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Abstract

Recent evidence from serum metabolomics indicates that specific metabolic disturbances precede b-cell autoimmunity in
humans and can be used to identify those children who subsequently progress to type 1 diabetes. The mechanisms behind
these disturbances are unknown. Here we show the specificity of the pre-autoimmune metabolic changes, as indicated by
their conservation in a murine model of type 1 diabetes. We performed a study in non-obese prediabetic (NOD) mice which
recapitulated the design of the human study and derived the metabolic states from longitudinal lipidomics data. We show
that female NOD mice who later progress to autoimmune diabetes exhibit the same lipidomic pattern as prediabetic
children. These metabolic changes are accompanied by enhanced glucose-stimulated insulin secretion, normoglycemia,
upregulation of insulinotropic amino acids in islets, elevated plasma leptin and adiponectin, and diminished gut microbial
diversity of the Clostridium leptum group. Together, the findings indicate that autoimmune diabetes is preceded by a state
of increased metabolic demands on the islets resulting in elevated insulin secretion and suggest alternative metabolic
related pathways as therapeutic targets to prevent diabetes.
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Introduction

Type 1 diabetes (T1D) is an autoimmune disease that results

from the selective destruction of insulin-producing b-cells in

pancreatic islets. The diagnosis of T1D is commonly preceded by a

long prodromal period which includes seroconversion to islet

autoantibody positivity [1] and subtle metabolic disturbances [2].

The incidence of T1D among children and adolescents has

increased markedly in the Western countries during the recent

decades [3] and is presently increasing at a faster rate than ever

before [4,5]. This suggests an important role of environment and

gene-environment interactions in T1D pathogenesis.

Metabolome is sensitive to both genetic and early environmen-

tal factors influencing later susceptibility to chronic diseases [6].

Recent evidence from serum metabolomics suggests that metabolic

disturbances precede early b-cell autoimmunity markers in

children who subsequently progress to T1D [2]. However, the

environmental causes and tissue-specific mechanisms leading to

these disturbances are unknown. Given its relatively low disease

incidence in the general population and even among subjects at

genetic risk [1], studies on early phenomena of T1D pathogenesis

in humans are a huge undertaking as they require long and

frequent follow-up of large numbers of subjects [2,7,8] to be able

to go ‘‘back to the origins’’ of the disease once a sufficient number

of subjects in the follow-up have progressed to overt disease. In

order to effectively prevent this disease it is thus fundamental to

identify suitable experimental models that recapitulate findings

from such large-scale clinical studies while being amenable to

mechanistic studies at the systems level.

The non-obese diabetic (NOD) mouse is a well characterized

model of autoimmune disease [9] which has been widely used in

studies of T1D. It is clear that the NOD experimental model does

not completely mimic the immune system and T1D pathogenesis

in man [10]. Only a fraction of NOD mice progress to disease,

with the incidence of spontaneous diabetes being 60%–80% in

females and 20%–30% in males [9]. There is thus a stochastic
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component to diabetes pathogenesis in NOD mice, believed to be

due to random generation of islet-specific T cells [11]. The disease

incidence does seem to depend on the environment and there is

evidence indicating that it is the highest in a relatively germ-free

environment [12] and that gut microbiota may affect disease

incidence via the modulation of the host innate immune system

[13].

Herein we performed a murine study in NOD mice that

recapitulated the protocol used in human studies [2] and applied a

reverse-translational approach (Figure 1) to (1) map the lipidomic

profiles of T1D progressors in human studies to lipidomic profiles

in NOD mice and derive a surrogate marker to stratify mice

according to risk of developing autoimmune diabetes, then (2)

perform multiple follow-up studies in NOD mice where metabolic

phenotypes, tissue-specific metabolome and transcriptome as well

as gut microbiota are characterized in the context of early disease

pathogenesis.

Results

Longitudinal serum lipidomics in pre-diabetic NOD mice
Our first objective was to validate whether the NOD mouse was

a good model of T1D able to recapitulate the lipidomic-based

metabolic phenotypes observed in the longitudinal study of

children who later progressed to T1D (Type 1 Diabetes Prediction

and Prevention project; DIPP) [2,8]. Hence we performed a

murine study using NOD mice and using a similar protocol as

applied in human studies (Study 1). A total of 70 NOD/Bom mice

(26 female) were monitored weekly with serum collection from age

3 weeks until either (a) the development of diabetes (progressor

group), or (b) followed until 36 weeks of age in females and 40

weeks in males in the absence of a diabetic phenotype (non-

progressor group) (Figure 2A). Similarly as in the DIPP study [2],

we were primarily interested in early pre-diabetic differences of

lipidomic profiles, in mice of the same colony, between diabetes

progressors and non-progressors.

Lipidomic analysis using established methodology based on

Ultra Performance Liquid Chromatography (UPLC) coupled to

mass spectrometry (MS) [14] was performed on a complete sample

series from 26 female mice (12 progressors, 14 non-progressors)

and 13 male (7 progressors, 6 non-progressors) mice, comprising a

total of 1172 samples or 30 samples/mouse on an average (733

samples from female and 439 from male mice), with 154 lipids

measured in each sample. When comparing the lipid concentra-

tions of diabetes progressors and non-progressors, the first weeks of

life (3–10 weeks) were characterized by an overall lipid-lowering

trend among the female progressors, while the period close to the

disease onset (15 week and older) was characterized by elevated

triglycerides and phospholipids (Figure 2B). No such changes were

observed in male mice (Figure S1). The NOD female progressors

had similar levels of glycemia (Figure 2C) than the non-progressors

but to our surprise the progressors exhibited higher fasting as

well as glucose-stimulated plasma insulin levels (2-way ANOVA

p=0.025 for diabetes progression) (Figure 2D) despite the fact that

no body weight differences were evident between progressors and

non-progressors at 10 weeks of age (Figure 2E). To account for

multiple comparisons, false discovery rates among significantly

differing lipids were estimated using q-values [15,16].

Together, these results imply that the mice who later progress to

diabetes are characterized by enhanced glucose-stimulated insulin

secretion (GSIS) at an early age or that they are inappropriately

insulin resistant for their degree of body weight. In fact this

increased GSIS associated to early evolutive stages towards T1D is

consistent with our earlier findings indicating that the children

who later progress to diabetes are characterized by low serum

ketoleucine and elevated levels of the more insulinotropic

aminoacid leucine prior to seroconversion to insulin autoantibody

(IAA) positivity [2,17].

Figure 1. Reverse-translational setting of the study. Starting
from clinical observations using metabolomics [2], then proceeding via
modeling and metabolomics to an experimental model using a similar
study design, then evolving further to tissue-specific studies. Such an
approach aims to facilitate studies of early prodromal phases of disease
pathogenesis.
doi:10.1371/journal.pcbi.1002257.g001

Author Summary

We have recently found that distinct metabolic distur-
bances precede b-cell autoimmunity in children who later
progress to type 1 diabetes (T1D). Here we performed a
murine study using non-obese diabetic (NOD) mice that
recapitulated the protocol used in human, followed up by
independent studies where NOD mice were studied in
relation to risk of diabetes progression. We found that
young female NOD mice who later progress to autoim-
mune diabetes exhibit the same lipidomic pattern as
prediabetic children. These metabolic changes are accom-
panied by enhanced glucose-stimulated insulin secre-
tion, upregulation of insulinotropic amino acids in islets,
elevated plasma leptin and adiponectin, and diminished
gut microbial diversity of the Clostridium leptum subgroup.
The metabolic phenotypes observed in our study could
be relevant as end points for studies investigating T1D
pathogenesis and/or responses to interventions. By
proceeding from a clinical study via metabolomics and
modeling to an experimental model using a similar study
design, then evolving further to tissue-specific studies, we
hereby also present a conceptually novel approach to
reversed translation that may be useful in future thera-
peutic studies in the context of prevention and treatment
of T1D as well as of other diseases characterized by long
prodromal periods.

