a condition referred to as
compound symmetry, which assumes the correlation between each pair of levels of the
repeated-measures factor is the same. Thus, for the case of time, it assumes the
correlation is the same between time points 1 and 2, 1 and 3, and 2 and 3.

6. Correlation

Correlation measures the strength and direction of a linear association between two
variables. The statistical test for correlation tests whether the true correlation is zero
or not.

The square of the correlation is the percentage of the total variation explained by a
linear relationship between the two variables. Thus, with large sample sizes there
may be a sample correlation of 0.1 that is statistically significant. This means we have
high confidence that the true correlation is zero, however, only 100*(0.1*0.1)% = 1%
of the variation of one variable is explained by a linear relationship with the other
variable, so while there is an association, it has little predictive ability.

7. Hotelling’s T? test

The Hotelling’s T? test is a multivariate generalization of the t-test, but here we are
testing whether the mean vectors are different or not (the vector consists of multiple
metabolites).

Ny Ny
Ny+ny,

The Hotelling statistic is: t? = ( ) * (x—y)T §71 (x -y), where ny and ny are the

numbers of samples in each group, X is the mean vector of the variables from group 1,
y is the mean vector of variables from group 2 and S is the pooled estimate of the
variance-covariance matrix of the variables. This analysis assumes the underlying
variance-covariance matrix is the same for each group. Notice that in the case of
uncorrelated variables, this is simply a weighted average of the squared mean
differences with weights inversely proportional to the sample variances (i.e., the
metabolites less variable within a group are given higher weights).
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8. p-values

For statistical significance testing, p-values are given. The lower the p-value, the more
evidence we have that the null hypothesis (typically that two population means are
equal) is not true. If “statistical significance” is declared for p-values less than 0.05,
then 5% of the time we incorrectly conclude the means are different, when actually
they are the same.

The p-value is the probability that the test statistic is at least as extreme as observed in
this experiment given that the null hypothesis is true. Hence, the more extreme the
statistic, the lower the p-value and the more evidence the data gives against the null
hypothesis.

9. g-values

The level of 0.05 is the false positive rate when there is one test. However, for a large
number of tests we need to account for false positives. There are different methods to
correct for multiple testing. The oldest methods are family-wise error rate
adjustments (Bonferroni, Tukey, etc.), but these tend to be extremely conservative for
a very large number of tests. With gene arrays, using the False Discovery Rate (FDR) is
more common. The family-wise error rate adjustments give one a high degree of
confidence that there are zero false discoveries. However, with FDR methods, one can
allow for a small number of false discoveries. The FDR for a given set of compounds
can be estimated using the g-value (see Storey ] and Tibshirani R. (2003) Statistical
significance for genomewide studies. Proc. Natl. Acad. Sci. USA 100: 9440-9445; PMID:
12883005).

In order to interpret the g-value, the data must first be sorted by the p-value then
choose the cutoff for significance (typically p<0.05). The g-value gives the false
discovery rate for the selected list (i.e., an estimate of the proportion of false
discoveries for the list of compounds whose p-value is below the cutoff for
significance). For Table 1 below, if the whole list is declared significant, then the false
discovery rate is approximately 10%. If everything from Compound 079 and above is
declared significant, then the false discovery rate is approximately 2.5%.

Table 1: Example of g-value interpretation

Compound p-value q-value
Compound 103 0.0002 0.0122
Compound 212 0.0004 0.0122
Compound 076 0.0004 0.0122
Compound 002 0.0005 0.0122
Compound 168 0.0006 0.0122
Compound 079 0.0016 0.0258
Compound 113 0.0052 0.0631
Compound 050 0.0053 0.0631
Compound 098 0.0061 0.0647
Compound 267 0.0098 0.0939
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10.Random Forest

Random forest is a supervised classification technique based on an ensemble of
decision trees (see Breiman L. (2001) Random Forests. Machine Learning. 45: 5-32;
http://link.springer.com/article/10.1023%2FA%3A1010933404324). For a given
decision tree, a random subset of the data with identifying true class information is
selected to build the tree (“bootstrap sample” or “training set”), and then the
remaining data, the “out-of-bag” (OOB) variables, are passed down the tree to obtain a
class prediction for each sample. This process is repeated thousands of times to
produce the forest. The final classification of each sample is determined by computing
the class prediction frequency (“votes”) for the OOB variables over the whole
forest. For example, suppose the random forest consists of 50,000 trees and that
25,000 trees had a prediction for sample 1. Of these 25,000, suppose 15,000 trees
classified the sample as belonging to Group A and the remaining 10,000 classified it as
belonging to Group B. Then the votes are 0.6 for Group A and 0.4 for Group B, and
hence the final classification is Group A. This method is unbiased since the prediction
for each sample is based on trees built from a subset of samples that do not include
that sample. When the full forest is grown, the class predictions are compared to the
true classes, generating the “OOB error rate” as a measure of prediction
accuracy. Thus, the prediction accuracy is an unbiased estimate of how well one can
predict sample class in a new data set. Random forest has several advantages - it
makes no parametric assumptions, variable selection is not needed, it does not overfit,
itis invariant to transformation, and it is fairly easy to implement with R.

