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Abstract 10 

Several lines of evidence indicate that during transformation epithelial cancer cells can acquire 11 

mesenchymal features via a process called epithelial-to-mesenchymal transition (EMT). This process 12 

endows cancer cells with increased invasive and migratory capacity, enabling tumour dissemination 13 

and metastasis. EMT is associated with a complex metabolic reprogramming, orchestrated by EMT 14 

transcription factors, which support the energy requirements of increased motility and growth in 15 

harsh environmental conditions. The discovery that mutations in metabolic genes such as FH, SDH 16 

and IDH activate EMT provided further evidence that EMT and metabolism are intertwined. In this 17 

review, we discuss the role of EMT in cancer and the underpinning metabolic reprogramming. We 18 

also put forward the hypothesis that, by altering chromatin structure and function, metabolic 19 

pathways engaged by EMT are necessary for its full activation. 20 

 21 

Background 22 

In the last decades, cancer research uncovered the many enabling features of tumours cells [1]. 23 

Among these, activation of epithelial-to-mesenchymal transition (EMT), a process where epithelial 24 

cancer cells acquire mesenchymal features, is emerging as key determinant of cancer cell invasion and 25 

metastasis [2-4]. To metastasise, cancer cells acquire the ability to erode the extracellular matrix, the 26 

motility to extravasate into the blood stream, and the plasticity to grow in a different tissue. In all 27 

these phases, nutrient supply can be limited and cancer cells experience varying degree of stress [5]. 28 

Accordingly, metastatic cells fine-tune their metabolism to adapt to the ever-changing environment 29 

[6, 7]. In line with this observation, part of the genetic reprogramming orchestrated by EMT affects 30 

the expression of metabolic genes, regulating glucose, lipids, glutamine, and nucleotide metabolism. 31 

Yet, to what extent EMT rewires the metabolic network is still unclear. The recent discovery that 32 

oncogenic mutations of metabolic enzymes such as fumarate hydratase (FH), succinate 33 
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dehydrogenase (SDH) and isocitrate dehydrogenase (IDH) drive EMT [8-10] indicates that the 34 

connection between EMT and metabolism is deeper than anticipated. Indeed, these works revealed 35 

that components of the metabolic network can directly affect chromatin structure and function, 36 

impinging on signalling cascades required for the full activation of EMT [11, 12]. In this review, we 37 

describe the role of EMT in tumorigenesis, how EMT affects metabolism, and how, in turn, 38 

dysregulation of metabolic genes affect the execution of EMT. 39 

The epithelial-to-mesenchymal transition in cancer  40 

In tissues, epithelial cells are organised in compact layers anchored to the basal lamina. During 41 

transformation, some of these cells lose their epithelial features and acquire a mesenchymal 42 

phenotype through a process defined as epithelial-to-mesenchymal-transition (EMT). This process is 43 

characterised by profound transcriptional [13] and epigenetic changes [14, 15] that lead to the loss of 44 

cell-to-cell junctions and the acquisition of a motile and migratory phenotype, enabling the invasion 45 

of the basal lamina, which eventually may lead to metastasis. At the molecular level, EMT is dictated 46 

by a network of transcription factors (EMT-TFs) that directly or indirectly represses one of the key 47 

epithelial markers, E-Cadherin [13, 16]. These EMT-TFs belongs to various family of chromatin 48 

interacting family of proteins, including Snail (Snai1 and Snai2), bHLH (Twist1 and Twist2), and zinc 49 

finger and E-box binding (Zeb1 and Zeb2). Cross-activation of EMT by other oncogenic stimuli and the 50 

identification of non-canonical EMT-TFs such as Kruppel-like-factor (KLF8), the homebox proteins 51 

goosecoid (GSC) or fork-head protein (FOXC2), contributes to the great complexity of EMT regulation 52 

[13, 16]. Moreover, recent evidence has shown that microRNAs are also potent regulators of EMT, 53 

affecting the expression of multiple targets of this cascade [17].  54 

The role of the EMT-TFs in invasion and metastasis has been extensively investigated [16]. In 55 

vivo experiments using a spontaneous squamous cell carcinoma mouse model showed that the 56 

expression of the EMT-TF Twist1 is sufficient to trigger EMT and the subsequent dissemination of 57 

cancer cells into the blood stream. Interestingly, the colonisation of target tissues by these metastatic 58 

cells is driven by a mesenchymal-to-epithelial transition (MET) and requires suppression of Twist1 [18]. 59 