Metabolic Phenotypes en route to T1D
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Figure 2. Normoglycemic female NOD mice which later progress to diabetes have elevated glucose stimulated plasma insulin and
diminished lipids at an early age. (A) Incidence of diabetes in female (n= 26) and male (n= 44) NOD mice included in the longitudinal lipidomics
study. The cumulative incidence of diabetes in this study was lower than the colony incidence of 80% in females and 35% in males. (B) Age-
dependent progression of lipidomic profiles in females, viewed as ratios of mean lipid concentrations of diabetes progressors (n= 12) vs. non-
progressors (n=14). The hierarchical clustering of lipids was performed across all 733 samples analyzed. PC, phosphatidylcholine; lysoPC,
lysophosphatidylcholine. (C) Blood glucose levels in 10-week-old female NOD progressors (n= 11) and non-progressors (n= 14) after 4 hr fast and
5 minutes after intraperitoneal (i.p.) glucose (1 g/kg) administration (2-way ANOVA with glucose administration and diabetes progression as factors,
reported P-value for diabetes progression; error bars6 SEM). (D) Plasma insulin concentrations (mice and statistic same as in panel C). (E) There were
no differences in body weight between the groups (mice and statistic same as in panel C). (F) Concentration of serum lysophosphatidylcholine
(lysoPC; measured as total added concentration of PC(16:0/0:0) and PC(18:0/0:0)) in 8-week female NOD mice as dependent on diabetes progression
and insulin autoantibody (IAA) positivity. Surrogate marker derived from lysoPC level and IAA positivity (Figure S2) was used to stratify mice
according to diabetes risk in subsequent studies where mice were sacrificed for tissue-specific studies. Serum lipidomics, insulin, glucose, and body
weight measurements were independently repeated in three independent studies (Studies 2–4; see Figures 6 and 7).
doi:10.1371/journal.pcbi.1002257.g002

Metabolic Phenotypes en route to T1D
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Mapping of human and NOD mouse pre-diabetic
lipidomic profiles
In order to systematically investigate similarities between early

metabolic phenotypes of autoimmune diabetes progressors in mice

and men, we proceeded with comparative analysis of longitudinal

lipidomic profiles from female NOD mice and DIPP study

children [2]. One inherent challenge in the studies of early disease

pathophysiology is variable disease penetration. The metabolic

profiles may individually change at different paces, and it is not

obvious how they should be compared between individuals or

species in the context of the disease process. We recently

introduced a concept that the maturation of metabolic profiles

with age, such as during normal development or early disease

pathogenesis, can be described in terms of metabolic states derived

using the Hidden Markov Model (HMM) methodology [18].

Instead of observing progression of average lipidomic profiles

(Figure 2B), our approach allows for each individual’s lipidomic

profiles to mature at their own pace. Such individual profiles are

captured into a set of progressive HMM states (described by mean

lipid profiles) using an underlying statistical model.

Firstly, we proceeded with the analysis of previously reported

longitudinal lipidomic profile data from the DIPP study children

[2]. The nested case-control study included 56 T1D progressors

and 73 matched non-progressors, comprising a total of 1196

samples or 9.3 samples per child on average between birth and

the diagnosis of T1D (in progressors). We applied the HMM

methodology to study the longitudinal lipidomic profiles in DIPP

children and identified a three-state HMM, developed separately

for T1D progressors and non-progressors, to describe the

progression of metabolic states at early ages (up to 3 years)

(Figure 3A,B). As expected based on the earlier report [2], the first

state corresponding to the first year of life was characterized by

low triglycerides and specific phospholipids in T1D progressors

(Figure 3C). In both progressors and non-progressors the states

followed a similar time course (Figure 3B), but the first and third

states, corresponding to the first and third years of life,

respectively, were qualitatively different between the two groups.

On the other hand, there were no such clear differences in the

second state, corresponding to the second year of life in average.

Such multi-stage progression of lipidomic profiles during the first 3

Figure 3. Progression of metabolic states in children who later progress to type 1 diabetes as compared to non-progressors, based
on lipidomics data from an earlier study [2]. (A) Structure of the Hidden Markov Model (HMM) used in this study. The model is made to focus on
progressive changes of lipidomic profiles over time [18] by assuming that returning back in states is not possible after State 2. Separate HMM models
were developed for progressors and non-progressors. The nodes in the graph represent the hidden states, each of which emits a multivariate profile
of metabolite concentrations, while arrows represent possible transitions between the states. (B) HMM state progression as a function of age is
similar for progressors and non-progressors. Each column shows the probabilities of being in the three states at a certain age, estimated by
bootstrap. (C) Differences in lipidomic profiles (mean lipid concentrations) between progressors and non-progressors as a function of the progressive
metabolic state, colored according to bootstrap-based confidence intervals.
doi:10.1371/journal.pcbi.1002257.g003

Metabolic Phenotypes en route to T1D
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years of life was not detected when examining them cross-

sectionally in different age cohorts.

We then applied the HMM methodology to study the

longitudinal lipidomic profiles of female NOD mice and identified

a three-state HMM to describe the progression of metabolic states

at early ages (3–10 weeks) (Figure 4A,B). The first two states,

corresponding to mean ages of approximately 4 weeks and 6

weeks, respectively, were similar to the first state in DIPP children

(Figure 3C) and characterized by decreased phospholipids and

triglycerides among the progressors (Figure 4B). In the third state,

corresponding to approximately 7 weeks of age when a large

fraction of the NOD mice already seroconvert to islet autoanti-

bodies [9], the differences observed in the first two states have

disappeared. Instead, the levels of proinflammatory lysophospha-

tidylcholines (lysoPCs) were increased in diabetes progressors (1%–

10% confidence interval for progressors having higher concentra-

tions, see Figure 4B).

The similarity of state progression in children (Figure 3) and

female NOD mice (Figure 4B) presenting with diabetes suggests

that the early disease stages as reflected in the lipidomes share

similar metabolic perturbations. However, it is always a challenge

to compare species exhibiting differences in systemic lipid

metabolism as well as diet-related effects on the lipidomic profiles.

Consequently the mapping of molecular lipids between mouse

and man may not be trivial and our results should be considered

qualitative.

In order to compare progression of mouse and human lipidomic

profiles we applied a mapping algorithm [19] that captures their

Figure 4. Similarities between lipid changes observed in children who later progress to T1D and the early prediabetic changes
present in female NOD mouse progressors. (A) HMM state progression as a function of age in female NOD mice is similar for progressors and
non-progressors. Each column shows the probabilities of being in the three states at a certain age, estimated by bootstrap. (B) Differences in
lipidomic profiles (mean lipid concentrations) between progressors and non-progressors as a function of the progressive metabolic state, colored
according to bootstrap-based confidence intervals. (C) Differences in lipid concentrations in diabetes progressors vs. non-progressors that generalize
across the species. Mapping shown on the left is inferred from longitudinal lipidomic profiles from DIPP study children, including n= 56 progressors
and n= 73 non-progressors [2] (Figure 3), and NOD female mice (same as in Figure 2).
doi:10.1371/journal.pcbi.1002257.g004

Metabolic Phenotypes en route to T1D
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dependencies across the two species. By using this strategy it is

possible to compare lipidomic profiles across species, and we

therefore sought for the disease effect by a two-way analysis on

progressors/non-progressors vs. men/mice. By this approach, we

uncovered associations of functionally and structurally related

lipids between the species (Figure 4C) and confirmed strong

association of diminished phospholipids with the development of

the disease at an early age (HMM state 1). We can thus conclude

that the lipid changes seen in children prior to the first

seroconversion to autoantibodies are also characteristic of the

early changes in female NOD mice progressors.