To determine which variables (biochemicals) make the largest contribution to the
classification, a “variable importance” measure is computed. We use the “Mean
Decrease Accuracy” (MDA) as this metric. The MDA is determined by randomly
permuting a variable, running the observed values through the trees, and then
reassessing the prediction accuracy. If a variable is not important, then this procedure
will have little change in the accuracy of the class prediction (permuting random noise
will give random noise). By contrast, if a variable is important to the classification, the
prediction accuracy will drop after such a permutation, which we record as the
MDA. Thus, the random forest analysis provides an “importance” rank ordering of
biochemicals; we typically output the top 30 biochemicals in the list as potentially
worthy of further investigation.

11.Hierarchical Clustering

Hierarchical clustering is an unsupervised method for clustering the data, and can
show large-scale differences. There are several types of hierarchical clustering and
many distance metrics that can be used. A common method is complete clustering
using the Euclidean distance, where each sample is a vector with all of the metabolite
values. The differences seen in the cluster may be unrelated to the treatment groups
or study design.

12.Principal Components Analysis (PCA)
Principal components analysis is an unsupervised analysis that reduces the dimension
of the data. Each principal component is a linear combination of every metabolite and
the principal components are uncorrelated. The number of principal components is
equal to the number of observations.

12



The first principal component is computed by determining the coefficients of the
metabolites that maximizes the variance of the linear combination. The second
component finds the coefficients that maximize the variance with the condition that
the second component is orthogonal to the first. The third component is orthogonal to
the first two components and so on. The total variance is defined as the sum of the
variances of the predicted values of each component (the variance is the square of the
standard deviation), and for each component, the proportion of the total variance is
computed. For example, if the standard deviation of the predicted values of the first
principal component is 0.4 and the total variance = 1, then 100*0.4*0.4/1 = 16% of the
total variance is explained by the first component. Since this is an unsupervised
method, the main components may be unrelated to the treatment groups, and the
“separation” does not give an estimate of the true predictive ability.

13.Z-scores
An intensity measurement for a metabolite by itself does not tell much. If for example a
patient contains a blood glucose level of 300, this could be very good news if most
people have blood glucose levels around 300, but less so if most people have levels
around 100. In other words a measurement is meaningful only relative to the means of
the sample or the population. This can be achieved by transforming the measurements
into Z-scores which are expressed as standard deviations from the mean.

The Z-score, also called the standard score or normal score, is a dimensionless quantity
derived by subtracting the control population mean from an individual raw score and
then dividing the difference by the control population standard deviation. The Z-score
indicates how many standard deviations an observation is above or below the mean of
the control group. The Z-score is negative when the raw score is below the mean,
positive when above. Since knowing the true mean and standard deviation of a control
population is often unrealistic, the mean and standard deviation of the control
population may be estimated using a random control sample.

13



T —

Z-score =
where: X is a raw score to @ be standardized, u is the mean of the control
population, o is the standard deviation of the control population

Subtracting the mean centers the distribution, and dividing by the standard deviation
standardizes the distribution. The interesting properties of Z-scores are that they have a zero
mean (effect of “centering”) and a variance and standard deviation of 1 (effect of
“standardizing”). This is because all distributions expressed in Z-scores have the same mean
(0) and the same variance (1), so we can use Z-scores to compare observations coming from
different distributions. When a distribution is normal most of the Z-scores (more than 99%)
lay between the values of -3 and +3

14
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Supplementary Figure Legends

Figure S1. Groups separation by Random Forest analysis. Analysis shows a moderate
ability to segregate Obese from the Healthy controls while segregation between Obese
and Pathological Obese was less prevalent.

Figure S2. Tricarboxylic acid cycle and oxidative phosphate metabolites are not
modulated in obese and patological obese adipose tissue. Levels of citrate (a),
fumarate (b), acetylphosphate (¢) and phosphate (d) were not differentially modulated in
pathological obese adipose tissue in comparison to obese tissues. Instead, o-
ketoglutarate levels were significantly (p<0.05) increased in PO in comparison with O
samples. The box legend is shown in (f). Pathways connection of the cited metabolites are
shown in (g). H, healthy; O, obese, PO, pathological obese. PDH: Pyruvate
dehydrogenase; LDH: Lactate dehydrogenase; CS: Citrate synthase; IDH1: Isocitrate
dehydrogenase 1; SCH: Succinate dehydrogenase; MDH: Malate dehydrogenase.