Other works identified a primary role of the EMT in breast cancer progression. For instance, Twist1 60 

controls the ability of aggressive breast 4T1 cells to migrate in vitro and to metastasise to the lung in 61 

vivo [19]. The role of Twist1 in early dissemination and metastasis was also corroborated in human 62 

epidermal growth factor receptor 2 (Her2)-positive mammary cancer cells. It was shown that in early 63 

lesions in mouse breast, a subpopulation of cells that express high levels of Twist1, low levels of E-64 

cadherin, and markers of Wnt signalling activation, invade the adjacent tissue and lead to early 65 

dissemination and subsequent mestastasis [20]. Moreover, in mouse skin squamous cell carcinoma, 66 

Twist1 is required in both early and late stages of tumour progression in a gene dosage- dependent 67 
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manner [21]. Other EMT-TF are directly involved in breast cancer metastasis. For instance, the 68 

expression of Snai1 in a mouse model of breast cancer activates the dissemination of cancer cells and 69 

its deletion dramatically impairs the formation of metastasis [22]. The impact of SNAI1 activation in 70 

the malignancy of breast tumours has been further confirmed by the discovery that the discoidin 71 

domain receptor 2 (DDR2), a protein expressed in ductal breast carcinomas, drives invasion in vitro 72 

and metastasis in vivo through the nuclear stabilisation of Snai1, via phosphorylation mediated by 73 

extracellular related kinase 2 (ERK2) [23]. Even though a series of convincing works established the 74 

involvement of EMT in metastasis formation, its real importance in tumour evolution is still 75 

questioned. For instance, two groups recently showed that the EMT is dispensable for metastasis in a 76 

model of pancreatic [24] and breastcancer [25]. These results suggest that the role of EMT in cancer 77 

progression is likely tissue-specific and that it might be implicated in other features of cancer. Indeed, 78 

it has recently emerged that EMT, via the expression of EMT-TFs, enables stemness in cancer cells [2, 79 

16]. For instance, an orchestrated signal mediated by SNAI2 and SOX9 induces a stem state and 80 

promotes tumorigenesis in mammary luminal cells [26], while the ectopic expression of TWIST1 or 81 

SNAI1 results in the expression of stem markers in human immortalised mammary cells [27]. 82 

Moreover, ZEB1-mediated suppression of miR200 favours the expression of polycomb repressor 83 

protein Bmi1 [28, 29] and Suz12 [30], two regulators of self-renewal and stemness in breast cells. 84 

Further work showed that the acquisition of stem-like properties through EMT activation is involved, 85 

at least in part, in both chemoresistance [31, 32] and tumour dormancy [31, 33-35]. These two 86 

prominent features of cancer therapy may be interlinked. Seminal work using an elegant in vivo model 87 

to trace EMT lineage during metastasis showed that EMT-positive cells are responsible for recurrence 88 

of lung metastasis after chemotherapy with cyclophosphamide, suggesting that chemoresistance, 89 

EMT and dormancy may be part of the same pathway [25].  90 

EMT activation induces a metabolic rewiring  91 

Recent findings indicate that mesenchymal cancer cells have different metabolic needs compared 92 

their epithelial counterparts, to satisfy the metabolic demands of increased motility and invasion. Yet, 93 

how EMT regulates metabolism is still poorly understood. In the effort to corroborate this link, Shaul 94 

and colleagues analysed the expression of metabolic genes in high-grade carcinomas expressing 95 

mesenchymal markers using publically available data from almost 1000 cancer cell lines. They found 96 

that these mesenchymal cells exhibit high expression levels of 44 metabolic genes. These genes were 97 

found upregulated also upon induction of EMT by expression of Twist1 in human mammary epithelial 98 

cells. Among these enzymes, Dihydropyrimidine dehydrogenase (DPYD), an enzyme involved in 99 

pyrimidine catabolism, was required for EMT, both in vitro and in vivo [36] (Figure 1). Importantly, 100 

exogenous dihydropyrimidines are sufficient to rescue EMT after silencing of DPYD, suggesting that 101 
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these metabolites are a limiting factor during the EMT. However, the how they regulate EMT is 102 