Lysophosphatidylcholine and IAA in early diabetes
progression
Seroconversion to islet autoantibody positivity is associated

with transiently elevated lysoPC serum levels in children who

subsequently progress to T1D [2]. Here we measured the IAA

levels in NOD mice at 8 weeks of age and similarly confirmed

that the IAA-negative (IAA2) progressor female NOD mice had

elevated lysoPC as compared to IAA- non-progressors at a

marginal significance level (p = 0.091, see Figure 2F). Intriguing-

ly, IAA positivity had the opposite association with diabetes

progression since the IAA-positive (IAA+) mice with high lysoPC

were protected from diabetes (Figure 2F). It can be speculated

that due to their opposite association with disease progression

IAA measurement in combination with lysoPC may help stratify

the NOD mice according to their risk of developing diabetes.

We derived a surrogate marker by combining autoantibody

positivity and lysoPC concentration, which reasonably well

discriminated between progressors and non-progressors (x2=

5.75, Px2=0.0044; Figure S2), with the NOD mice in the

assigned ‘‘High-risk’’ group being at 4.3-fold higher risk (95%

lower tolerance bound = 2.6, as calculated from 1000-fold

resampling) of developing autoimmune diabetes as compared to

the mice in the ‘‘Low-risk’’ group.

Specific islet and liver pathways associate with T1D risk
In an independent experiment normoglycemic female NOD

mice from the same colony as in the first experiment were

sacrificed at 8 (n=57) or 19 (n=14) weeks of age and blood, liver

and pancreas samples were collected (Study 2). We selected sixteen

8-week-old mice (seven were IAA+) and thirteen 19-week-old mice

(six were IAA+) for UPLC-MS based serum lipidomics analysis for

subsequent risk stratification using the algorithm described above.

Mice at high risk of developing diabetes showed a tendency

towards more severe insulitis (Figure 5A), therefore providing an

independent validation of the surrogate marker. In parallel liver

and islet transcriptomics was performed in 19-week-old mice.

When comparing high- and low-risk mice, independent of IAA

level, the pathway analysis of islet gene expression data using Gene

Set Enrichment Analysis (GSEA) [20] expectedly revealed upre-

gulation of several apoptotic and immunoregulatory pathways in the

high-risk group (Table 1 and Table S1). These pathways were

associated with the autoimmune status, as they were also upre-

gulated when comparing IAA+ and IAA2 mice independent of

diabetes risk. In support of our findings from pre-diabetic mice,

Figure 5. Female NOD mice at high risk of diabetes have more insulitis, elevated levels of insulinotropic amino acis in pancreatic
islets, and diminished diversity of Clostridium leptum bacteria in caecum. (A) Grading of pancreatic islet insulitis in normoglycemic 19-week-
old female NOD mice comparing high- and low-risk groups. Insulitis was graded: 0, no visible infiltration, I peri-insulitis, II insulitis with ,50% and III
insulitis with .50% islet infiltration. 52 islets from four high-risk (11–17 islets/each) and 28 islets from three low-risk mice (7–10 islets/each) were
graded. There was a tendency to more severe insulitis in the high-risk group (P= 0.07, x2 test). Insulitis scoring was repeated in Study 4 (see Figure 6G).
(B) Significantly regulated and selected other metabolites (P,0.07), out of 125 measured, in islets from female mice at high (HR) vs. low risk (LR) of
developing diabetes (Study 2). Fourteen mice were 8 weeks old (two IAA+ LR, three IAA2 LR, four IAA+ HR, five IAA2 HR) and 11 were 19 weeks old
(four IAA+ LR, three IAA2 LR, one IAA+ HR, three IAA2 HR) at time of sacrifice. FDR (Max. q-value [15] at P,0.05) = 0.12. (C) Bacterial diversity of
caecum samples from 19-week old female NOD mice, n= 4 from HR group and n=7 from LR group, as detected with group specific DGGEs.
Bifidobacteria did not amplify from any sample. Islet metabolomics and caecum DGGE analysis were performed once (i.e., only in NOD Study 2).
doi:10.1371/journal.pcbi.1002257.g005
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some of the upregulated gene products of these pathways are in fact

known to be implicated in progression to autoimmune diabetes,

including CD3 from the CTLA4 pathway [21], pro-inflammatory

chemokine CCL5 (or RANTES) from the toll like receptor

signalling pathway [22,23,24] and the IL-7 pathway [25] (Table S2).

Several upregulated pathways in high-risk mice were not

associated with the IAA titer. These pathways associated with

high risk of developing diabetes were mainly metabolic pathways

and included upregulated genes from TCA cycle and glycolysis/

gluconeogenesis (Table 1). In order to directly measure the

metabolic products of these pathways, we performed metabolomic

analysis of islets using two-dimensional gas chromatography

coupled to time-of-flight mass spectrometry (GC6GC-TOFMS)

[26]. Metabolomics confirmed dysregulation of energy and amino

Table 1. Pathway analysis in female NOD mouse islets.

N NES FDR q Source

Upregulated in progressors, associated with IAA positivity

HIVNEFPATHWAY 53 2,32 0,000000 BioCarta

HSA04650_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 94 2,21 0,000157 KEGG

APOPTOSIS_GENMAPP 40 2,18 0,000307 GenMAPP

CELL_CYCLE_KEGG 79 2,16 0,000410 GenMAPP

HSA04660_T_CELL_RECEPTOR_SIGNALING_PATHWAY 90 2,15 0,000413 KEGG

IL7PATHWAY 16 2,04 0,001660 BioCarta

APOPTOSIS 63 2,03 0,001676 GenMAPP

CTLA4PATHWAY 16 2,02 0,001900 BioCarta

HSA03022_BASAL_TRANSCRIPTION_FACTORS 30 2,00 0,002515 KEGG

HSA04662_B_CELL_RECEPTOR_SIGNALING_PATHWAY 59 2,00 0,002531 KEGG

Upregulated in progressors, not associated with IAA positivity

HSA00240_PYRIMIDINE_METABOLISM 82 2,12 0,000763 KEGG

RIBOSOMAL_PROTEINS 71 2,03 0,001743 GenMAPP

HSA04610_COMPLEMENT_AND_COAGULATION_CASCADES 62 1,92 0,004885 KEGG

NKCELLSPATHWAY 18 1,90 0,005527 BioCarta

CARM_ERPATHWAY 24 1,89 0,006187 BioCarta

HSA00100_BIOSYNTHESIS_OF_STEROIDS 21 1,88 0,006819 KEGG

HSA00230_PURINE_METABOLISM 135 1,87 0,008010 KEGG

KREBS_TCA_CYCLE 28 1,85 0,009439 GenMAPP

INTRINSICPATHWAY 22 1,82 0,011212 BioCarta

GLYCOLYSIS_AND_GLUCONEOGENESIS 38 1,81 0,012117 GenMAPP

Downregulated in IAA positive non-progressors

OXIDATIVE_PHOSPHORYLATION 56 21,76 0,080640 GenMAPP

KREBS_TCA_CYCLE 28 21,66 0,129344 GenMAPP

MITOCHONDRIAL_FATTY_ACID_BETAOXIDATION 15 21,61 0,152160 GenMAPP

HSA03010_RIBOSOME 55 21,57 0,163501 KEGG

HSA00480_GLUTATHIONE_METABOLISM 34 21,45 0,196112 KEGG

HSA00280_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION 40 21,46 0,196296 KEGG