SUPPLEMENTARY TABLE 1:  CLINICAL DATA OF THE PATIENTS INVESTIGATED

SAMPLES DATE OF DATEOF GENDERWEIGHTHEIGHT BMI ~ WAIST MAP  BP-SIS BP-DIA SLYCATEDGLYCEMIA TOTAL LDL HDL  TRIGLYCERIDES
SAMPLE BIRTH HEMOGLOBIN CHOLESTEROLCHOLESTEROICHOLESTEROL

Healthy subjects (group 1: H)

A7 s 11/7/1981 M 65 175 2122 89  86.6667 120 70 28 76 180 120 40 100

A8 st 7/29/1957  F 55 1.6 2148 81 103333 140 85 40 88 185 105 38 120

A9 s 2/17/1958  F 70 155 2913 8  96.6667 130 80 37 76 190 95 69 132
A1l sanunna 3/15/1946  F 60 155 2497 8  106.667 140 90 38 84 223 124 76 173
A12 5/6/2015 9/2/1954  F 68 1.6 2656 84  86.6667 110 75 39 89 180 119 37 140
A13 st 5/16/1951 M 60 178 1893 87 101667 135 85 40 86 175 117 33 127
A14 s 8/23/1945  F 75 1.6 2929 8 983333 125 85 36 82 185 127 35 110
A15 HEBBRERE HEEEHHEE M 82 18 253 9% 100 140 80 38 87 170 116 36 100
A16 s 2/14/1989  F 77 175 2515 80  86.6667 120 70 23 92 189 117 62 51
A17 6/8/2015 12/5/1982  F 88 173 294 84 95 125 80 38 88 190 123 45 112
A18 6/8/2015 1/1/1964  F 8 172 2906 8 933333 130 75 34 95 180 118 41 97
A20 sapnpaat 7/10/1971 M 70 178 2209 92 983333 135 80 35 101 190 140 37 115

A2 HHHHHIY 6/26/1971  F 71 156 29.17 84 90 120 75 38 82 212 121 77 70

A3 HEBHREEE HHEHHEEE T 50 165 1836 78 101667 125 90 33 70 168 104 54 52

A4 s 7/20/1943  F 72 17 2491 8 106667 140 90 39 90 198 140 37 110

A5 st 1/20/1957 M 75 17 2595 92 983333 135 80 36 75 141 85 36 102

A6 I 7/22/1958 M 90 175 2938 97 916667 115 80 40 87 170 114 37 113
MEAN 71412 1.681 25315 86.2353 96.5686 128.5294 80.588 36  85.1765 183.8824 116.7647 46.47059 107.2941176
STANDARD DEVIATION 2.7441 0021 0911 124714 1.60085 2.299485 15389 1.10147 1.89666 4.398264 3.377618 3.661322 7.309725947

Obese subjects without METs (group 2: O)

B6 Hit 5/3/1976 F 140 168 496 114 98.3333 125 85 39 85 233 152 53 142
B8 i 2/14/1968 F 150 1.68 53.14 118 106.667 140 90 36 85 168 98 58 60
B9 i 5/7/1975 F 128 175 4179 106 100 130 85 40 93 190 113 61 78
B10 i 4/21/1987 F 104 168 36.84 98 86.6667 120 70 28 82 214 117 75 113
B11 HitH 3/21/1995 F 155 1.73 51.78 114 90 120 75 40 89 242 148 44 250
B12 6/8/2015 1/23/1963 F 120 1.66 43.54 108 91.6667 135 70 39 84 226 60 48 84
B13 6/8/2015 #HtttHit F 130 1.65 47.75 111 100 130 85 40 85 160 97 43 103
B14 7/9/2015 4/14/1970 M 170 1.8 52.46 117 113.333 150 95 36 80 174 115 48 98
B15 Hit 8/6/1968 M 150 1.73 50.11 116 96.6667 130 80 33 93 213 141 52 100
B16 9/8/2015 1/30/1958 M 100 1.78 31.56 106 93.3333 130 75 35 107 180 116 50 120
B17 i 8/1/1954 F 105 168 372 100 83.3333 110 70 37 105 185 123 48 118
B18 HHHHHHHE R F 95 155 3954 105 93.3333 120 80 36 67 129 107 15 129
B19 Hit 4/4/1984 F 101 1.7 3494 96 88.3333 125 70 34 86 210 145 37 140
B1 HiHH 2/11/1972 F 100 172 338 95 96.6667 130 80 38 84 170 105 50 120
B2 i 4/24/1985 F 135 175 44.08 102 90 120 75 36 87 173 110 42 98
B3 4/8/2014 9/30/1971 F 125 1.7 43.25 104 96.6667 120 85 40 91 173 108 54 87
B4 HitHH 1/26/1978 F 130 1.7 4498 101 90 130 70 35 108 172 98 54 100
B5 it 4/29/1974 M 136 1.83 40.61 109 103.333 140 85 31 75 185 113 62 46
MEAN 126.33 1.709 43.165 106.667 95.463 128.0556 79.167 36.2778 88.1111 188.7222 114.7778 49.66667 110.3333333
STANDARD DEVIATION 5.1892 0.015 1.5783 1.70543 1.76098 2.219156 1.819 0.78717 2.48116 6.797157 5.200274 2.887883 10.14889157

Obese subjects with METs (group 3: PO)