currently unknown. 103 

Overall, these results suggested that metabolic rewiring is required to complete the 104 

reprogramming orchestrated by EMT. In further support of these findings, it was found that SNAI1 105 

expression represses the glycolytic enzyme fructose-1,6-bisphosphatase 1 (FBP1), favouring glucose 106 

uptake and the diversion of glycolytic carbons towards biosynthetic pathways, including the pentose 107 

phosphate shunt (Figure 1). Interestingly, FBP1 loss impairs respiration and the activity of respiratory 108 

chain complex I [37]. Activation of glycolysis by EMT was also observed in breast and prostate cancer 109 

cells, where it is required for both cytoskeleton remodelling and increasing cell traction [38]. Glycolysis 110 

is targeted by EMT also in non-small cell lung cancer cells (NSCLC), where ZEB1 activate the expression 111 

of glucose transporter 3 (GLUT3) [39]. However, the metabolic reprogramming upon EMT in NSCLC is 112 

controversial. For instance, the treatment of NSCLC with TGF-β induces a shift from glycolysis to 113 

OXPHOS and leads to an overall increase in amino acids, in particular in glutamate, via a higher flux of 114 

carbons through the TCA cycle. Mechanistically, this shift from glycolysis to OXPHOS is achieved by a 115 

selective repression of pyruvate dehydrogenase kinase 4 during EMT [40]. Finally, EMT induction by 116 

TGF-β in colon cancer cells elicits the nuclear translocation of pyruvate kinase M2 (PKM2) and the 117 

silencing of PKM2 prevents EMT triggering by TGF-β in these cells [41] (Figure 1). 118 

Other metabolic pathways are targeted during EMT, including lipid metabolism (Figure 1). For 119 

example, EMT activation by either TNFα or TGF-β favours the accumulation of unsaturated 120 

triacylglycerides in DU145 prostate cancer cells [42]. Furthermore, the activation of EMT by 121 

overexpression of SNAI1 suppresses transcriptional regulators of the lipogenesis carbohydrate-122 

responsive element binding protein (ChREBP) leading to the silencing of both fatty acid synthase 123 

(FASN) and acetyl-CoA carboxylase (ACC) [43]. Finally, another pathway required during EMT is 124 

glutaminolysis (Figure 1): lung cancer cells that undergo an EMT become increasingly sensitive to 125 

Glutaminase-1 (GLS1) inhibitors [44].  126 

As discussed above, EMT activation is involved in both chemoresistance and tumour dormancy. 127 

Even though the role of metabolism in these processes is largely unknown, recent works suggest that 128 

metabolic rewiring can be important in both chemoresistance and tumour dormancy. For instance, 129 

EMT-positive breast cells that are responsible for recurrent lung metastasis after chemotherapy 130 

increased the expression of metabolic enzymes such as drug transporters, aldehyde dehydrogenase 131 

(ALDHs), cytochrome P450s, and enzymes of glutathione metabolism [25] (Figure 1). Likely, these 132 

metabolic changes protect the cells from oxidative stress experienced during therapy. Furthermore, 133 

deletion of Twist1 or Snai1 in chemoresistant pancreatic cancer cells increase the expression of a 134 

nucleosides transporter, which leads to increase uptake of the anticancer drug gemcitabine [24]. The 135 
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link between EMT, metabolic alterations, and tumour dormancy remains mainly indirect. It is widely 136 

known that during tumour dormancy, cancer cells undergo proliferative arrest and enter quiescence 137 

[34]. Therefore, it not surprising that this change in proliferation rate is accompanied by a metabolic 138 

rewiring. For instance, pancreatic ductal cancer cells surviving after oncogene ablation acquire stem-139 

like traits and are dependent on oxidative phosphorylation for survival [45]. In addition, quiescent 140 

leukaemia stem cells (LSC) rely on mitochondrial metabolism: targeting the oxidative phosphorylation 141 

through BCL-2 inhibition is sufficient to eradicate LSC population [46]. However, the impact of EMT-142 

TFs in regulating these metabolic alterations during dormancy is largely unknown and it might be 143 

related to the dynamic shift between EMT and MET that occurs on tumour circulating cells [47].  144 