Upregulated in IAA positive non-progressors

ST_INTEGRIN_SIGNALING_PATHWAY 78 2,06 0,000774 STKE

HSA05211_RENAL_CELL_CARCINOMA 67 1,99 0,001681 KEGG

INTEGRIN_MEDIATED_CELL_ADHESION_KEGG 90 1,95 0,002570 GenMAPP

IL6PATHWAY 19 1,95 0,002717 BioCarta

SA_PTEN_PATHWAY 16 1,85 0,005938 SigmaAldrich

ST_INTERLEUKIN_4_PATHWAY 23 1,84 0,006384 STKE

SIG_CHEMOTAXIS 44 1,77 0,011176 SignalingAlliance

CELL_GROWTH_AND_OR_MAINTENANCE 58 1,75 0,012905 GO

ECMPATHWAY 20 1,73 0,015894 BioCarta

RAC1PATHWAY 22 1,68 0,021239 BioCarta

Up to 10 most significantly affected pathways are shown at False Discovery Rate (FDR) q,0.25 for two different comparisons: (1) High (HR) vs. low diabetes risk (LR) and
(2) IAA positive LR vs. other (Study 2). Full pathway analysis results are shown in Table S1. Transcriptomics was performed in the islets of n= 10 19-week old female NOD
mice (three IAA+ LR, two IAA2 LR, two IAA+ HR, three IAA2 HR). N, number of genes in the pathway; NES, normalized enrichment score; Source, gene list source.
doi:10.1371/journal.pcbi.1002257.t001
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acid metabolism in the islets of high-risk mice (Figure 5B), as

several key metabolites of these pathways were found upregulated,

including glutamic and aspartic acids, as well as at a marginal

significance level all three branched chain amino acids (BCAAs).

These elevated amino acids are known insulin secretagogues in b
cells [27]. In agreement with this, the insulin signaling pathway

was upregulated in the livers of high-risk mice (Table S3). The top

ranking gene in this pathway, Glucose-6-phosphatase, catalytic, 2

(G6PC2; fold change high- vs. low-risk group +11%, P=0.0034),

controls the release of glucose from liver into the bloodstream.

However, the animals included in this study, as in the earlier

longitudinal study, were normoglycemic and there were no

differences in body weight between the two groups. The metabolic

changes in b cells and liver can thus explain the observed elevated

GSIS in mice at high risk for developing autoimmune diabetes

(Figures 2C–E).

Diminished diversity of gut microbiota associates with
diabetes risk
We recently observed that the serum metabolome of germ-free

mice is similar to pre-autoimmune metabolomes of children who

later progress to T1D [28], thus implying that gut microbiota of

T1D progressors may be devoid of important constituents or has

an impaired function that predisposes the children to T1D. Given

the observed similarities of metabolomes of diabetes progressors in

mice and men (Figure 4), we hypothesized that the observed

metabolic differences between the high- and low-risk mice may be

reflected in differences in their gut microbial composition.

We characterized the microbial composition of caecum

samples from high- and low-risk mice from Study 2 using

predominant bacterial as well as five different bacterial group-

specific (namely Eubacterium rectale – Blautia coccoides group,

Clostridium leptum group, Bacteroides spp., bifidobacteria, and

lactobacilli) denaturing gradient gel electrophoresis (DGGE)

methods as previously described [29,30]. With such an approach

to profile microbiota it is possible to detect the phylotypes that

constitute over 1% of the specific group in question [29,31].

Analysis of the composite dataset, which included all the different

group-specific DGGE results, showed that the total bacterial

composition did not markedly differ between the groups but was

slightly more coherent in low-risk mice than in high-risk mice (see

the deviation bars in Figure S3). In addition, the high-risk mice

had significantly diminished diversity of the Clostridium leptum

group of the Firmicutes phylum (Figure 5C).

Markers of insulin resistance in progression to T1D
There is evidence from clinical studies that insulin resistance is a

risk factor for progression to T1D [32,33]. It is also known that the

NOD genetic background may predispose the mice to insulin

resistance [34]. To test for insulin resistance as a potential

explanation for the observed metabolic phenotype of high-risk

mice, we performed two independent studies in another NOD

colony where (Study 3) 36 female NOD/MrkTac mice were tested

for GSIS, glucose and insulin tolerance, and plasma leptin

between 8 and 11 weeks of age; and (Study 4) 42 female NOD/

MrkTac were sacrificed at 10 weeks of age and tested for insulitis,

plasma leptin and adiponectin. As before, serum lipidomics and

IAA assays were performed to stratify the mice into high- and low-

diabetes-risk groups.

We confirmed the elevated GSIS in high risk mice (Figure 6A)

but found no significant difference in glucose responses to

intraperitoneal glucose or insulin between the groups

(Figures 6B,C), in the Homeostatic model assessment of insulin

resistance (HOMA-IR) index or GLUT4 expression in white

adipose tissue and muscle (Figure 6D,F). In agreement with the

results from older mice (Figure 5A) and in further support of the

surrogate marker applied to stratify the mice according to disease

risk, the 10-week old female NOD mice at higher risk of

developing diabetes have already signs of more insulitis than their

low-risk counterparts, although the average degree of insulitis is

mild in both groups (p,0.05, see Figure 6G). Surprisingly, the

adipose tissue derived hormones leptin (p,0.05, see Figure 6H)

and adiponectin (p,0.05, see Figure 6I) were both elevated in

plasma of high-risk mice despite no significant differences in

weight or adiposity (p.0.05, see Figure 7A–C). However, both

adiponectin and leptin correlated with the gonadal adipose tissue

mass (Figure 7D,E).

IAA positivity and protection from autoimmune diabetes
Given that the metabolic profile is normalized in children

following seroconversion to autoantibody positivity [2], we

proposed earlier that the generation of autoantibodies may be a

physiological response to early metabolic disturbances. In the

present study (mice from Study 2), we investigated the pathways in

the IAA+ low-risk female mice and compared them to all other

groups. The IAA+ low-risk mice were characterized by several

elevated signaling pathways in the islets, including the IL-4 and IL-

6 pathways (Table 1). IL-4 is known to be protective from diabetes

in NOD mouse [35]. Conversely IAA+ low-risk mice had reduced

expression of pathways mainly related to mitochondrial function

and TCA cycle, BCAA catabolism, beta oxidation and oxidative

phosphorylation. It is unclear how downregulation of these

pathways may protect against T1D. However downregulation of

these pathways will lead to a state of reduced production of

reactive oxygen species (ROS) [36] which may explain at least in

part the conserved b cell functionality. This would offer a potential

protective mechanism linking decreased ROS production to the

prevention of b cell apoptosis in IAA+ mice which do not progress

to diabetes. Our results stress the need for similar studies in terms

of protection from diabetes in individuals who seroconverted but

did not progress to overt disease.

Discussion

This study emphasizes the translatability of our previous

findings from the large-scale clinical study [2] into the tissue-

specific context. Also, our study highlights that specific metabolic

disturbances are identifiable early on during the evolutive stages

and could potentially be linked to pathogenic mechanisms

implicated in the progression to autoimmune diabetes. Although

the specific causes, likely to be diverse amongst humans and

between the NOD mouse and humans, of these early metabolic

disturbances remain to be established, our findings pave the way

for studies focused on how the metabolism and the immune system

interact in early stages of the disease.

The lipidomic profiles associated with progression to T1D in

children [2] were similar to early lipidomic profiles in female but

not male NOD mice that later progressed to autoimmune

diabetes. It is known that female NOD mice are more likely to

progress to autoimmune diabetes [9] although the reasons for this

are poorly understood. Notably, in humans the T1D incidence is

nearly 2-fold higher in men than women [37]. In the present

study, we have not pursued the reasons for the gender-specific

metabolic differences in NOD mice and have instead focused on

studies in female mice since they displayed the similar metabolic

patters as observed in human studies.