Cc13 HHH 5/16/1961 M 190 1.98 48.46 113 96.6667 130 80 39 141 192 80 26 434
Ci6 i 7/16/1967 F 140 157 56.79 108 105 135 90 45 87 248 172 48 127
c21 6/3/2014 4/11/1959 M 170 1.8 52.46 110 106.667 140 90 36 100 236 148 58 163
c22 i 8/20/1960 M 131 1.7 4532 107 83.3333 110 70 65 179 218 137 25 412
c23 HitH 3/11/1970 F 126 1.7 4359 103 98.3333 125 85 53 149 181 101 25 278
c27 HiHHH 9/27/1943 F 135 1.5 60 114 110 150 90 81 226 167 80 47 201
c28 it 3/9/1968 F 137 165 50.32 101 88.3333 115 75 45 116 185 108 35 210
C30 9/1/2015 2/8/1952 F 84 157 34.07 97 101.667 125 90 38 87 206 104 42 300
c32 HHHHHHHE B M 135 173 451 103 105 145 85 43 130 234 114 30 504
C33 i 1/28/1955 F 135 1.73 451 97 108.333 135 95 73 268 178 98 66 70
C34 i 4/1/1944 F 110 163 414 98 85 115 70 51 111 211 140 33 190
C36 i 7/26/1952 M 126 16 49.21 106 100 140 80 45 120 105 50 40 73
c4a0 HitHH 10/4/1992 F 116 1.66 42.09 100 96.6667 120 85 45 86 148 85 27 285
C1 i 4/6/1973 M 150 1.73 50.11 109 96.6667 130 80 39 86 268 202 35 155
ca 4/4/2014 1/18/1979 M 205 178 647 116 90 120 75 70 180 159 107 28 121
c5 4/8/2014 #i#tiiHE M 140 183 418 105 91.6667 115 80 80 172 161 95 32 199
C10 HitH 7/18/1974 F 130 157 5274 104 98.3333 125 85 51 105 236 167 31 236
C11 6/3/2014 5/5/1970 F 145 1.68 51.37 101 106.667 140 90 49 107 197 107 51 197
MEAN 139.17 1.689 48.591 105.111 98.2407 128.6111 83.056 52.6667 136.111 196.1111 116.3889 37.72222 230.8333333

STANDARD DEVIATION 6.5196 0.027 1.7278 1.35735 1.89825 2.735794 1.7216 3.44423 12.1289 9.573892 8.937744 2.828202 28.45777172



Table S2 Heat map of statistically significant biochemicals profiled in this study

Red and green shaded cells indicate p<0.05 (red indicates that the mean values are significantly higher for that comparison; green values significantly lower). | |

and

Super Pathwa

shaded cells indicate 0.05<p<0.10 (

Sub Pathway

indicates that the mean values trend higher for that comparison;

Biochemical Name

values trend lower).
Fold of Change
OBESE_(0) VS oo

Group Effect
HEALTHY_(H)

L_OBESE_(PO) | L_OB

ESE_(PO

Glutathione Metabolism

reduced (GSH)

0,9105!

oxidized (GSSG)

0,8975

cysteine-glutathione disulfide

5-oxoproline

5 .
Y y

0,7834

Gamma-glutamyl Amino Acid

[gamma-glutamylcysteine

0,2934]

[gamma-glutamylglutamate

0,8357

8:

[gamma-glutamyl-alpha-lysine

[gamma-glutamyl-epsilon-lysine

[gamma-glutamylthreonine

08249

Peptide [gamma-glutamylvaline
glycylvaline
isoleucylglycine 0,8457
Dipeptide leucylglycine
phenylalanylglycine
tryptophylglycine
Acetylated Peptides phen
1,5-anhydroglucitol (1,5-AG)
glucose
Isobar: fructose 1,6-diphosphate, glucose 1,6-di itol 1,4 or 1,3 1 0,9551 0,9684
i (DHAP) 1 0,9522 1,2173] 1,2785
Glycolysis, and Pyruvate 3 ate 1 0,7667 0,9008 1,1748
phosphoenolpyruvate (PEP) 1 0,6666 0,7848, 1,1773
pyruvate 1 0,8248 0,8933
lactate 0,8387
glycerate 0,6915
Pentose Phosphate Pathway ©
doheptulose-7 09394
ribose
ribitol
Pentose Metabolism ribonate 0,8447
arabitol/xylitol
arabonate/xylonate
maltotetraose
Carbohydrate |Glycogen Metabolism maltotriose
maltose
fructose
Fructose, Mannose and mannitol/sorbitol
mannose
galactonate
UDP-glucose 1,0453| 1,1074
UDP-galactose 1,1332 1,2166
Nucleotide Sugar UDP-glucuronate 1,103 0,8999
UDP-N-acetylglucosamine 0,9954 0,9689
UDP-N-acetylgalactosamine 0,8514 0,9851
glucuronate
N-acetylglucosamine 6-phosphate
N-acetyl-glucosamine 1-phosphate
Aminosugar Metabolism N-acetylneuraminate
N-acetylglucosaminylasparagine
erythronate*
citrate
alpha-ketoglutarate
succinylcarnitine (C4-DC)
TCA Cycle succinate
Energy fumarate
malate