Overall, these results suggest that metabolic reprogramming is instrumental to the phenotypic shift 145 

observed during the EMT. Whether these metabolic changes are simply required to fulfil the energy 146 

requirements of more aggressive cells or to support some of the signalling cascades involved in this 147 

process is still unknown.  148 

Metabolic reprogramming activates the epithelial- to-mesenchymal transition 149 

Recent evidence suggests that the link between EMT and metabolism is mutual and, in some 150 

circumstances, alterations of metabolism can drive EMT. The next part of the review describes how 151 

the dysregulation of metabolic pathways is associated with EMT induction. These findings are 152 

summarised in Figure 2. 153 

Glycolysis 154 

Aerobic glycolysis is the most distinctive metabolic alteration of cancer cells [1, 48] but the role of 155 

glycolytic enzymes in the induction of EMT has emerged only in the last years. Phosphoglucose 156 

isomerase (PGI) is a glycolytic enzyme that converts glucose-6P to fructose 6-P. This enzyme was found 157 

to be secreted by cancer cells and to act as cytokine, taking the name of autocrine motility factor 158 

(AMF). Overexpression of PGI/AMF causes a NF-kB-dependent stabilisation of ZEB1 and ZEB2 in breast 159 

cancer cells [49] and ectopic expression in normal epithelial breast MCF10A triggers EMT [50]. 160 

Importantly, suppression of PGI/AMF leads to reverse MET in lung fibrosarcoma [51] and endometrial 161 

cancer cells [52]. As described above, the expression of the glycolytic enzyme fructose-1,6-162 

biphosphatase (FBP1) blocks the induction of EMT mediated by SNAI1 in luminal breast cells. The 163 

silencing of FBP1 favours EMT also in gastric cells in vitro [53]. Other glycolytic enzymes are involved 164 

in EMT induction. For instance, the silencing of Aldolase A (ALDOA), an enzyme that converts fructose-165 

1,6-bisphosphate to glyceraldehydes-3-phosphate and hydroxy-acetone, impairs lung squamous 166 

carcinoma cell motility and tumorigenesis and this phenomenon is associated with repression of 167 

mesenchymal markers [54]. Furthermore, silencing of glyceraldehyde-3-phosphate dehydrogenase 168 

(GAPDH) inhibits EMT by repressing SNAI1 in colon cancer [55]. Finally, overexpression of lactate 169 
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dehydrogenase (LDH), the enzyme that converts pyruvate to lactate, leads to increased migration and 170 

invasion in bladder cancer cells [56].  171 

Mitochondrial metabolism  172 

Mitochondrial dysfunction is a key feature of cancer and has been frequently associated with 173 

increased aggressiveness and metastatic potential [57, 58]. Yet, the mechanistic link between 174 

mitochondrial dysfunction and EMT have only recently been investigated. In 2014 it was shown that 175 

mitochondrial dysfunction induced by depletion of mitochondrial DNA in breast cells leads to 176 

profound morphological and molecular changes that resembles EMT, including increased expression 177 

of EMT-TFs, metalloproteases and suppression of E-cadherin, triggered by a Calcineurin A (CaN)-178 

dependent mechanism [59]. In support of this finding, we recently found that the downregulation of 179 

mitochondrial genes is a common feature of highly aggressive cancers, and that it significantly 180 

correlates with the activation of EMT across 21 different types of cancer [60]. More recently, we and 181 

others have demonstrated that EMT is a key signature of tumours harbouring mutations in the 182 

Tricarboxylic Acid (TCA) cycle enzymes FH, SDH and IDH [8-10]. 183 

Fumarate hydratase is the enzyme that converts fumarate to malate. Mutations of this enzyme lead 184 

to Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) [61] and other tumour types, including 185 

paragangliomas and pheochromocytomas [62, 63], whilst FH deletions have been found in 186 

neuroblastoma [64]. FH-mutant renal tumours are highly aggressive and metastasise even when small 187 

[65]. However, the mechanisms underpinning this aggressiveness are still under investigation. We 188 

recently demonstrated that FH-deficient cells exhibit a striking mesenchymal phenotype, linked with 189 

the expression of an EMT signature [8]. The link between FH and EMT was also observed in 190 

nasopharyngeal carcinoma, where FH is transcriptionally repressed by the lymphoid-specific helicase 191 

(LSH) [66]. Mechanistically, we found that fumarate, which accumulates in FH-deficient cells and 192 

tumours, is responsible for the induction of EMT by inhibiting the TET-dependent demethylation of 193 

the anti-metastatic microRNA miR200 [8], known inhibitors of both SNAI2 [67] and ZEB1 [68] (Figure 194 