Both in man and mouse, the metabolic states as determined by

HMM followed the similar progression in disease progressors and
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non-progressors (Figures 3B and 4A), but were qualitatively

different between these two groups (Figures 3C and 4B). However,

notably no major qualitative differences were observed in the

second state in the human study and in the third state of the mouse

study. These two states correspond to the ages when the first

diabetes-associated autoantibodies have appeared in many of the

human T1D progressors [2] and NOD mice [9], respectively. In

the DIPP study we have previously shown that the seroconversion

to autoantibody positivity appears to normalize the metabolic

profiles, suggesting that the immune system may be involved in the

metabolic regulation and vice versa. In fact, the metabolic demands

of T cells are extraordinary, rivaling that of cancer cells [38,39].

For example, differentiating T cells consume 10-fold more

glutamine than other cells in the body [39], and we in fact found

that glutamine is diminished in children within a period of months

prior to seroconversion [2]. Concentration changes of circulating

metabolites as detected in our studies may thus have a direct effect

on T-cell function. We therefore hypothesize that the second

metabolic state in human progressors, and similarly the third state

in NOD mice, reflect the period following the seroconversion

when the metabolic profiles have been restored to normal levels via

interaction with the immune system.

In the NOD mice, this apparent interaction between the

immune system and metabolic status is underlined by the opposite

association of the IAA and lysoPC (Figure 2F) at 8 weeks of age,

i.e., in the age group corresponding to the third state in the

HMM model (Figure 4B). Based on this observation, a surrogate

marker was derived combining information on IAA positivity and

lysoPC concentration (Figure S2), which was utilized to stratify

mice according to risk of developing autoimmune diabetes in

Figure 6. Markers of insulin resistance in 8–11 week old female NOD mice. (A) Glucose-stimulated insulin secretion is elevated in the high-
risk (HR) group (n=18) as compared to low-risk (LR) group (n= 12) (measured in NOD Study 3). In the same mice, no significant differences between
the HR and LR group were found in (B) glucose tolerance test (GTT) or (C) insulin tolerance test (ITT). (D) Homeostatic model assessment (HOMA-IR)
index in LR (n= 13) and HR (n=25) groups (Study 4), and GLUT4 expression in (E) muscle and (F) white adipose tissue (Study 4). (G) The HR mice at 10
weeks of age have slightly more insulitis. Total 678 islets from 8 LR mice (60–123 islets/each) and 633 islets from 8 HR mice (59–102 islets/each) were
graded as in Figure 5A. (H) Plasma leptin (analyzed twice, in Studies 3 and 4, combined data analyzed; n=24 for LR and n= 43 for HR) and (I)
adiponectin (analyzed in Study 4; n= 14 for LR and n=27 for HR) are elevated in 10-week-old HR mice. * indicates p,0.05.
doi:10.1371/journal.pcbi.1002257.g006
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subsequent studies. The so-classified high-risk mice had higher

degree of insulitis, a histopathological hallmark of progression to

diabetes in NOD mice [9], as assessed in two independent studies

(Figures 5A and 6G). While the association of the surrogate marker

with established characteristics of progression to T1D validated

our approach in the present study, it also suggests that predic-

tion of autoimmune diabetes in NOD mice using combined meta-

bolic and immune markers may be feasible. However, further

prospective studies are needed in different NOD strains, similar in

design as our Study 1, to determine and validate such markers. As

already demonstrated in our study, the use of such markers

sensitive to disease risk may facilitate investigations of early

pathophysiological phenomena at a tissue-specific level prior to

any symptoms of the disease.

Our results indicate that early stages of progression to T1D are

characterized by acute increased response to high glucose-

stimulated insulin secretion. Furthermore, this response is

accompanied by increased concentration of insulinotropic amino

acids and other markers of energy metabolism in the islets and

more specifically of insulin signaling pathways in the liver.

Together with human data [2], our study provides compelling

evidence that increased GSIS is an event that heralds diabetes

progression already in pre-autoimmune stages of the disease

pathogenesis. In NOD mice, elevated GSIS at young age may be

an initial response associated with early insulitis. Our data suggest

that this response might reflect a state of insulin resistance;

however our insulin tolerance tests do not support this insulin-

resistant component in diabetes progressors. One potential link

may be increased circulating insulin concentrations-suppressing

leptin [40] and insulin-sensitizing adiponectin [41]. Adiponectin is

known to be elevated in patients with T1D, but very limited data

exist on its levels during the pre-diabetic period [42]. Leptin,

however, is known as an important immune regulator [43]. Leptin

is a negative regulator of CD4+CD25+ regulatory T cells [44] and

promoter of Th1 immune responses [45,46]. In fact administration

of leptin accelerates autoimmune diabetes in female NOD mice

[47]. Of interest, endoplasmic reticulum stress is known to induce

leptin resistance [48]. Together, our findings from the studies of

female NOD mice at high- and low-risk of T1D within the same

colony suggest that elevated leptin in high-risk mice is a

consequence of early metabolic stress, and that leptin may play

a role in mobilization of deleterious Th1 immune responses

characteristic of T1D [49]. This would offer an explanation for the

epidemiological findings that obesity [50] and decreased insulin

sensitivity [51] are risk factors of T1D. Given the global rise of

obesity and related metabolic complications among children [52],

our study thus suggests that improving insulin sensitivity while

avoiding harmful immune responses in genetically susceptible

individuals may be an important new strategy for early T1D

prevention.

Our study also implicates that early metabolic disturbances in

progression to autoimmune diabetes associate with diminished

diversity of specific bacterial groups such as C. leptum group. This is

in agreement with a recent pilot study in the DIPP cohort where

phylum Firmicutes was found decreased in the four children who

later progressed to diabetes [53]. Microbial communities are

sensitive to disturbances and may subsequently not return to the

their original state [54]. Interestingly, diminished diversity of the

anti-inflammatory commensal bacterium Faecalibacterium prausnitzii

from the C. leptum group characterizes also Crohn’s disease [55].

Our study thus revealed a candidate microbial group which may

be further considered in the context of diabetes prevention.

Figure 7. Weight and adiposity in progression to autoimmune diabetes. (A) Body weight (Study 4; n=15 for lor-risk and n=27 for high-risk
mice). (B) Weight and (C) weight/body weight of gonadal white adipose tissue (Study 4). Correlations of (D) leptin and (E) adiponectin with weight of
gonadal white adipose tissue. Adiposity was characterized in one independent study (Study 4).
doi:10.1371/journal.pcbi.1002257.g007
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The fact that the diabetes-associated differences in microbial

composition were observed among the mice of the same colony

suggests that the observed diminished microbial diversity is rather

a consequence than a primary cause of immunological or

metabolic responses. The mechanisms by which the gut microbial

community is modulated by specific metabolic and immune

factors associated with progression to T1D are at present unclear

and demand further investigation. However, these findings may

still be important by having a role in early disease pathogenesis. In

fact, recent study revealed that microbes from C. leptum group

induce regulatory T cells in colonic mucosa [56]. Diminishment of

C. leptum diversity along with elevated leptin may therefore be two

mechanisms which promote negative regulation of CD4+CD25+

regulatory T cells, and therefore also promote the autoimmune

response [57].

Our study uncovered multiple factors which may contribute in

parallel to progression towards autoimmune diabetes. It is unlikely

that any of them is a primary cause to initiate the disease process.

Instead, as an early mathematical model of T1D describing

changes in numbers of b-cells, macrophages, and Th-lymphocytes

concluded, the ‘‘onset of type 1 diabetes is due to a collective,

dynamical instability, rather than being caused by a single

etiological factor’’ [58]. In this context, understanding the spatial

and temporal balance of different disease-contributing factors is

important [59]. The study design such as ours may help identify

the early factors contributing to the disease as well as their mutual

dependencies.

Finally, the metabolic phenotypes described here could be

relevant as end points for studies investigating T1D pathogenesis

and/or responses to interventions. By proceeding from a clinical

study via metabolomics and modeling to an experimental model

using a similar study design, then evolving further to tissue-specific

studies, we hereby present a conceptually novel approach to

reversed translation (Figure 1) that may be useful in future

therapeutic studies in the context of prevention and treatment of

T1D as well as of other diseases.