2-methylcitrate/homocitrate

Oxidative Phosphorylation

0,6986 0,8436)

phosphate
caproate (6:0) 1 0,8955) 0,726/ 0,8107

Medium Chain Fatty Acid heptanoate (7:0) fl 0,8854 0,8253 0,9321
caprylate (8:0) 1] 0,5399 0,5947 1,1014|

caprate (10:0) 1] 0,7386 0,7563) 1,024

myristate (14:0) 1] 0,796 0,7802| 0,9801

myristoleate (14:1n5) 1 0,8219 0,8262)] 1,0052

(16:0) 1] 0,8032 0,8577| 1,0679

(16:1n7) 1] 0,6144 0,6449) 1,0497|

Long Chain Fatty Acid 10-heptadecenoate (17:1n7) 1) 0,7665 0,7959] 1,0383
10-nonadecenoate (19:1n9) 1 0,7595| 0,7514] 0,9893!

eicosenoate (20:1) 1] 0,6864 0,7034] 1,0248

erucate (22:1n9)

oleate/vaccenate (18:1)

Polyunsaturated Fatty Acid (n3 and n6)

stearidonate (18:4n3)
! (EPA; 20:5n3)
d (n3 DPA; 22:5n3)

docosahexaenoate (DHA; 22:6n3)

linoleate (18:2n6)

linolenate [alpha or gamma; (18:3n3 or 6)]

1,0477

dihomo-linolenate (20:3n3 or n6)

arachidonate (20:4n6)

docosapentaenoate (n6 DPA; 22:5n6)

(22:2n6)

dihomo-linoleate (20:2n6)

mead acid (20:3n9)

Fatty Acid, Dicarboxylate

2-hydroxyglutarate

maleate




Lipid

3-carboxy-4-methyl-5-propyl-2-furanpr (CMPF)

Fatty Acid Synthesis

malonylcarnitine

1 0,8896

0,7714)

0,8671

butyrylcarnitine (C4)

1 0,7332

0,8862

1,2086

Fatty Acid ism (also BCAA

propionylcarnitine (C3)

0,952

Fatty Acid Metabolism(Acyl Carnitine)

acetylcarnitine (C2)

3-hydroxybutyrylcarnitine (1)

7287

0,9743]

3-hydroxybutyrylcarnitine (2)

hexanoylcarnitine (C6)

octanoylcarnitine (C8)

0,859

decanoylcarnitine (C10)

cis-4-decenoylcarnitine (C10:1)

laurylcarnitine (C12)

myristoylcarnitine (C14)

palmitoylcarnitine (C16)

palmitoleoylcarnitine (C16:1)*

linoleoylcarnitine (C18:2)*

oleoylcarnitine (C18:1)

0,8161 1,0572
0,7001 1,3324
0,8947] 1,2199

0,8584]

1,2086

myristoleoylcarnitine (C14:1)* 1 0,7902 0,8283 1,0482]

arachidoylcarnitine (C20)* 1 0,8982 1,0309) 1,1477

arachidonoylcarnitine (C20:4) 1 0,791 1,1218] 1,4181

. . deoxycarnitine 1 0,6329 0,6927| 1,0946
Carnitine Metabolism

carnitine 1 0,753 0,8196 1,0884

Ketone Bodies

3-hydroxybutyrate (BHBA)

Fatty Acid, Monohydroxy

13-HODE + 9-HODE

6-keto prostaglandin Flalpha

Eicosanoid
15-HETE
Endocannabinoid oleoyl ethanolamide
Inositol Metabolism myo-inositol
choline 0,8446

Phospholipid Metabolism

0,7472

1,7282

choline phosphate

cytidine 5'-diphosphocholine

0,7675

glycerophosphorylcholine (GPC)

1,1283

phosphoethanolamine

cytidine-5'-diph

0,8006] 1,151

glycerophosphoethanolamine

trimethylamine N-oxide

glycerophosphoinositol*

0,6834

1,2-dipalmitoyl-GPC (16:0/16:0)

1,2-dipalmitoyl-GPE (16:0/16:0)*

1-palmitoyl-2-oleoyl-GPC (16:0/18:1)

0,5189 1,1166

1,3938

1,1602]

1-palmitoyl-2-linoleoyl-GPC (16:0/18:2)

1-stearoyl-2-arachidonoyl-GPC (18:0/20:4)

1-stearoyl-2-oleoyl-GPC (18:0/18:1)

1,0715

1,2-dioleoyl-GPC (18:1/18:1)

1-palmitoyl-2-arachidonoyl-GPC (16:0/20:4n6)

1-stearoyl-2-linoleoyl-GPC (18:0/18:2)*

1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1)*

1-stearoyl-2-arachidonoyl-GPI (18:0/20:4)

1-oleoyl-2-linoleoyl-GPC (18:1/18:2)* 1 0,7876 1,0524;
1-palmitoyl-2-arachidonoyl-GPI (16:0/20:4)* 1 0,9459 0,9118, 0,964
1-palmitoyl-2-oleoyl-GPE (16:0/18:1) 1 0,8476 0,906 1,0688
1-stearoyl-2-arachidonoyl-GPE (18:0/20:4) 1 0,8252 1,0353