3).  195 

Another TCA cycle enzyme implicated in EMT is Succinate dehydrogenase (SDH), a component of the 196 

respiratory chain that converts succinate to fumarate. SDH mutations have been described in 197 

pheochromocytomas and paragangliomas [69-72], sporadic renal cancer [73] and gastrointestinal 198 

stromal tumours [74, 75]. A recent study revealed that human metastatic pheochromocytomas and 199 

paragangliomas harbouring SDHB mutations are invasive and exhibit activation of EMT–TFs such as 200 

SNAI1 and SNAI2, suggesting the induction of EMT in these tumours [10] . Consistently, it was shown 201 

that loss of SDHB in chromaffin cells induces these EMT-TFs and leads to the epigenetic silencing of 202 

keratin-19 [76, 77]. Importantly, the migratory phenotype of these cells is reversed by the use of a 203 
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DNA methylation inhibitor, decitabine. The link between SDHB deficiency and EMT was also shown in 204 

colorectal cancer, where the silencing of SDHB promotes cell migration and invasion in a TGF-/SNAI1-205 

mediated-process [78], and also in ovarian cancer [79]. Finally, loss of the assembly factor SDH5 [80], 206 

induces EMT in lung cancer cells and metastasis in-vivo through activation of a glycogen-synthase 207 

kinase (GSK-3)--catenin axis [81]. Although these studies did not focus on the accumulation of 208 

succinate as a mediator of EMT, we recently found that succinate, similarly to fumarate, can induce 209 

the epigenetic suppression of miR200 and subsequent EMT induction in Sdhb-deficient epithelial 210 

kidney cells [8] (Figure 3).  211 

Other TCA cycle enzymes recently appeared in the spotlight of cancer biology and EMT are Isocitrate 212 

Dehydrogenases (IDHs), enzymes involved in the oxidative decarboxylation of isocitrate to alpha-213 

ketoglutarate (aKG). Three isoforms of IDH have been identified: cytosolic IDH1 and mitochondrial 214 

IDH2 are NADP+-dependent enzymes, while mitochondrial IDH3 is a NAD+-dependent protein. 215 

Heterozygous mutations in either IDH1 or IDH2 have been found in gliomas and leukaemia [82-84]. 216 

IDH1 and IDH2 mutations are neomorphic and lead to the production of 2-hydroxyglutarate (2HG), 217 

which was shown to induce EMT. Similar to what was described for FH and SDH deficient cells, EMT in 218 

IDH-mutant cells is driven by alterations of the miR200-Zeb1 axis (Figure 3). This phenomenon was 219 

observed in breast tumours [9], and in colorectal cancer cells [9, 85].  220 

Finally, another TCA cycle enzyme associated with EMT is citrate synthase (CS), the enzyme that 221 

catalyses the first committed step of the TCA cycle. Silencing of CS induces morphological and 222 

molecular changes in human cervical carcinoma cells that resemble EMT, and promotes metastasis in 223 

vivo. The molecular mechanisms responsible for this phenotype are not clear, but it is possible that 224 

the mitochondrial dysfunction observed in these cells is involved [86]. However, more recent 225 

experiments indicate that CS is upregulated in other tumour types such as ovarian cancers and that 226 

its silencing impairs both motility and invasion of tumour cells in vitro [87]. Therefore, the role of CS 227 

in tumour progression is still unclear and it might be tissue-dependent.  228 

Lipid metabolism 229 

Several recent reports support the connection between lipid metabolism and EMT. For instance, the 230 

overexpression of acetyl-CoA synthetase (ACSL1 and ACSL4) and steroyl-CoA desaturase (SCD) can 231 

activate EMT in colorectal cancer, leading to increased migration, invasion and colony formation in 232 

vitro. Importantly, the expression of these three enzymes is associated with poor prognosis in stage II 233 

colorectal cancer patients [88]. In addition, elevated fatty acid uptake via CD36 activates a Wnt-234 

dependent EMT in hepatocellular carcinoma (HCC) [89]. Of note, in human oral cancer cells CD36-235 

positive cells are responsible for cancer initiation and metastasis in vivo. However, in the latter model 236 