Materials and Methods

Ethics statement
All experimental procedures were approved by the Committee

for Laboratory Animal Welfare, University of Turku.

Experimental animals and sample collection
The mice were kept in an animal room maintained at 2161uC

with a fixed 12:12 hr light-dark cycle. Standard rodent chow

(Special Diet Services, Witham, UK) and water were available ad

libitum. The colonies of NOD/Bom mice used were bred and

maintained in the animal facilities of University of Turku and

originated from mice purchased from Taconic Europe (Ry,

Denmark). 26 female and 44 male NOD mice (Study 1) underwent

weekly blood sampling by venopuncture from the tail vein starting

at 3 weeks of age until the mice developed diabetes (blood glucose

$14.0 mmol/in two consecutive weeks) or until female mice

reached 36 weeks and male mice 40 weeks of age. Serum was

separated and quickly frozen in 270uC for metabolomic analysis.

Blood samples for detection of insulin autoantibodies (IAA) were

collected from tail vein at the age of 8 weeks. Plasma samples for

insulin were collected between noon and 2 PM after 4 hr fast and

two days later 5 minutes after intraperitoneal glucose (1 g/kg)

administration at the age of 10 weeks. Another set of euglycemic

NOD/Bom female mice (Study 2) was sacrificed with decapitation

under CO2 anesthesia at the age of 8 weeks (n=57) or 19 weeks

(n=14), and blood, liver and pancreas samples were collected.

Two separate batches (n=36 and 42, Studies 3 and 4) of female

NOD/MrcTac were delivered from Taconic USA (Hudson, NY,

USA) at 5 weeks of age. In Study 3, intraperitoneal glucose

tolerance test was performed after 4 hr fast at 8 weeks of age by

administering glucose (10% [wt/vol], 1 g/kg body weight) and

measuring tail vein blood glucose and serum insulin. Serum

samples for lipidomics and IAA were collected from tail vein at 10

weeks of age. Intraperitoneal insulin tolerance test was performed

after 1 hr fast at 11 weeks of age by administering human insulin

(1.0 IU/kg body weight, Protaphane, Novo Nordisk, Bagsvaerd,

Denmark). In Study 4, mice were sacrificed at 10 weeks of age

after 4 hr fast by cardiac puncture under anesthesia. Gonadal

white adipose tissue (WAT) depot was carefully dissected and

weighted, and was used as a marker of adiposity. Serum samples

for IAA, lipidomics and adipokine panel assays, gonadal WAT,

gastrocnemius muscle and pancreas samples were collected, and

stored at 270uC until analyses. HOMA-IR, an estimate of insulin

resistance, was calculated as fasting insulin (mIU/ml)6fasting

glucose (mmol/l)/22.5. Statistical significances were analyzed with

Student’s t-test or two-way ANOVA using GraphPad Prism 4.

Plasma glucose, insulin, leptin and adiponectin
Blood glucose was measured with Precision XtraTM Glucose

Monitoring Device (Abbott Diabetes Care, IL). Plasma insulin

was analyzed with Mouse Ultrasensitive ELISA kit (Mercodia,

Uppsala, Sweden) or together with leptin with Milliplex Mouse

Adipokine Panel (Millipore, Billerica, MA, USA). Plasma

adiponectin was measured with Mouse Adiponectin ELISA kit

from Millipore.

Islet isolation
Pancreatic islets were isolated using Ficoll 400 (Sigma-Aldrich,

St Louis, MI, USA) gradient method [60]. In brief, the pancreata

were incubated with Collagenase P (0.5 mg/ml, Roche Diagnos-

tics, Mannheim, Germany) in HBSS containing 10 mM HEPES,

1 mM MgCl2, 5 mM Glucose, pH 7.4 for 17 min. After two

rounds of washing, the pellet was resuspended in Ficoll 25%, and

the densities 23%, 20% and 11% were layered on top. After

centrifugation, the islet layer between densities 23% and 20% was

collected and washed twice before snap freezing the pellet for

metabolomic analysis or homogenization in lysis buffer for RNA

extraction. Samples were stored in 270uC until analyses.

Histopathology of diabetes
Pancreata from euglycemic NOD mice were cryosectioned.

5 mm sections with .20 mm intervals were stained with hematox-

ylin & eosin and graded for insulitis as follows: 0, no visible

infiltration, I peri-insulitis, II insulitis with ,50% and III insulitis

with .50% islet infiltration. Total 678 islets from eight female 10-

week-old low-risk mice (60–123 islets/each) and 633 islets from

eight high-risk mice (59–102 islets/each), and 52 islets from four

female 19-week-old low-risk mice (11–17 islets/each) and 28 islets

from three high-risk mice (7–10 islets/each) were graded.

Statistical significance was analyzed with Student’s t-test or Chi

Square test using GraphPad Prism 4.

IAA assay
Murine IAA were measured by a radiobinding microassay

(RIA) with minor modifications to that previously described for

human IAA [61]. Mouse sera (2.5 ml) and serial dilutions of

standard samples (5 ml) of a serum pool obtained from persons

with a high IAA titer were incubated for 72 h with 15,000 cpm

mono125I-(TyrA14)-insulin (Amersham, GE Healthcare, Buckin-
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ghamshire, UK) in the presence or absence of an excess of

unlabeled human recombinant insulin (Roche Diagnostics,

Mannheim, Germany). Antibody complexes were precipitated by

adding 50 ml TBT buffer (50 mM Tris, pH 8,0, 0,1% Tween 20)

containing 8 ml Protein A and 4 ml Protein G Sepharose

(Amersham). After repeated washings the bound radioactivity

was measured with a liquid scintillation detector (1450 Microbeta

Trilux, Perkin Elmer Life Sciences Wallac, Turku, Finland). The

specific binding was calculated by subtracting the non-specific

binding (excess unlabeled insulin) from total binding and expressed

in relative units (RU) based on standard curves run on each plate.

The cut-off value for mouse IAA positivity was set at the

mean+3SDS in 29 BALB-mice, i.e. 0.90 relative units (RU).

Lipidomic analysis
Serum samples (10 ml) in Eppendorf tubes were spiked with a

standard mixture containing 10 lipid compounds at a concentra-

tion level of 0.2 mg/sample, and mixed with 10 ml of 0.9% sodium

chloride and 100 ml of chloroform:methanol (2:1). After 2 min

vortexing and 1 hr standing the samples were centrifuged at

10000 rpm for 3 min and 60 ml of the lower organic phase was

taken to a vial insert and spiked with 20 ml of three labelled lipid

standards at a concentration level of 0.2 mg/sample.

The lipidomics runs were performed on a Waters Q-Tof

Premier mass spectrometer combined with an Acquity Ultra

Performance LCTM (UPLC; Milford MA). The solvent system

consisted of 1) water with 1% 1 M NH4Ac and 0.1% HCOOH

and 2) LC/MS grade acetonitrile/isopropanol (5:2) with 1% 1 M

NH4Ac, 0.1% HCOOH. The gradient run from 65% A/35% B to

100% B took 6 min and the total run time including a 5 min re-

equilibration step was 18 min. The column (at 50uC) was an

Acquity UPLCTM BEH C18 (1650 mm, 1.7 mm particles) and the

flow rate was 0.200 ml/min. The lipids were profiled using ESI+

mode and the data collected at a mass range of m/z 300–1200.

The data was processed by using MZmine software (version 0.60)

[62,63] and the lipid identification was based on an internal

spectral library [64]. Data was normalized using the appropriate

internal standards as previously described [14,65].