1-stearoyl-2-oleoyl-GPE (18:0/18:1) 1 0,856 1,0496| 1,2262]
1-palmitoyl-2-arachidonoyl-GPE (16:0/20:4)* 1 0,865 0,9296 1,0746,
1-palmitoyl-2-linoleoyl-GPE (16:0/18:2) 1 0,8183 0,753 0,9202
1-stearoyl-2-linoleoyl-GPE (18:0/18:2)* 1 0,8621 0,9628] 1,1167

1-palmitoyl-2-stearoyl-GPC (16:0/18:0)

1,2-dioleoyl-GPE (18:1/18:1)

1-stearoyl-2-oleoyl-GPG (18:0/18:1)

1,2-dilinoleoyl-GPC (18:2/18:2)

1-oleoyl-2-linoleoyl-GPE (18:1/18:2)*

1-linoleoyl-2-arachidonoyl-GPC (18:2/20:4n6)*

1-stearoyl-2-linoleoyl-GPS (18:0/18:2)

0,834

0,8626, 0,9025, 1,0462

1,0062

1-oleoyl-2-arachidonoyl-GPE (18:1/20:4)*

1-oleoyl-2-arachidonoyl-GPI (18:1/20:4) *

Phosphatidylserine (PS)

1-stearoyl-2-arachidonoyl-GPS (18:0/20:4)

1-stearoyl-2-oleoyl-GPS (18:0/18:1)

Lysolipid

1-palmitoyl-GPC (16:0)

2-palmitoyl-GPC (16:0)*

1-palmitoleoyl-GPC (16:1)*

2-palmitoleoyl-GPC (16:1)*

1-stearoyl-GPC (18:0)

1-oleoyl-GPC (18:1)

1-linoleoyl-GPC (18:2)

1-arachidonoyl-GPC (20:4n6)*

1-palmitoyl-GPE (16:0)

1-stearoyl-GPE (18:0)

1-oleoyl-GPE (18:1)

1-linoleoyl-GPE (18:2)*

1-arachidonoyl-GPE (20:4n6)*

1-stearoyl-GPI (18:0)

1-stearoyl-GPS (18:0)*

Plasmalogen

1-(1-enyl-palmitoyl)-2-oleoyl-GPE (P-16:0/18:1)*

1,009

0,9201f 1,4176|

1,1757
1,0762)

0,9047] 1,0085, 1,1148

1-(1-enyl-palmitoyl)-2-linoleoyl-GPE (P-16:0/18:2)*

1-(1-enyl-palmitoyl)-2-palmitoyl-GPC (P-16:0/16:0)*

1-(1-enyl-palmitoyl)-2-palmitoleoyl-GPC (P-16:0/16:1)*

1-(1-enyl-palmitoyl)-2-arachidonoyl-GPE (P-16:0/20:4)*

1-(1-enyl-palmitoyl)-2-oleoyl-GPC (P-16:0/18:1)*

1-(1-enyl-stearoyl)-2-oleoyl-GPE (P-18:0/18:1)

1-(1-enyl-stearoyl)-2-linoleoyl-GPE (P-18:0/18:2)*

1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4)*

1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2)*

1-(1-enyl-stearoyl)-2-arachidonoyl-GPE (P-18:0/20:4)*

Lysoplasmalogen

1-(1-enyl-palmitoyl)-GPE (P-16:0)*

1-(1-enyl-oleoyl)-GPE (P-18:1)*

1-(1-enyl-stearoyl)-GPE (P-18:0)*

1-(1-enyl-oleoyl)-2-oleoyl-GPE (P-18:1/18:1)*

0,9042

1,0964]

1-(1-enyl-oleoyl)-2-linoleoyl-GPE (P-18:1/18:2)*

1] 0,8442] 0,7229)

0,8563




glycerol

Glycerolipid Metabolism glycerol 3-phosphate 1 0,8259
glycerophosphoglycerol 1 0,8827
Monoacylglycerol 1-oleoylglycerol (18:1) 1 0,8041]
diacylglycerol (12:0/18:1, 14:0/16:1, 16:0/14:1) [2]* 1 0,7989
diacylglycerol (14:0/18:1, 16:0/16:1) [2]* 1
diacylglycerol (16:1/18:2 [2], 16:0/18:3 [1])* 1
oleoyl-arachidonoyl-glycerol (18:1/20:4) [2]*
palmitoyl-arachidonoyl-glycerol (16:0/20:4) [2]* 1 1,0298 1,2167
Diacylglycerol palmitoleoyl-linoleoyl-glycerol (16:1/18:2) [1]* 1 0,7728] 1,0471
palmitoyl-oleoyl-glycerol (16:0/18:1) [2]* 1 0,8142 1,0333 1,269/
palmitoleoyl-oleoyl-glycerol (16:1/18:1) [2]* 1 0,9194 1,0842, 1,1792
palmitoyl-linoleoyl-glycerol (16:0/18:2) [2]* 1 0,8716 1,1854

stearoyl-arachidonoyl-glycerol (18:0/20:4) [2]*

oleoyl-oleoyl-glycerol (18:1/18:1) [1]*

0,8658

oleoyl-oleoyl-glycerol (18:1/18:1) [2]*

Sphingolipid Metabolism

N-palmitoyl-sphinganine (d18:0/16:0)