the EMT is not involved in the formation of metastasis [90]. Other enzymes of lipid metabolism have 237 
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been identified as EMT regulators. For instance, silencing of ATP citrate lyase (ACL) reverses EMT in 238 

lung cancer and impairs stemness in both lung and breast cells by SNAI1 repression [91]. Moreover, 239 

silencing of acetyl-CoA carboxylase 2 (ACC2) reverted the EMT transition triggered by glucose stress, 240 

triglyceride deposit and malonyl-CoA accumulation in kidneys [92]. Interestingly, treatment of cancer 241 

cells with fatty acids such as arachidonic or linoleic acid elicits an EMT that is downstream of the 242 

oncogenic cascades mediated by SRC, NF-kB and FAK [93, 94]. 243 

Glutaminolysis 244 

Most cancer cells depend on glutamine utilisation [48], and the role of glutaminolysis in EMT has been 245 

recently investigated. The inhibition of glutaminolysis by targeting GLS1 impairs in vivo metastasis 246 

through repression of SNAI1 [95]. On the contrary, the expression of GLS2, the mitochondrial isoform 247 

of glutaminase, inversely correlates with stage, tumour size, and prognosis in HCC. However, this 248 

phenomenon is independent of GLS2 glutaminase activity and involves the GLS2-mediated 249 

stabilisation of the EMT-related microRNA miR-34a via the Dicer complex [96]. These results suggest 250 

that the effects of glutamine catabolism on EMT might be context-dependent and more work is 251 

necessary to elucidate the importance of glutaminolysis in this process. 252 

Conclusions and future perspective 253 

EMT is a fundamental biological process involved in development, fibrosis, and wound healing [4]. 254 

Recent evidence indicates that this process is also involved in tumour initiation and metastasis. EMT 255 

elicits a complex phenotypic switch that endows cancer cells with ability to survive during invasion, 256 

dissemination, and metastasis. This flexibility is achieved at least in part by the rewiring of the 257 

metabolic network. As discussed above, EMT, via EMT-TFs, orchestrates profound metabolic changes 258 

that allow the cell to sustain the energy needs of a cancer cell in an ever-changing tumour micro 259 

environment. Yet, the role of metabolism in EMT seems to go beyond these simple enabling features. 260 

Indeed, the observation that dysregulation of cellular metabolism, in some circumstances, drives EMT 261 

indicates that parts of the metabolic network could act as a core component of the signalling cascade 262 

elicited by the EMT (Figure 4). The data discussed in this review corroborate this hypothesis and 263 

indicate that specific metabolic alterations could lead to chromatin changes that are required for the 264 

activity of EMT-TFs. Several questions arise. For instance, it is still unclear why different sources of 265 

mitochondrial dysfunction converge on EMT. In an interesting parallel, EMT induction is associated 266 

with bypass of oncogene –induced senescence [97]. Given that senescence is a common outcome of 267 

metabolic stress [98] it is possible that induction of EMT could provide cells with the sufficient 268 

plasticity to survive and proliferate in the presence of metabolic defects or under nutrient stress. In 269 

this scenario, metastasis could be seen as a strategy to explore novel, and more favourable, metabolic 270 

niches, and increased motility the means to this goal. Another outstanding question in the field is to 271 
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what extent the EMT observed in metabolically-impaired cells contributes to tumorigenesis. The fact 272 

that EMT is the most enriched gene signature in FH and SDH-deficient cells seems to support a driving 273 

role of EMT in these tumours. It would be important to validate this hypothesis by assessing 274 

tumorigenesis in FH- or SDH-deficient models where EMT-TFs are ablated. Finally, the fact that EMT 275 

shows unexpected metabolic facets offers interesting therapeutical perspectives (Fig.4). Indeed, EMT 276 

could be potentially reverted by targeting specific metabolic enzymes, or targeting the metabolism-277 

dependent epigenetic reprogramming, eventually limiting cancer metastasis. Consistently, inhibitors 278 

of mutant IDH were shown to revert glioma cells to a more differentiated state [99], and the DNA 279 

methylation inhibitor, decitabine, impairs the invasive phenotype of SDH-deficient cells [77]. Along 280 

this strategy, a recent screening was designed to identify small molecules that could revert the 281 

mesenchymal phenotype of cancer cells activating E-cadherin transcription. Interestingly, it was found 282 