Metabolomic analysis by GC6GC-TOFMS
Depending on the protein concentrations of PBS buffered cell

solutions, 20–40 ml samples were taken for islet metabolomic

analysis. 10 mL of an internal standard labeled palmitic acid-

16,16,16-d3 (250 mg/l) and 400 ml of methanol solvent were

added to the sample. After vortexing for 2 min and incubating for

30 min at room temperature, the supernatant was separated by

centrifugation at 10,000 rpm for 5 min. The sample was dried

under constant flow of nitrogen gas and derivatized with 25 ml of

MOX (1 h, 45uC) and MSTFA (1 hr, 45uC). 5 ml of retention

index standard mixture with five alkanes (125 ppm) was added to

the metabolite mixture.

Islet samples were analyzed by two-dimensional gas chroma-

tography coupled to time of flight mass spectrometry (GC6GC-

TOFMS). The instrument used was a Leco Pegasus 4D (Leco Inc.,

St. Joseph, MI), equipped with an Agilent GC 6890N from Agilent

Technologies (Santa Clara, CA) and a CombiPAL autosampler

from CTC Analytics AG (Zwingen, Switzerland). The modulator,

secondary oven and time-of-flight mass spectrometer were from

Leco Inc. The GC was operated in split mode with a 1:20 ratio.

Helium with a constant pressure of 39.6 psig was used as carrier

gas. The first dimension GC column was a non-polar RTX-5

column, 10 m60.18 mm60.20 mm (Restek Corp., Bellefonte,

PA), coupled to a polar BPX-50 column, 1.50 m60.10 mm6

0.10 mm (SGE Analytical Science, Ringwood, Australia). The

temperature program was as follows: initial temperature 50uC,

1 minR295uC, 7uC/min, 3 min. The secondary oven was set to

20uC above the oven temperature. Inlet and transfer line

temperatures were set to 260uC. The second dimension separation

time was set to 5 s. The mass range used was 45–700 amu and the

data collection speed was 100 spectra/second. Raw data were

processed using Leco ChromaTOF software, followed by

alignment using Guineu software (version 0.7) [66]. The

metabolites were identified by using an in-house reference

compound library together with The Palisade Complete Mass

Spectral Library, 600K Edition (Palisade Mass Spectrometry,

Ithaca, NY).

Gene expression and pathway analysis
RNA extraction from islets was carried out with Rneasy minikit

(QIAGEN GmbH, Hilden, Germany) and from liver, skeletal

muscle (m. gastrocnemius) and gonadal white adipose tissue with

Trizol reagent (Invitrogen, Carlsbad, CA) followed by RNase-free

DNase I treatment (QIAGEN GmbH) and purification with

Rneasy minikit. Pancreatic islets and liver for microarray analysis

were collected from 19-week-old euglycemic female NOD/Bom

mice. Skeletal muscle and adipose tissue for GLUT4 mRNA

expression were collected from 10-week-old female NOD/

MrkTac mice.

GLUT4 mRNA expression in skeletal muscle and gonadal

white adipose tissue was measured by quantitative real-time PCR.

CDNA synthesis was performed with High Capacity RNA-to-

cDNA Kit according to manufacturer’s protocol. Real-time PCR

was performed with 7300 Real Time PCR system, pre-designed

TaqManH Gene Expression Assay for GLUT4 and TaqManH

Endogenous Control Assay for b-actin. The 20 ml PCR reactions

contained 8 ml cDNA, 8 ml TaqManH Gene Expression Master

Mix, 1 ml GLUT4 TaqMan Gene Expression Assay, 1 ml b-actin

TaqMan Endogenous control Assay and 2 ml depc water. Cycling

parameters for real-time RT-PCR were as follows: 50uC for

2 min, 95uC for 10 min followed by 40 cycles of 95uC for

15 seconds and 60uC for one minute. GLUT4 mRNA levels were

expressed relative to b-actin, which was used as a housekeeping

gene. Relative gene expression was calculated using the compar-

ative CT method and RQ=22DDCT formula. All reagents were

from Applied Biosystems (Foster City, CA, USA).

RNA amplification was performed from 300 ng total RNA with

Ambion’s (Austin, TX) Illumina RNA TotalPrep Amplification kit

(cat no AMIL1791). IVT reaction overnight (14 hr), during it

cRNA was biotinylated. Both before and after the amplifications

the RNA/cRNA concentrations where checked with Nanodrop

ND-1000 (Wilmington, DE) and RNA/cRNA quality was

controlled by BioRad’s Experion electrophoresis station (Hercules,

CA).

The samples were hybridized in the Finnish DNA Microarray

Centre, at the Turku Centre for Biotechnology. 1.50 mg each

sample was hybridized to Illumina’s MouseWG-6 Expression

BeadChips, version 2 (BD-201-0602) at 58uC overnight (18 hr)

according to IlluminaH Whole-Genome Gene Expression Direct

Hybridization protocol, revision A. Hybridization was detected

with 1 mg/ml Cyanine3-streptavidine, GE Healthcare Limited

(Chalfont, UK) (cat no PA43001). Chips were scanned with

Illumina BeadArray Reader, BeadScan software version 3.5. The

numerical results were extracted with Illumina’s GenomeStudio

software v. 1.0 without any normalization.

Bead Summary data, exported from Illumina’s GenomeStudio

software, was preprocessed using beadarray package [67] of R/

Bioconductor [68] as follows. Data was transformed to logarithm

(base 2), and normalized using quantile method [69], which
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equalizes the distribution of probe intensities across a set of

microarrays.

Pathway analysis and clustering
Gene Set Enrichment Analysis (GSEA) [20], a commonly used

pathway analysis technique for microarray gene expression data

analysis, uses a Kolmogorov-Smirnov like statistic to test whether

selected gene sets are enriched among the most up or down

regulated genes. Multiple hypothesis testing was addressed by

computing the false discovery rate q-values based on random

permutation of membership of genes across gene sets as

implemented in the GSEA software [20]. Linear Models for

Microarray Data (LIMMA) approach [70] identifies differentially

expressed genes by fitting a linear model to the expression data of

each gene, and computing moderated t-statistic using posterior

residual standard deviations to account for the gene-specific

variability of expression values. Here, we used the R/Bioconduc-

tor package [68] and LIMMA [70] for testing differential

expression of genes. We then performed pre-ranked GSEA

analysis using the moderated t-statistic for ranking the gene list,

to test for enrichment of gene sets from a variety of pathway

databases such as Gene Ontology (GO) [71], GenMAPP [72],

BioCarta (http://www.biocarta.com), Signal Transduction

Knowledge Environment (STKE) (http://stke.sciencemag.org/),

and KEGG [73] curated in Molecular Signatures Database

(MSigDB) [20].

Leading edge genes of an enriched pathway are the genes that

account for the enrichment signal [20]. For selected pathways

that are found statistically significant by GSEA, the pathway

profiles are calculated as average expression of all leading edge

genes. This matrix of pathway profiles of selected pathways was

then augmented with selected metabolite profiles. Then the

numerical values in this matrix were normalized with the

autoantibody-negative low-risk group (IAA2 & LR), i.e., each

numerical value of a variable is divided by the average values

from IAA2 & LR samples, and transformed to logarithmic (base

2) scale. Then the variables were scaled for unit variance. Finally,

hierarchical clustering was applied using Euclidean metric and

complete linkage method [74] for computing inter-cluster

distances. An R package called gplots (http://www.r-project.

org/) was used for the clustering and displaying the numerical

values as a heat map.

Microbiological analysis
DNA was extracted from 200 mg of fecal sample from caecum

using FastDNA Spin Kit for Soil (QBIOgene, Carlsbad, CA,)

with modifications to the manufacturer’s instructions [29]. PCR-

DGGEs of predominant bacterial PCR-DGGE and five different

group specific PCR-DGGEs (bifidobacteria, Lactobacillus-group,

Eubacterium rectale – Blautia coccoides clostridial group (Erec-group),

Clostridium leptum clostridial group (Clept group), and genus

Bacteroides) were performed as described previously [30].