N-palmitoyl-sphingadienine (d18:2/16:0)*

N-behenoyl-sphingadienine (d18:2/22:0)*

myristoyl dihydrosphingomyelin (d18:0/14:0)*

palmitoyl dihydrosphingomyelin (d18:0/16:0)*

behenoyl dihydrosphingomyelin (d18:0/22:0)*

palmitoyl sphingomyelin (d18:1/16:0)

stearoyl sphingomyelin (d18:1/18:0)

behenoyl sphingomyelin (d18:1/22:0)*

tricosanoyl i in (d18:1/23:0)*

lignoceroyl sphingomyelin (d18:1/24:0)

sphingomyelin (d18:1/14:0, d16:1/16:0)* 1 0,8752 1,0165 1,1615

sphingomyelin (d18:2/14:0, d18:1/14:1)* 1 1,0876 1,1442 1,052

sphingomyelin (d17:1/16:0, d18:1/15:0, d16:1/17:0)* 1 0,8546| 0,9953] 1,1647

sphingomyelin (d18:2/16:0, d18:1/16:1)* 1 0,983 1,162!

sphingomyelin (d18:1/17:0, d17:1/18:0, d19:1/16:0) 1 0,7755 0,8811] 1,1362
1)

sphingomyelin (d18:1/18:1, d18:2/18:0)

sphingomyelin (d18:1/20:0, d16:1/22:0)*

sphingomyelin (d18:1/20:1, d18:2/20:0)*

0,9868|

in (d18:1/21:0, d17:1/22:0, d16:1/23:0)*

1,0967,

sphingomyelin (d18:1/22:1, d18:2/22:0, d16:1/24:1)* 0,9519) 1,2045
sphingomyelin (d18:2/23:0, d18:1/23:1, d17:1/24:1)* 0,9276 1,125 1,1993
i in (d18:1/24:1, d18:2/24:0)* 0,8398 1,2171

sphingomyelin (d18:2/24:1, d18:1/24:2)*

N-palmitoyl-sphingosine (d18:1/16:0)

[ 1 I

0,8152]

N-stearoyl-sphingadienine (d18:2/18:0)*

glycosyl-N-palmitoyl-sphingosine (d18:1/16:0)

lactosyl-N-palmitoyl-sphingosine (d18:1/16:0) 1 0,6909 0,6879) 0,9957
sphingomyelin (d18:2/23:1)* 1] 0,896, 0,8757 0,9773

in (d18:2/21:0, d16:2/23:0)* 1] 1,0285) 1,1994] 1,1662,
sphingomyelin (d18:2/24:2)* 1] 0,9998] 0,8957 0,8959
N-nervonoyl-hexadecasphingosine (d16:1/24:1)* 1 0,7779 1,0241 1,3164
N-nervonoyl-sphingadiene (d18:2/24:1)* 1 0,9953 1,1869 1,1924
sphingomyelin (d18:1/22:2, d18:2/22:1, d16:1/24:2)* 1] 0,9162 0,8448 0,9221

in (d18:0/18:0, d19:0/17:0)* 1] 0,7586 0,9366) 1,2347|
sphingomyelin (d18:1/19:0, d19:1/18:0)* 1] 0,8791] 1,13 1,2854

(d16:1)*

N-palmitoyl-heptadecasphingosine (d17:1/16:0)*

-

Mevalonate Metabolism

3-hydroxy-3-methylglutarate

0,8483 1,1948 1,4084

0,9356

0,9794

Nucleotide

Sterol
4-cholesten-3-one
pregnen-diol disulfate*
cortisol 3,0474
Steroid dehydroisoandrosterone sulfate (DHEA-S) 0,6533
androsterone sulfate 0,5689 1,4119]
andr ol (3beta,17beta) disulfate (1) 1 0,5923 1,458
cholate 1 0,0751 0,0751 1
glycocholate 1 0,028 0,028 1]
Primary Bile Acid Metabolism taurocholate 1 1 1] 1
glycochenodeoxycholate 1,707/
taurochenodeoxycholate 1 0,0499 0,0499 1
glycodeoxycholate 1 0,0021 0,0029 1,3726
taurodeoxycholate 1 1 1] 1
Secondary Bile Acid Metabolism glycolithocholate 1 1 1] 1
glycolithocholate sulfate* 1 0,1473 0,1473 0,9999
glycoursodeoxycholate 1 0,1163] 0,1808 1,5544/
ceramide (d14:1/22:0, d16:1/20:0)* 0,876
Ceramides ceramide (d18:1/14:0, d16:1/16:0)* 1 0,9009!
ceramide (d18:1/17:0, d17:1/18:0)* 1 0,7945
(d18:1/20:0, d16:1/22:0, d20:1/18:0)* 0,8692
inosine 1 0,9163! 0,9924 1,083
hypoxanthine 1 0,7871 0,8365) 1,0627
Purine " (H hine/Inosine xanthine 1 0,7781) 0,9824 1,2625]
xanthosine
urate
allantoin
5" (AMP) 1
purine Metabolism, Adenine containing adenosine 3-monophosphate (3"-AMP) £
adenosine 1 0,3677
adenine 1 0,6567
guanosine 5'- monophosphate (5'-GMP) 1 0,6106] 0,6631] 1,0859
i 1 0,8988 1,0116) 1,1255,
1