that protein kinase A (PKA) activation by increasing cyclic AMP (cAMP) levels, is sufficient to trigger a 283 

mesenchymal-to-epithelial transition (MET) in aggressive breast cancer cells, through activation of the 284 

histone demethylases PHF2. cAMP is a key second messenger and its levels are tightly controlled by 285 

the energy state of cells [100]. Therefore, it is tempting to speculate that metabolic alterations, 286 

through regulation of cAMP levels, are necessary for full EMT activation and that altering metabolism 287 

could be a tempting strategy to modify cell phenotype and, more importantly, aggressive features of 288 

cancer.  289 

Overall, in this review we provided compelling evidence that EMT and metabolism are intertwined. 290 

Understanding the underpinning molecular determinants of this relation is revealing novel insights 291 

into how tumours are formed and disseminate, and will potentially provide novel targets for targeting 292 

metastasis, the major killer in cancer.  293 
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Figure legends 692 

Fig.1 EMT controls metabolic reprogramming 693 

EMT transcription factors (EMT-TFs) control the expression of metabolic genes of different pathways 694 

such as glycolysis, lipid metabolism, and mitochondrial metabolism, and glutaminolysis. Specifically, 695 

EMT-TFs suppress the expression of fructose-1,6-bisphosphatase 1 (FBP1), fatty acid synthase (FASN), 696 

acetyl-coA carboxylase (ACC), nucleoside transporter, and pyruvate dehydrogenase kinase 4 (PDK4), 697 

whilst enhance the expression of dihydropyrimidine dehydrogenase (DPYD), glutaminase 1 (GLS1), 698 

enzymes of glutathione metabolism, cytochrome P450, aldehyde dehydrogenases, and glucose 699 

transporter 3 (GLUT3). Red dashed arrows indicate the metabolic nodes regulated by EMT-TFs. 700 

TCA=tricarboxylic acid cycle. 701 

Fig.2 Metabolic genes control EMT. 702 

Aberrant expression of metabolic enzymes of glycolysis (orange), lipid metabolism (purple), 703 

glutaminolysis (blue), mitochondrial metabolism (green), leads to EMT. Red dashed arrows indicate 704 

the link between specific metabolic pathway/metabolites and EMT. ACC=acetyl-CoA carboxylase; 705 

ACL=ATP citrate lyase; ACSL=acetyl-CoA synthetase; ALDOA=aldolase A; CaN=calcineurin A; CI-706 

CV=respiratory chain complexes I-V; CoQ=coenzyme Q; CS=citrate synthase; CytC=cytochrome C; 707 

FBP1=fructose-1,6-bisphosphatase 1; FH=fumarate hydratase; GAPDH=glyceraldehyde-3-phosphate 708 

dehydrogenase; GLS=glutaminase; IDH=isocitrate dehydrogenase; LDHA=lactic dehydrogenase A; PGI 709 

=phosphoglucose isomerase; PKM2=pyruvate kinase M2; SCD=steroyl-CoA desaturase; 710 

SDH=succinate dehydrogenase. 711 

Fig.3 EMT activation by mutations in FH, SDH and IDH requires epigenetic reprogramming. 712 

Schematic representation of how mitochondrial metabolites accumulated upon mutation of the 713 

indicated TCA cycle enzymes activate the EMT. A common pathway affected by these metabolites is 714 

the epigenetic suppression of a family of antimetastatic microRNAs, miR200, via the inhibition of 715 

histone demethylases (KDMs) and DNA demethylases (TETs). Of note, in the case of 2HG, the 716 

suppression of miR200 is indirect, and occurs via activation of Zeb1/2. See the text for more details. 717 

FH=fumarate hydratase; SDH=succinate dehydrogenase; IDH=isocitrate dehydrogenase.  718 

Fig.4 Integration between oncogenic signalling, metabolic transformation, and epigenetic 719 

reprogramming during EMT 720 

EMT requires the coordinated activation of multiple cellular processes, here represented as gears 721 

within a clockwork. Each of these components are essential for the full activation of EMT. As 722 

consequence, the inhibition of parts of this clockwork hampers the full activation of the EMT. For 723 
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instance, inhibition of mutant IDH, or activation of PKA can block EMT. PKA=protein kinase A; 724 

IDH=isocitrate dehydrogenase. 725 

 726 