The comparison of the profiles and the quantification of the

amplicons were performed using BioNumerics software version 5.1

(Applied Maths NV, Sint-Martens-Latem, Belgium). The statistical

analysis of amplicon numbers was performed with the Student’s

t-test with unequal variances. Clustering was performed with

Pearson correlation from each bacterial group separately besides

using composite datasets (included predominant bacterial DGGE

and five group specific DGGEs) in which amplicons with the total

surface area of at least 1% were included in the similarity analysis.

Principal component analysis was performed with the BioNu-

merics software.

Statistical analysis of lipidomics data
R statistical software (http://www.r-project.org/) was used for

data analyses and visualization. The concentrations were

compared using the Wilcoxon rank-sum test, with p-values

,0.05 considered statistically significant. Due to the large

number of tests, one test for each of the 154 lipids, for the

differences in mean concentrations between the progressor and

non-progressor groups some p-values may be small due to

chance. In order to quantify the number of such false significant

findings we estimated the false discovery rates using q-values

[15,16]. A q-value is associated for each lipid with the

interpretation that among those lipids that have p-value less

than or equal to the p-value of the lipid a fraction q are falsely

stated significant. To account for multiple comparisons, false

discovery rates among significantly differing lipids were estimated

using q-values [15,16]. False discovery rates were computed using

the R package q-value. The fold difference was calculated by

dividing the median concentration in high-risk group by the

median concentration in low-diabetes-risk group and taking the

base-2-log of the resulting value. This makes interpretation easy

as values greater/smaller than zero correspond to up/down-

regulated lipids in the high-risk group. In clustering we applied a

customized correlation based distance metric

dij~1=log cor xi,xj
� �

�

�

�

�

� �

,

Where xi and xj denote the concentrations of lipids i an j in the

sample set. Ward’s method was then applied in hierarchical

clustering using this distance measure [75].

Hidden Markov Model of metabolic state progression
Metabolic state development in diabetes progressors and non-

progressors was modeled by separate Hidden Markov Models

[18], making it possible to align individuals based on metabolic

states instead of age, and to compare the metabolic states in

progressors and non-progressors. The modeling assumptions

under which the models are fitted to data are that individuals

share a similar developmental progression but the timing of the

states may vary, and that metabolite profiles in each state may be

different for progressors and non-progressors. Model fitting was

done by the standard Baum-Welch algorithm using the MATLAB

toolbox by Kevin Murphy (http://www.cs.ubc.ca/,murphyk/

Software/HMM/hmm.html). The model structure was validated

by the bootstrap in the same way as in our earlier studies [18], and

confidence intervals were estimated with non-parametric bootstrap

(5000 samples).

Mapping of human and mouse metabolites
Let X[<N|DX and Y[<M|DY be two data matrices with N

and M samples, N§M, and dimensions DX and DY ,

respectively. The task is to find a permutation p of samples in Y

such that each sample xi in X is matched with yp ið Þ in Y . We

assume a one-to-one matching of samples between the two data

matrices. Since the data matrices do not lie in the same data space,

it is not possible to use distance as the matching criterion. We have

recently introduced a methodology based on statistical dependen-

cies between the data sets to solve this problem [19]. The idea is to

compute from the data features or statistical descriptors that

maximize statistical dependencies, and do the matching based on

the descriptors. In practice, we project the data onto a lower-

dimensional subspace such that the statistical dependencies

between the datasets are maximized, and find a matching of

samples in this comparable subspace.
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Bootstrap-based two-way analysis
In order to find disease effects shared by NOD mice and

humans in the DIPP study, we first paired metabolites of the two

organisms, then estimated the metabolic states of progressor and

non-progressor men and mice by HMMs, and finally did a

bootstrap-based two-way analysis on progressors/non-progressors

vs. men/mice to identify disease and organism effects and their

interactions. The data-driven pairing or the metabolites and the

four HMMs were computed as described above. The two-way

analysis of disease effect was done by first removing the organism

effect, represented with a single mean parameter estimated by least

squares, and then computing bootstrap confidence intervals for the

disease effect of pooled men and mice. Organism and cross effects

were estimated analogously.

Supporting Information

Figure S1 Lipidomic profiles of male NOD progressors

do not differ from non-progressors. Age- dependent

progression of lipidomic profiles in NOD male mice, viewed as

ratios of mean lipid concentrations of diabetes progressors (n=7)

vs. the non-progressors (n=6). The hierarchical clustering of lipids

was performed across all 439 samples analyzed from male NOD

mice.

(PDF)

Figure S2 Surrogate marker for stratifying female NOD

mice into two groups with high- and low-risk of

developing autoimmune diabetes. The marker is derived

from lysophosphatidylcholine and IAA measurement from 8 week

old female mice (same mice as shown in Figure 2F), including

n=12 diabetes progressors vs. n=14 non-progressors. The

biomarker development assay was applied once (Study 1), and

applied in three subsequent independent studies (Studies 2–4). The

following algorithm was applied:

1. Calculate lysoPC concentration (mmol/l) as a sum of

concentrations of PC(16:0/0:0) and PC(18:0/0:0).

2. Scale the lysoPC concentration to zero mean and unit

varianceRlysoPCS.

3. Marker calculation.

a. If IAA2, then Marker= lysoPCS.

b. If IAA+, then Marker=2lysoPCS.

4. Estimation of progressors (P) and non-progressors (NP).

a. If Marker $20.1 then P, else NP.

(PDF)

Figure S3 Microbial composition of caecum in 19-week-

old female NOD mice, comparing high- and low-risk

groups. Principal Components Analysis plot of the composite

DGGE dataset, which was calculated based on DGGE-profiles of

predominant bacteria, E. rectale – B. coccoides group, C. leptum group,

Bacteroides spp. and Lactobacillus-group, bifidobacteria didn’t

amplify. (star = high diabetes risk, dot = low diabetes risk). n=4

from HR group and n=7 from LR group. DGGE analysis were

performed once (i.e., only in NOD Study 2; same mice as

Figure 5C).

(PDF)

Table S1 Pathway analysis of islet transcriptomics

data. Gene Set Enrichment Analysis [20] results at FDR

q,0.25 for three different comparisons: (1) Progressors (P) vs.

Non-progressors (NP); (2) IAA+ vs. IAA2; (3) IAA+ non-

progressors vs. other. Transcriptomics was performed on n=10

19-week old female NOD mice (three IAA+ NP, two IAA2 NP,

two IAA+ P, three IAA2 P). N, number of genes in the pathway;

NES, normalized enrichment score; FDR q, False Discovery Rate

q-value [15]; Source, gene list source.

(PDF)

Table S2 Leading edge genes in selected islet pathways.

Leading edge genes for selected upregulated pathways (diabetes

progressors vs. non-progressors in female NOD mice; Table 1 and

Table S1) derived from Gene Set Enrichment Analysis [20] of islet

gene expression data. NES, normalized enrichment score; FDR q,

False Discovery Rate q-value [15]; Probe ID, Illumina Mouse

WG-6 Expression BeadChips probe ID; Fold, fold change

progressors vs. non-progressors; P-value (t statistic); Gene, common

gene name.

(PDF)

Table S3 Pathway analysis of liver transcriptomics

data. Gene Set Enrichment Analysis [20] results at FDR

q,0.25 for three different comparisons: (1) High diabetes risk

(HR) vs. low risk (LR); (2) IAA+ vs. IAA2; (3) IAA+ LR vs. other.

Transcriptomics was performed on n=12 19-week old female

NOD mice (four IAA+ LR, three IAA2 LR, two IAA+ HR, three

IAA2 HR). N, number of genes in the pathway; NES, normalized

enrichment score; FDR q, False Discovery Rate q-value [15];

Source, gene list source.

(PDF)
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