Purine Metabolism, Guanine containing guanine
7-methylguanine
N2,N2-di
orotate
Pyrimidine ism, Orotate
orotidine

0,6932

3,109)

uridine 5'-monophosphate (UMP)

0,857

0,598

uridine

0,845

0,9972)

uracil

0,7734|

1,276}




Pyrimidine Metabolism, Uracil containing

pseudouridine

5-methyluridine (ribothymidine)

0,8787
1,0848

Cofactors and
Vitamins

3-ureidopropionate 1 0,5373 0,7741 1,4408
beta-alanine 1 0,8075] 0,931 1,1529]
cytidine 5" (5'-CMP) 1 0,8403 0,9134 1,087
cytidine 3'-monophosphate (3'-CMP) F 0,6864 1,5783
Pyrimidine ism, Cytidine cytidine 1 0,918 0,8662. 0,9436
cytosine 1 0,8322 1,9718
3-methylcytidine
2'-deoxycytidine 1,1171
Pyrimidine ism, Thymine Zhym'd""e 1,2006
Purine and Pyrimidine Metabolism methylphosphate 0,9754
quinolinate 1,1902
icoti i 0,9299
ri ide (NMN)
riboside
Nicotinate and Nicotinamide Metabolism adenine di ide (NAD+)

1-methylnicotinamide

trigonelline (N'-methylnicotinate)

N1-Methyl-2-pyridone-5-carboxamide

N1-Methyl-4-pyridone-3-carboxamide

Pantothenate and CoA Metabolism

Ascorbate and Aldarate Metabolism

threonate

gulonate*

Tocopherol Metabolism

alpha-tocopherol

1,6302

[gamma-tocopherol/beta-tocopherol

Hemoglobin and Porphyrin Metabolism

heme

biliverdin

1,4616

1,1634

Vitamin A Metabolism retinol (Vitamin A) 1 0,8302] 1,3268 1,5981
hippurate 1 0,4435 0,4706 1,0611
3-hydroxyhippurate 1 1,5201 1,4781 0,9724
benzoate 1 0,8382 0,7877 0,9398
1

Benzoate Metabolism

catechol sulfate

4-methylcatechol sulfate

methyl-4-hydroxybenzoate sulfate

p-cresol sulfate

0,4947]

1,061

caffeine 1 1,2317 1,4584 1,184

1 0,9998 0,9998 1

theobromine 1 0,7602] 0,7694 1,0121]

theophylline 1 0,8727 1,1006 1,2612]

Xanthine Metabolism 1-methylurate 1 0,3318, 0,6561 1,9772
7-methylurate 1 0,5332, 0,7626 1,4303;

1-methylxanthine 1 0,7969 0,9744, 1,2227

3-methylxanthine 1 0,8391 0,8798 1,0484

5-acetylamino-6-amino-3-methyluracil 1 0,488 0,819 1,6783]

S-acetylami ino-3 yluracil 1 0,6319] 0,686 1,0856

Tobacco Metabolite cotinine 1 0,8689. 0,5746 0,6613
hydroxycotinine 1, 1,0477| 0,7702 0,7351

gluconate 0,4664 2,208

beta-guanidinopropanoate 0,7763] 1,1964

ergothioneine 0,6299 1,2483

piperine 1 0,5558 0,8929 1,6065]

Food Component/Plant quinate 1 0,6652 0,8277 1,2443
acesulfame 0,9255! 0,9341 1,0092

stachydrine

tartarate

methyl glucopyranoside (alpha + beta)

Bacterial/Fungal

tartronate (hydr

0,895,

azithromycin 4,2106 4,5808| 1,0879
2-hydroxyacetaminophen sulfate* 1 1 1
2-methoxyacetaminophen sulfate* 1 1 1

3-(cystein-S-yl)acetaminophen*

1

4-acetaminophen sulfate

1,6822

1,3081

4-acetamidophenol

1

1

1

1

1

1

1

1

4 onide 1 1 1,2898
1 1 1,6444] 1,6444
fluoxetine 1 116,5359 6,321 0,0542
i 1 1 1] 1
Drug lamotrigine 1 1 1 1
hydroxybupropion 1 1 1] 1
y iogli (M-1V) 1 1 1] 1
lidocaine 1 0,515 0,57 1,1069;
metformin 1 1 1,5735) 1,5735
N-ethylglycinexylidide 1 0,416 0,765 1,8389
norfluoxetine 1 38,4469 2,583 0,3058
oxypurinol 1 0,7864 281,5818|

ioglif 1 1 1] 1
pseudoephedrine 1 0,6312 0,9505 1,5058
quetiapine 1 1,1353 1) 0,8808
rocuronium 1 0,6723 0,5699 0,8478
0-sulfo-L-tyrosine 1,3432
HEPES 1 1 3,0592] 3,0592
Chemical trizma acetate 1 0,4299 0,7419 1,7258

N-methylpipecolate

thioproline
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